Merging of linear combinations to semistable laws
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Péter Kevei'? and Sandor Csorgd !

We prove merge theorems along the entire sequence of natural numbers for the distribution
functions of suitably centered and normed linear combinations of independent and identi-
cally distributed random variables from the domain of geometric partial attraction of any
non-normal semistable law. Surprisingly, for some sequences of linear combinations, not
too far from those with equal weights, the merge theorems reduce to ordinary asymptotic
distributions with semistable limits. The proofs require to work out general conditions of
merge in terms of characteristic functions.
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1. INTRODUCTION

Let Y be an infinitely divisible real random variable with characteristic function
o(t) = E(e'Y) in its Lévy form (Ref. 10, p. 70), given for each ¢ € R by

¢(t)_exp{us9——t2 /Bt )dL(x /Bt ) dR( )}

ite
1+ a2
and where the constants § € R and ¢ > 0 and the functions L(-) and R(-) are
uniquely determined: L(-) is left-continuous and non-decreasing on (—oc,0) with

where

ﬁt(x> — eitw — 1=

L(—o0) =0and R(-) is right continuous and non-decreasing on (0, 00) with R(c0) =
0, such that f 2?dL(z) + [ 2?dR(z) < oo for every € > 0. We need a variant
of this formula for ¢(-) in connection with a probabilistic representation of Y in
Ref. 4; the representation itself is not needed here. Let ¥ be the class of all non-
positive, non-decreasing, right-continuous functions v (-), defined on (0, 0), such
that f ¥?(s)ds < oo for each € > 0. Then there is a one-to-one correspondence
between the pairs of Lévy functions L(-) and R(-) and the pairs of functions 1 (-)
and ¥9(-) taken from WU if we put ¥1(s) = inf{x < 0 : L(z) > s} and ¢s(s) =
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inf{z < 0: —R(—z) > s}, s > 0, and, conversely, L(xz) = inf{s > 0 : ¥(s) > z},
x < 0, and R(z) = —inf{s > 0 : ¥a(s) > —z}, = > 0. Let W(1¢)1,12,0) be an

infinitely divisible random variable with characteristic function

E(eitwwhwﬂ) :exp{— %2t2+ /_ Oooﬁt@;) dL(z) + /0 ") dR(a:)}

—ep{- T2+ [Totntnant [ avawyal, :

where the second equality follows by Theorem 3 in Ref. 4. The uniqueness of
o,L(-), R(-) and the one-to-one correspondence immediately implies the uniqueness
of the triple o,91(-),%2(-). A concrete version of W(t1,19,0) is given in Ref. 6
and, to keep complete accord with Ref. 6 as far as constants go, we also introduce

V (Y, ¥2,0) = W (1,92,0) + 0(1p1) — 6(1p2), where
_ [T W) [T ()
0= [ ) e YT

and for its distribution function we put
Gy pao(t) = P{V (Y1, ¢2,0) <z}, z€R 2)

Referring to Refs. 13, 11, 14 and 6 for background, we describe semistable laws
in the present framework as follows: an infinitely divisible law G, ¢, - is semistable
if and only if either (¢1,12,0) = (0,0,0) for some o > 0, the normal distribution
as a semistable distribution of exponent 2, or (11,1, 0) = (¥, 1¥,0), where

M:(s .
V5(s) = — Sf/(a)’ s>0,7=12, (3)

for some a € (0,2), defining a semistable law of exponent «, where M;(:) and
M>(+) are non-negative, right-continuous functions on (0, 00), either identically zero
or bounded away from both zero and infinity, such that at least one of them is
not identically zero, the functions w;x() are non-decreasing and the multiplicative
periodicity property M;(cs) = M;(s) holds for all s > 0, for some constant ¢ >
1, j = 1,2. (The superscript « in Y5 is a label, not a power exponent.) For
the Lévy form this means that there exist non-negative bounded functions M, (-)
on (—o00,0) and Mpg(-) on (0,00), one of which has strictly positive infimum and
the other one either has strictly positive infimum or is identically zero, such that
L(z) = Mp(z)/|z|*, x < 0, is left-continuous and non-decreasing on (—oo,0) and
R(z) = —Mpg(x)/x*, x > 0, is right-continuous and non-decreasing on (0, c0) and
My (ct/*x) = My (z) for all z > 0 and Mg(c'/®z) = Mg(z) for all z < 0, with the
same period ¢ > 1. Clearly, the two descriptions are equivalent.
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Let X1, Xs,... be independent and identically distributed random variables
with the common distribution function F'(-) and let V(¢1,42,0) and Gy, 4,0 be
as in (2). Then F is in the domain of partial attraction of G = Gy, 4,0, Written
F € D,(G), if for some centering and norming constants ¢, € R and ag, > 0 the
convergence in distribution

1 [ D
a(Z&‘%) — V(¥1, 42, 0), (4)
n \ i1
holds along a subsequence {k,}22; C N ={1,2,3,...}, where, and throughout the
paper, all asymptotic relations are meant as n — oo unless otherwise specified.
The following theorem of Kruglov(!®) highlights the importance of semistability; see
Refs. 14 and 6 for further references. If (4) holds for some F(-) along some {k,}
for which lim,,_ o0 kpt1/kn = ¢ for some ¢ € (1,00), then Gy, y,,» is necessarily
semistable and, when the exponent o < 2, the common multiplicative period of
M; () and M5 () in (3) is the ¢ from the latter growth condition on {k, }. Conversely,

for an arbitrary semistable distribution G, 4, » there exists a distribution function
F(-) for which (4) holds along some {k,,} C N satisfying

kn
lim +1

= for some ¢ € [1,00). (5)

We say that a distribution F'(-) is in the domain of geometric partial attraction of
G with rank ¢ > 1, written F' € ]D)é%) (G), if (4) holds along a subsequence {k,}>2 , C
N satisfying (5). Clearly, if Dgp(G) = U5 ]D)é%)(G) # () then G is semistable.
Define ¢ = ¢(Gye yg,0) = inf{c > 1: Mj(cs) = M;(s), s >0, j =1,2}, the minimal
common period of the functions My, M, in ¢, ¥§ in (3), and ¢(Goo,) = 1 for
any o > 0. Megyesi'¥ showed that the entire domain Dy, (G) = U, >, D,(g%) (G) of
geometric partial attraction can be produced as Dg,(G) = ]D)g))(G). Moreover, if
c(G) =1 then the distribution G is necessarily stable.

The following characterization, that refines the one in Ref. 11, of Dy, (G) is
also taken from Ref. 14. Fix a subsequence {k,}52; C N satisfying (5). If ¢ =1
then let v, =1, z > 1. If ¢ > 1, then there exists an x( large enough such that
for each x > x¢ there is a unique index n*(x) for which k,«(;)—1 < T < Kpye(a).
Then let v, = /k,»(y), for € (z9,00) and 7, = 1 otherwise. We see by (5)
that for any € > 0 the inequality ¢! — & < «, < 1 holds for all = large enough.
We emphasize that v, depends on the subsequence {k,}>2,. For s € (0,1) let
Q(s) = inf{z : F(z) > s} be the quantile function of F(-), and let Q4 (:) denote
its right-continuous version. Then (4) holds along the previously fixed subsequence
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{kn}nzy for an arbitrary non-normal semistable distribution G = Gyeo yo o if and
only if

Qi(s) = —s~V>U(s) [Mi(1/71/s) + hi(s)] and (©)
Q(l—s)=s"Y(s) [Ma(1/71/5) + ha(s)] for all s € (0,1),
where [(+) is a positive right-continuous function, slowly varying at zero, and the
error terms hy(-), ha(-) are right-continuous functions such that limg o h;(s) = 0
if M, is continuous, while if M; has discontinuities then h;(s) may not go to zero
but lim, .o h;(t/ky,) = 0 for t € C(M;), j = 1,2, where C(f) stands for the set
of continuity points of the function f. (The slightly different form of the quantile
function here and in Ref. 14, p. 412, and Ref. 6 is due to the inverse relation between
the two y functions: instead of the () in Refs. 14 and 6, here we use y(s) = 1/71/5.)
Conversely, if the Q(-) of F(-) satisfies (6), then F' € Dg,(Gyo yo0) and

kn 1-1/kn
>l X — fl/k u)du D, o a
l/a — V(¥1,¢5,0),
I(1/k )
where X7, Xo, ... are independent with the common distribution function F.

The form (6) can be simplified for the simplest possible subsequence when (4)
holds for k,, = |c"] for ¢ = c(Gye yg,0) > 1. Then, as shown in Ref. 14,

Q+(s) =—s"Y*1(s)[Mi(s) + hi(s)] and

_ 1a (7)
Q(l—s)=s 1(s)[Ma(s) + ha(s)] for all s € (0,1),

so we can just forget about the strange argument 1/v4 /s = s[c“"gc“/ SHJ. Here
ly] = max{m € Z: m <y} and [y] = min{m € Z: m > y} denote the integer part
and the ceiling of y € R and log, stands for the logarithm to the base c.

To introduce the problems in this paper, let F' € Dgp(wa,ng,o) be a fixed
distribution function, where Gye 4o 0 is an arbitrary non-normal semistable distri-
bution with characteristic exponent « € (0,2). Let X7, Xs,... be independent ran-
dom variables with the common distribution function F'(-). Then X, Xs,..., X,
may be viewed for each n € N as the gains in ducats (losses when negative) of
n gamblers Paul;, Pauls, ..., Paul,, each playing one trial of the same game
of chance. Our Pauls may not trust their own luck and, before they play, they
may agree to use a pooling strateqy pn = (P1n,D2.ns---5Pn.n), Where the com-
ponents are non-negative and add to unity. Using this strategy, Paul; receives
P1nX1+p2n X2+ - +pp n Xy, ducats, Pauly receives py, n X14+p1 n Xo+- - +pn—1nXn
ducats, ..., and Paul,, receives ps , X1 +p3 X2+ -+ p1 n X, ducats. Then all the
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individual winnings are pooled and this rotating system is fair to every Paul since
their pooled winnings are equally distributed. The prototypes of such games are
the generalized St. Petersburg(a, p) games, in which for a single gain X we have
P{X =rk/*} = ¢ 1p k€N, for a € (0,2),pe (0,1),¢g=1—pandr = 1/q. The
distribution of X is also the prototype of one in the domain of geometric partial at-
traction of a semistable law with characteristic exponent «; this is shown in Ref. 14
directly by (6). The motivating paradoxical result is that in St. Petersburg(1,p)
games there are strategies p,, which are better than the individualistic strategies,
that is, each Paul expects more ducats from the pool than by holding on to their
own personal winnings even though their total gain is the same X; +---+ X,,. This
was proved for the classical case p = 1/2 in Ref. 8, and later in Ref. 12 in general.
For n — oo, the asymptotic behavior of pooled winning of Paul; was investigated
in Refs. 8 and 7 for « = 1, and in Ref. 5 for arbitrary « € (0,2) and p € (0, 1).

Returning now to the general situation when F' € Dy, (Gye yg 0), our first main
interest in this paper is the asymptotic distribution of the random variable

pjl/a O e [ aw 0
P ul ; ul Q(s)ds, 8
P l p]7 j=1 l(pj ) Pj,n

where the slowly varying function [(-) is from the representation (6) of the quantile
function @ corresponding to F. We consider a sequence of strategies {p,} that
satisfies the asymptotic negligibility condition p,, = max{p;,:j=1,2,...,n} — 0.

The main result in this paper is Theorem 2.1 below, a merge theorem for S, p,
in (8). The phenomenon of merge takes place when neither of two sequences of
distributions converges weakly, but the Lévy or supremum distance between the

n-th terms goes to zero as n — oo along the entire sequence N.

These linear combinations S, p, belong to a real pooling strategy only when
a = 1 and the slowly varying function () = 1 in (6). The equivalent Theo-
rem 2.2 contains a satisfactory version after a simple transformation. A surprising
consequence is that for some sequences of strategies {p,,} ordinary asymptotic dis-
tributions of S, p, exist as n — oo along the entire N. In Section 3 we investigate
merge on R in general and obtain necessary and sufficient Fourier—-analytic condi-

tions under weak assumptions. All the proofs are placed in Section 4.

2. MERGING SEMISTABLE APPROXIMATIONS OF LINEAR COM-
BINATIONS

Let G = Gyo yo 0 be semistable with exponent o € (0,2) as before. For ¢ € ¥
and X > 0, let x)(s) = ¥(s/A) and put ¥ (s) = A/ (s) = —M;(s/A)s~ 1/,
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s > 0, where the functions M; are from (3), j = 1,2. Introduce
Va,)\(MlaMZ) = V( ?7)\7 (2)(,)\70) and E(eitva»\(Ml’MQ)) = eya»\(t)v teR, (9)

and notice the identity Vi, x(My, Ma) = A=YV (g, x8,0). The notation is the
same as in Ref. 6 with two important exceptions. The random variable that belongs
to A here, belongs to A~! there (Ref. 6, p. 96). The other exception is the function ~,
mentioned before. The reason for the deviation is that for generalized St. Petersburg
games our theorems here must reduce to the merge theorems in Refs. 3 and 5.

We restate a basic result from Ref. 6 in terms of what we call circular conver-
gence. For a given ¢ > 1 we say that the sequence {u,,}52 ; C R converges circularly
tou € (c71,1], written w55, if either u € (¢c71,1) and u,, — u, or u = 1 and the
sequence {u,} has limit points ¢~! or 1, or both. (For ¢ = 1 the notion unc—ir> 1
simply means that u, — 1.) Let the distribution function F' € Dg,(G) be such
that (4) holds along a subsequence {k, }°° ; satisfying (5), where ¢ = ¢(G); this and
nothing else is assumed for Theorems 2.1, 2.2 and the Corollary below. Part of the
surprising result in Theorem 1 in Ref. 6 is that there are as many different limiting
distributions as the continuum along different subsequences. In particular, if along
a subsequence {n,}>*; C N,

Ny
Zj:l XJ - cnr

oW as r— oo (10)
Qn

™

for a non-degenerate random variable W, then fymc—irw; € (c7H1] as r — oo,
and the distribution of W is necessarily that of an affine linear transformation of
Ve (My, My). Conversely, if 7, —»k € (c71,1] as 7 — oo, then (10) holds with
—1

Cn, = Ny nl__ln’" Q(s)ds, an, = ni/al(l/nr) and W =V, (M1, Ms).

Now let py, = (P1,n;P2.ns- - - s Pn,n) be any strategy, so that pi n,p2n,- - Dnn >
0 and Z?Zl pjn = 1, and for simplicity put v;n = v1/p;,, if pjn > 0,7 =1,...,n.
The merging semistable approximation to the distribution functions of S, p, in
(8) is given in the following main result by the distribution functions Gg p, (z) =
P{V,p, <z}, x €R, of random variables V,, p, that have characteristic functions

E(eitva’pn) — / eltm dGOé,Pn(:E) = exp{ ij,n yOt,"Yj,n(t) }7 t E R’ (11)

where ¥q,4, () is the exponent function in the characteristic function of V, ,, , in
(9), explicitly given in the proof of Lemma 1 below.

Theorem 2.1. For any sequence {p, }°2 of strategies such that p, — 0,

sup |P{Sa7pn < x} — Ga7p7l(a:)‘ — 0.
rER



It follows from (11) that for the uniform strategies p$ = (1/n,1/n,...,1/n) the
distributional equality Vw,)n2 Va,~,, (M1, M3) holds, and hence Theorem 2.1 reduces

to the most important special case of full sums in Theorem 2 in Ref. 6.

As noted before, there is real pooling of winnings only if @ = 1 and I(:) = 1
when the sum of the coefficients in (8) is 1. However, by a transformation we obtain
a version of Theorem 2.1 that is satisfactory in this respect. This transformation is
a generally implicit extension of that given in Ref. 5. The function f(s) = s/®/I(s)
in (6) is regularly varying of order 1/« at zero, and hence by general theory (Ref. 1,
p. 23) it is asymptotically equivalent to a non-decreasing function. Therefore, to
state Theorem 2.2 below, we may and do assume that f(s) = s/*/i(s) is itself
non-decreasing and hence, by monotonicity, its inverse function g¢(s) exists and
it is also non-decreasing for s in a right neighborhood of zero. Then, if p, =
(P1,nsD2,m» - - -, Pn,n) 1S an arbitrary strategy, consider

1/ n 1/a \ —1
Gin = pj,/n pk,n _ f(pj,n> ] —1.9 n
» l(pj,n) b1 l(pk,n) 22:1 f(pk:,n), 7 7

Then, clearly, g, = (qi,n;92,n,---,qn,n) is & strategy. We need a one-to-one cor-

respondence, that is, we have to determine p,, in terms of g,. Multiplying the
defining equation by >, _, f(pk») and applying the inverse function g(-), we get
the equation g(qjn 25—y f(Prn)) = Pjn, so that 3571 9(qjn 2oy f(Prm)) = 1.
The monotonicity of g(-) implies that for a given strategy g, there exists a unique
constant Ag, > 0 for which 37, g(gjndq,) = 1, so that Ag, = > f(prn)-
Thus pjn = 9(qjnlq,), J =1,2,...,n, that is, the correspondence between p,, and
g, is one-to-one indeed. Now we can define the functions and random variables
related to the strategy gn. Set vkn = V1/4(q.nA,,), K = 1,...,n, introduce

1-9(qk,nAqy)

Tog, = Aan 3 000X~ Aa, 3t [ Qs)ds
k=1 k=1 g

(Qk,nAqn)

and let H, 4,(-) be the semistable distribution function with characteristic function

/ eit:r dHa,qn(x) = exp { ZQ(Qk’nAqn) ya,ykyn(t)}.

o k=1
Then a reformulated equivalent version of Theorem 2.1 is
Theorem 2.2. For any sequence {g, }5%, of strategies such that g(g, Aq,) — 0,

sup |P{Tu.q, <2} — Haq,(2)| — 0.
TeR

The strange-looking assumption is needed because the relations p,, — 0 and
q,, — 0 are independent in the sense that neither of them implies the other. This
can be seen by easily constructed examples, even in the simplest case I(-) = 1.
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Now we turn back to the setup in (8) and (11) and show that for special se-
quences {p,} the merge in Theorem 2.1 reduces to ordinary limit theorems. Since
for ¢ = 1 the approximating distribution is one and the same stable distribution
already, we assume that ¢ > 1, in which case our conclusion is truly surprising.

Let {n,}>2, C N be an increasing subsequence and consider the sequence of
strategies p, = (1/n,,1/ny,...,1/n,.,0,0,...,0) with n, non-zero elements, where
n, < n < npy1. This is the same situation as in (10), so there exists a limiting
distribution for {p,}72; if and only if it exists in (10) along {n,}>2;. There may
be too many zero components in this type of strategies in the sense that in some
of them the proportion of zeros is approximately 1 — ¢™! if lim, .o, 11 /n, = c.
The following notion excludes such cases: we call a sequence {p,}>>; of strategies
balanced if

i in)=1,2,...
liminf P =12, onp
n—oo max{p;,:j=1,2,...,n}

Roughly speaking this condition means that each component is important.

Classical theory says that if a limiting distribution exists for the uniform strate-
gies pS = (1/n,1/n,...,1/n), it must be stable. As an essence of semistability, the
following corollary claims that semistable limiting distributions can be achieved by
such balanced strategies that practically consist of only two different components.

Corollary. For an arbitrary x € (c™!,1] there exists a balanced sequence
{pn}32, of strategies such that S, p, 2, Va (M, Ms), where V,, ,.(My, My) is as
in (9). Moreover, for each n € {2,3,...} the strategy p,, = (P1,n;D2.n,- - -, Pn,n) CAN
be constructed in such a way that there are at most two different values among its
first n — 1 components.

It will be clear from the proof that the n-th component p,, ,,, which can have a
third different value, is just to make p,, a strategy, that is, to make 2?21 Pin = 1.
Thus in fact there are only two different important components.

The difficulties of a closer description of the merging semistable random vari-
ables Vi, p,. in (11) arise from the fact that the asymptotic equality Vey ~ 7z, as
x — 00, for the function =, figuring in (6) does not reduce to true equality. Never-
theless, (7) says that for the special sequence k,, = |c¢™ | we can define the function ~,
through the sequence c” instead of [c¢”] and obtain explicitly 7, = z/c'8*1 for all
x > 0. In this case, when k,, = |c¢" |, let V,1,Va2,..., Van be independent copies
of Vo 1(My, Ms). Then with r;, = ﬂogcpj_’m and yjn = 7,1 = (pjnc™im)~! as
before, for any strategy p,, Lemmas 1 and 6 below imply the distributional equality

n

S P Vs =S (v, + Pin ;) 2 Vo, (12)
j=1

j=1
where the constants ¢y, A > 0, and d,,,, m € Z, are also from those lemmas.
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3. MERGE THEOREMS IN GENERAL

The systematic study of merge was initiated in Ref. 9 in the general setup of
separable metric spaces. The study there did not get down to the characterization
of merge in the Lévy distance on R, and the aim of the present small section is
exactly that. Of course, the deep and extended literature on Kolmogorov’s uniform
limit problem, highlighted by Arak’s and Zaitsev’s well-known results, deals with
merge in the uniform distance ever since Prokhorov’s first result in 1955. In our list
here, Refs. 2 and 6 are also examples for merge in the uniform distance.

In this section X, X1, Xo,..., Y Y7,Ys, ... are real random variables with dis-
tribution and characteristic functions F, Fy, Fs, ..., G,G1,G2, ... and ¢, ¢1, ¢2, . . .,
Y, 1,1, . .., respectively. If F,, = G denotes weak convergence, that is, Fj,(z) —
G(z) at each z € C(G), where we recall that C(G) is the set of continuity points
of GG, then of course F,, = G is the definition of X, L, ¥ used above, which is
equivalent to L(F,,,G) — 0, where L(-,-) is Lévy’s distance, given by L(F,G) =
inf{h > 0: G(x —h) — h < F(z) < G(x + h) + h}. Extending this, we say that X,
and Y,,, or their distribution functions F,, and G,,, merge togetherif L(F,,G,) — 0.

Here we give necessary and sufficient conditions for merge in terms of charac-
teristic functions under the weak assumption that one of the sequences, {Y,} or
equivalently {G,}, say, is stochastically compact, meaning that for every subse-
quence {nx}p>; C N there is a further subsequence {ny,}52; C {nx}32, and a
random variable Y, such that Ynkj 2, Y, or equivalently Gnkj = G as j — o0.

Theorem 3.1. If {G,}2°, is stochastically compact, then L(F,,G,) — 0 if
and only if ¢, () — ¥, (t) — 0 for every t € R.

The next theorem is the basic tool in the proof of Theorem 2.1. It says that if G,,
is absolutely continuous for all n € N and the corresponding density functions are
uniformly bounded, then even uniform convergence holds under the same conditions.

Theorem 3.2. Assume that {G,,}?2, is stochastically compact and there is a
constant K > 0 such that sup,cy sup,er |G, ()] < K. Then F,(x) — G,(z) — 0
at every € R if and only if ¢, (t) — ¥, (t) — 0 at every t € R. Moreover, if this
holds, then in fact the convergence is uniform, so that sup,cg |Fn(z) — Gn(z)| — 0.

4. PROOFS

Logic dictates to prove first the general theorems from the preceding section.

Proof of Theorem 3.1. Suppose first that ¢, (t) — ¥, (t) — 0 for all t € R. Let
{nk}72, be any subsequence of N. By compactness there is a further subsequence
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{nk, 1521 C {nk}32, and a distribution function G such that Gn., = G, so that
1/Jnkj(t) — (t), t € R, as j — oo by continuity theorem. By the triangle inequality
and the other direction in the continuity theorem, Fnkj = (, and so the triangle
inequality for the Lévy metric yields L(Fnkj ) Gnkj) — 0 as j — oo. Since {ny} was
arbitrary, it follows that L(F,,G,) — 0. The proof of the converse is similar. [ |

Proof of Theorem 3.2. Necessity is trivial, while the proof of sufficiency in the
first statement is similar to the one above: using the uniform boundedness of G,
one can show that the subsequential weak limits G are continuous, and so weak
convergence implies convergence in each point.

To prove the stronger second statement, fix any ¢ € (0, 1). Stochastic compact-
ness is tightness, so there exists a 7' > 0 such that G,,(z) > 1 —¢ and G, (—z) < ¢
for all x > T and n € N, and the uniform boundedness of the densities im-
plies the existence of a subdivision —T = z¢p < 1 < --- < xxy = T such that
SUP; << N, nen |Gn(2k) — Gr(zr—1)| < €. Since F;, and G,, merge together at each
pointj there is a threshold no € N such that maxg—o 1.~ |Fn(zk) — Gn(zg)| < e if
n > ng. Then by easy calculation sup g |[Fp(z) — Gp(2)] < 2¢ foralln >np.  ®

Aiming at Theorem 2.1, first we prove six lemmas. The first is a scaling property
that expresses the exponent function y, x(-) of the characteristic function in (9) in
terms of y4,1(-), which was used for (12) and is needed for Lemmas 2 and 3.

Lemma 1. For every A > 0 we have yo(t) = Aya,1(t/AV/Y) —itcy, t € R,
1/x

where ¢y = A=)/ [V gg(s) — ¢ (s)] ds.

Proof. As in (1), let Ly and Ry denote the Lévy functions of the random
variable V(¢ x0%,0) defined at (9). The inverse relation above (1) for the two
representations shows that Ly(z) = inf{s: x{(s) > =} = inf{s: ¢{(s/A) > z} =
AL(z), x < 0, and similarly Ry(z) = AR(z), > 0, where L(-) = Ly(-) and
R() = Rl() ThUS, since V(¢1,¢2,0’) = W(1/11,¢2,0) + 9(¢1) - 9(¢2) in (2)7

A/«

0 00
« exp{)\/ 8. (2)dL(z) +>\/ 8. (x) dR(x)},
oo )\l/a 0 AL/
from which, forcing the exponent ya,l(t)\_l/ “) in,

1on® _ {_ L O0u8) —00us) L 0(S) — 0(5) }

2/« + A 2/«

X exp{)\ [it O(vr) — 0(¥5) + /0 Bt (x)dL(x) + /005

¢« (z)dR(z)

A/ NV NV

}
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for all ¢ € R, which is nothing but e¥er® = e=itexg aa(tA™")  where ¢y =

A 9(aps) — 005) — MOWws) — 0(v§)}]. Now a somewhat long but straight-
forward calculation shows that 0(xp) = AO(y) + A f t)dt. Further simple
calculation then yields the stated form of cy. [ ]

Next, Lemmas 2 and 3 establish that the sequence Gy, p, in (11) has uniformly
bounded densities and is Stochastically compact, so that it meets the assumptions
of Theorem 3.2. Here I'(u fo ~le=vdv, u > 0, is the usual gamma function.

Lemma 2. For any strategy p,, the inequality

sup!G )‘ < T/a).

1
z€R TaKy oKy

holds, where the constant K, > 0 depends only on «.

Proof. Tt follows from a result of Kruglov(*® that Rey, 1(t) < —K,[t|%, t € R.
Then by Lemma 1, Reyax(t) = ARe Yo 1 (tATYY) < —AK |t|2A"! = —K,|t|*, for
all A > 0. Thus the distribution function of the variable in (9) and hence also
Ga,p,(-) in (11) is infinitely many times differentiable. In particular,

1 > —itx itV 1 > -
‘Ga Pn )} ~or /_Ooe 1 E(e‘ 'pn)dt‘ < %/_meXp{;pk:n%eya,%,n(t)} de
1
<o | ewl-Kaldmyar = 10000
Taky @
for all x € R by the density inversion formula, proving the lemma. [ ]

Lemma 3. For any sequence of strategies {p,}>2,, the sequence of random

n=1>
variables {Vi, p, }°%, is stochastically compact.

Proof. We rewrite the characteristic function in (11) in a form that was used
in the St. Petersburg case in Ref. 8, p. 984. Setting T}, (v) = Z?Zl Pind(Vin <),
0 < <1, where I(A) is the indicator of the event A, we have

E(c!Vorn) = exp{ ipj,nyam,n(w} = exp{ / 1ya,v<t> dTpn<v>}.

j=1

By the multiplicative periodicity Yn,cy(t) = Ya,~(t) and by Lemma 1, yq (t) is a
continuous and bounded function of «y in (0, 1] for each fixed ¢t € R, while T}, is like
an empirical distribution function with support contained in [0, 1]. Since no mass
can escape, the lemma follows by an application of the Helly selection theorem. H

11



The following measure-theoretic lemma is also important in the proof of Theo-
rem 2.1. It allows to pass on from subsequences to the entire sequence N. Measur-
ability and almost everywhere assumptions are meant in the usual Lebesgue sense

mes .
and mes{-} stands for Lebesgue measure and — denotes convergence in measure.

Lemma 4. Let ¢, : I — R be sequence of measurable functions, n € N, and
0: N — A a sequence taking values in A, where I C R and A C R are compact
intervals, and let v): I — R be a set of measurable functions, A € A. Suppose that
if lim, oo d(n,) = A for a subsequence {n,}>2; C N, then g,,(s) — Vs(n,)(s) — 0
for almost every s € I as r — 0o0. Then ¢, (+) — vs(n)(-) — 0, that is, mes{s € I:
|qn(5) — Vs(n)(s)] > e} — 0 for every e > 0.

Proof. Fix any € > 0 and let A, () = {s: |qn(5) — vsn)(s)| > €}. We have
to prove that mes{A4,(¢)} — 0. Let {ngx}?2; C N be any subsequence. Since
A is compact, by the Bolzano—Weierstrass theorem there is a further subsequence
{nw, }12, C {nr}32, such that 6(ng,) — A for some X € A as | — oo. By assumption
we have anl(s) — Vg(nkl)(s) — 0 as [ — oo for almost all s € I. Then by Egorov’s
theorem there exists a measurable set £ C I on which the convergence is uniform
and mes{/ \ B} < e. Thus A,, (¢) C I\ E and so mes(Ay, (¢)) < e for all | large
enough. Since {n;}32; C N was arbitrary, the proof is complete. [ |

Lemma 4 will be used in a slightly different situation. The compact interval A
will be the ‘circle’ (c™1, 1] as the points ¢! and 1 are identified, and the convergence
relation lim, ., d(n,) = A will be replaced by the corresponding &(n,)——\ as

r — oo. Obviously, the lemma remains true in this setup.

Lemma 5. If {n,}72; C N is a subsequence such that ynrc—irm € (c71,1] as
r — 0o, then

Q1 (s/n;) Yy o,k
ey O 0 € COED,
Q1 —s/n;) a4 Yng a,k
T,y T EC

as r — oo.
Proof. 1t is shown for the same {n,} in the proof of Theorem 1 in Ref. 6 that

Q—!—(S/nr)

T (s) — 0, s € OO,
g ) (5)

—1

Since ™ = ®° | the scaling property ¥ (s) = )\_.1/0‘1/)?’1(3/)\) above (9)
implies that ¢ (s) — " (s), s € C(¥{"") whenever k,,——r. The two properties
together give the desired result. The proof of the second statement is analogous. B
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The following general lemma is in fact the semistable property, which is used
in this paper only for the proof of (12). It goes back to Lévy, and the well-known
proof is just patient calculation. (In fact, a certain converse is also true.)

Lemma 6. If e¥~(") is a semistable characteristic function of exponent o € (0, 2)
and ¢ > 0 is a multiplicative period of the functions M; and Ms in (3), then
Yo (™) = ™yo(t) + itd,,, t € R, for every m € Z, where the constants d,,, € R
depend on the distribution.

Proof of Theorem 2.1. By Lemmas 2 and 3 the sequence {V,, p, } is stochastically
compact and their densities are uniformly bounded. Thus by Theorem 3.2 it suffices
to prove that A, p, (t) := |E(e"2rn) — E(e'Vern)| — 0 at each t € R.

Fixing t # 0 and setting

n 1/a

(pn) =3 2 /pj’nQ(S)ds =Y i, (13)
j=1

by (8) and (11) we can write

1/a n
E| expq it Bjm X; e trPn) —exp ij,n Yorys,n(t)

(1+yjn(t) — exp{ > Djin Yoy, (1) + itp(py) } ‘

Jj=1

(14 w5(0) - exp{ )3 yj,n<t>}‘

Aa,pn (t) =

—.

J

I
.::

1

J

IN
.E:

1

J

+ exp{ Z yj,n(t)} — exp{ ij,n Ya,y;n(t) +itp(pn) H
< exp{ Z [log (1 + yj,n(t)) - yj,n(t)] } -1
+ eXp{ [yj,n(t) —Pjn ya,'yj,n(t) - itﬂj,n] } -1y,
j=1

where

P ! P
Yin(t) = Elexpit—2"— X, 3 — 1] = / expq it—2"—Q(s) p — 1|ds (14)
’ (pjn) 0 l(pjn)
Notice that y;,,(t) — 0 for all j = 1,...,n by the condition p,, — 0, and so the
logarithms are well defined for all n large enough; in fact for our fixed t # 0 we will

13



use a threshold n; € N such that |y;,(¢)] < 1/2, j =1,...,n, for all n > n;. We
must prove that

ZIj’n(t) = Z ‘ log (1+ y;,n(t)) — yj,n(t)] —0 (15)

and

> (W () = Pjin Yoy o) = itptjn] — 0. (16)
j=1

First we consider (15). Expanding the logarithm, for all n > n; we obtain
|yj n Z | l o |yj,n(t>|2
P T = Ty O]y

1/c 2
\/_/ exp{ ppj 5 Q(s)} -1 ds]

by (14). Since >°7_ pjn = 1, it is enough to show that
eltQ(e)e?/* /i) _ 1‘ ds—0 as |0 (17)

fale) = %/01

where x € (0,1) in general. Since |[e'* — 1| < min{2,u}, u € R, we see that

1 e x 1/a prl—=z 1
/ oltQ(s)z'/* /1(2) _ 1’ ds < / 2ds +tx—/ |Q(s)] ds —|—/ 2ds.
0 T 11—z

0 I(z)
Megyesi(!®), p. 423, proved that for hy small enough there exist constants ¢; > 0
such that sup,e (g po1 [M;(7,- ) + hi(s)| < ¢j, where M;(+) and h;(-) are from (6),
and we choose ¢; so large that the inequalities sup,¢(o,00) M;(s) < ¢; also hold,

1) yj n(t)

Dﬂg

l:2

< |yj,n(t)|2 < DPjn [

j = 1,2. Further restrictions on hg will be introduced as we go along. Then by (6),

I(s)

l
1Q+(s)| < SS) and |Q(1—3s)| <2 S/ 0 < s < hy, as)

gsgw s>0, j=1,2, forall A>0.

Hence fl,ho |Q+(s)|ds < & tho I(s)s~/*ds. Here we take hg > 0 be so small that
[(+) is locally bounded on (0, hg), that is, () is bounded on (&, hg) for each € > 0.
Note that [(1/v), as a function of v, is slowly varying at infinity. We now apply
Karamata’s theorem (Ref. 1, pp. 26-27) and accordingly separate three cases of .

14



If a <1 then é — 2> —1, and so we have the asymptotic inequality

"0 1(s) Vo1, @ a1
/m ia ds:/1 ve l(l/v)demx o l(x) as z |0,

/ho

where we write f(u) ~ g(u) if lim, . f(u)/g(u) =1, and hence, as x | 0,

wiod ho wiob ok
fal(x) §4\/5+t(01+62) i) / ig/l ds+1 i) /h |Q(s)| ds

11 L1k
:4ﬁ+tw\/§(l+o(l))+txa / |Q(s)|ds — 0.
L) Jn

l -«

If @ =1 then L —2 = —1, in which case the function [*(x fl/w v H(1/v) dv
is slowly varying at 0, so that, as x | 0,

Ve U)o
R <aVEr e [ e )/h Q)] ds

AT+ e + CQ)\/EZ;((—E)) +t%/h '|Q(s)] ds — 0.

Finally if > 1 then 2 — 1 > 1, so that ¢3 := f107h0v$_2 (1/v)dv < oo and

0

4 ko 1oy oo
fale) S aVE +il+ e S [Tk a2 [ a1

0

T a—% 1—hg
=4 t t d
VE e e s s [0 -0

as ¢ | 0. Thus (17) and, therefore, (15) is completely proved.

Now we turn to (16). For each j = 1,2,...,n using the change of variables
s =upj, in (13) and in (14), we see that

e | p}/a
Wi =Din | Qupjn) " du 19
J J /1 ( J )l(pj,n) ( )

and

Yin(t) =Djn /01/79%” (eXp{itQ(Upjm)p;,/na/l<pj,n)} - 1> du
_ pj,n{ / i (exp{#tQ(spsn)p} 1psn) b — 1) ds

. /h(lhO)/pjm (exp{itQ(Spj, )p;/na/l(pj,n)} — 1> ds

0/Pj.n
. /Oho/Pj’” (exp{itQ(l — spjvn)p;,/na/l(pjyn)} - 1) ds}.

15
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Therefore, (16) to be proved is equivalent to Z;.Lzl Pjndjn(t) — 0, where

1 1/
Pjn SPin in
Jin(t) = /0 [exp{itm} — 1] ds = Ya,; (1)

l(pj,n)

_ 1
T Q(Spj,n>pj,/na

— it o ——= " P" (s
/1 [(pjn)

Since Z;L:1 pjn =1 and p, — 0, it suffices to show that
ho(z) -0 as x| 0, (21)

where

hﬂx)z:éé[exp{ﬁQ@wYZ;;}——4(b——yxwm@)—iﬁ[%_iQ@xfi;jd&

Now we rewrite the characteristic function of G, p,(-) in the theorem. By (1),

N L 1 a, A
_ it’ll)?’>\(5) B . ¢1’ (8)
| mtnnas= [ [e {as—ie | T

+/ [eiw?’x(s) —-1- itzpf")‘(s)} ds
1

i > a,\ s) — Qﬂ?’)\(s) s
+t/1 [wl (s) H{W(s)}gld

1 0o
= / [eiw?’k(s) — 1} ds +/ [eiw?’k(s) —1- it@b?”\(s)] ds
0 1
- ite(qb(l)é’A)?

where 0(1)) as above (2). With the analogous form of other integral we finally get

oo

1
yw@:/%MW@—Q@+/[WWWL14ww@ps
0 1
1 oo
—I—/ [eit{_wg’k(s)} - 1} ds +/ [eit{_wgyx(s)} — 1 —it{—>M(s)}| ds.
0 1
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Using this, (19) and (20), we obtain

ha(z) = /0 1 Kexp{it@(sx)?;;?} - 1) - (eiwf””“@ - 1)}13

+ /1 o {exp{itcg(sx)fg(lg } - itQ(sx)”’g(lg

- (eiw?mm(s) -1- itzpf’”l/”(s))} ds

(1-ho)/z | L1/ | /e
+ /ho/x {exp{tt@(sx) i) } —1—itQ(sx) i) }ds

+ /01 Kexp{itcga _ sx)a;(lg} _ 1) _ (e—itw?m@ _ 1)} ds

+ /1h0/x {exp{it@(l - sx)‘f(lg } —1-itQ(1 - sx)”;(lg

- (e—ith, e 1y itz/)g’%/‘””(s))] ds

> itV %(s) OV —ity, M 2(s) Y1
- / [e 1 — 1 — ity (s) +e "2 — 1+ ity (s)] ds
ho/w

= ha,l(x) + ha72(m) + hmg(fﬂ) + ha’4($) + I’La75(£17) — ha’G(.I‘).

Using the inequality |e'* — 1 — iu| < u?/2, u € R, and then the bounds
{1#?’71/1(3)}2 < c?/sQ/"‘, j = 1,2, established in (18), we see that |hq¢(x)| <
271t + 3) 2 f,fj/w s72/*ds — 0 as z | 0. Also, with the substitution sz = y,

(I=ho)/x 122 2/ 2 1—hg
t°Q*(sx)x x 2/ Q*(y)dy — 0 as =z |0.
h

|ha3(z)] < /ho/w R ds:l2(x)t

Clearly, hq1(-) and hq.4(-) behave analogously and can be handled the same

0

way, and hq 2(-) and hqy 5(-) can also be handled the same way. Hence we deal only
with hqa 1(+) and hq 2(-). First note that Lemmas 4 and 5 together imply

Q+(s/n)

nl/o‘l(l/n) - w?% (s)

mes{OSsSN:

>£}—>O for all >0,

convergence in measure on [0, N| for each N > 0. Using the monotonicity of

U77(.) and Q(-), we show that in this convergence n~! | 0 can be extended
to x | 0. To this end, consider any z, | 0 such that v/, RaLigpe (c71,1]. Then
also V|14, | A e and Vi1 zn] C—irm:, so that, according to the proof of Lemma 5,

Q- (3/yn) /Ly U1 /yn)} — ¥ () and 977 (s) — ¢ (s), s € C(y""), where
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yn can be chosen in both convergence relations as 1/z,, [1/x,] and |1/z,|. Us-
ing that Q4 (s/[1/zn]) < Q4 (swn) < Qy(s/[1/an]), I(1/|1/2n])/U(zn) — 1 and
[(1/[1/xn]) /U (zy) — 1, we get {Q+(sxn)x}/a/l(xn)} — " (s) — 0 for all
s € C(y"") by standard manipulation. This implies by Lemma 4 that

1/ L
mes{OSsSN:‘%—%ﬁ/ (s)

><€}—>0 for all >0,

as x | 0. We note that if the functions ¢, j = 1,2, in (3) are continuous, then
Lemma 4 is needless because convergence holds pointwise.

Thus, towards the proof of (21), we showed that in the integrands in hq 1(-)
and hg 2(+) go to 0 in measure as = | 0 on each interval [0, N|. Thus, it suffices to

find common integrable bounds. For the first integral the function 2 does the job,
so that hq, 1(x) — 0 and h, 4(z) — 0 as x | 0. For the second, by (18) we have

ox itQ(sx)xl/® B _itQ(sx)xl/o‘
R T

Q*(s2)a®® Ly o Q*(sa)a?/ e
< t2 t T/ 2 < t2 tz 1
>~ 12 (ZU) + {wl (S)} — 12(33') + 82/a )

and the second term is integrable on [1,00). For the first term we need Potter’s

Y1 /x

. ’eiw‘f () 1 — itgp™ ()

theorem (Ref. 1, p. 25), which for the function I (y) = I(1/y), y > 1, slowly varying
at infinity, states that for each § > 0 and A > 1 there is a K = K(A,d) such that
é 0
Lo () < Amax (Q) ,(E> . y,z> K.
loo(2) 2/ " \y
Take A = 2 and § = (2a)™' — 47! and let hg < 1/K(2,5). Then for z < hg and
s € [1,hg/x] we have {l(sx)/l(z)} < 2max{s® s7%} = 2s°, and so, first by (18),
Qﬁ_(sx)azwo‘ , 12(sz) z?/@ o _1_1 [ I(sx) 2 o 1.1
D —— < = @ < 4 2 1e%
‘ Bla) | = e Bl 0 ")) ST T

which is integrable on [1,00). Therefore, h, 2(z) — 0 and hes5(x) — 0 as = | 0,

NI

proving (16) and hence the theorem. [

Proof of the Corollary. We construct a strategy p,, such that v,, = ~ for all

j=12,...,n—1, and p,, — 0. Then for the characteristic function
n
E(eitva’p") — eXp{ ij n Yo - (t)} — eyam(t) epn,n [yay'yn,n(t)_ya,n(t)]
k) y 17,m b
=1

so that E(e'Vern) — e¥ar(®) ¢ ¢ R. Since S, p, and V, , merge together by
Theorem 2.1, we get Sq p,, 2, Ve, (M7, Ms). So it is enough to find such a strategy.

Fix n € N sufficiently large to have k,-_1 < n < k,« for n* = n*(n), as
before (6), and put xg = kkp«, T_1 = Kky+_1 and x41 = kkp+yq. Clearly, v, = &,
j =0,+£1. If zy = n, then the uniform strategy p,, = (1/n,1/n,...,1/n) is suitable.
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If xg # n, we begin by equating each component to 1/z¢. Suppose that oy > n.

Then, starting with the first component, we proceed step by step and substitute

1/zg by 1/x_1, so that the sum of the components is increased at each step. We

do this until the sum is still less than 1. Since n/x_; > 1, we will not change

all components. Finally, increase the last 1/z¢ to some p, , € (1/x¢,1/2_1) that

makes the sum 1, and the construction is complete.

For zy < n the proof is similar, only we decrease 1/x¢ by 1/x; at each step. ®
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