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We prove merge theorems along the entire sequence of natural numbers for the distribution
functions of suitably centered and normed linear combinations of independent and identi-
cally distributed random variables from the domain of geometric partial attraction of any
non-normal semistable law. Surprisingly, for some sequences of linear combinations, not
too far from those with equal weights, the merge theorems reduce to ordinary asymptotic
distributions with semistable limits. The proofs require to work out general conditions of
merge in terms of characteristic functions.
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1. INTRODUCTION

Let Y be an infinitely divisible real random variable with characteristic function
φ(t) = E(eitY ) in its Lévy form (Ref. 10, p. 70), given for each t ∈ R by

φ(t) = exp
{

itθ − σ2

2
t2 +

∫ 0

−∞
βt(x) dL(x) +

∫ ∞

0

βt(x) dR(x)
}
,

where
βt(x) = eitx − 1− itx

1 + x2

and where the constants θ ∈ R and σ ≥ 0 and the functions L(·) and R(·) are
uniquely determined: L(·) is left-continuous and non-decreasing on (−∞, 0) with
L(−∞) = 0 and R(·) is right-continuous and non-decreasing on (0,∞) with R(∞) =
0, such that

∫ 0

−ε x
2dL(x) +

∫ ε
0
x2dR(x) < ∞ for every ε > 0. We need a variant

of this formula for φ(·) in connection with a probabilistic representation of Y in
Ref. 4; the representation itself is not needed here. Let Ψ be the class of all non-
positive, non-decreasing, right-continuous functions ψ(·), defined on (0,∞), such
that

∫∞
ε
ψ2(s)ds < ∞ for each ε > 0. Then there is a one-to-one correspondence

between the pairs of Lévy functions L(·) and R(·) and the pairs of functions ψ1(·)
and ψ2(·) taken from Ψ if we put ψ1(s) = inf{x < 0 : L(x) > s} and ψ2(s) =
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e-mails: kevei@math.u-szeged.hu, csorgo@math.u-szeged.hu
2To whom correspondence should be addressed.

1



inf{x < 0 : −R(−x) > s}, s > 0, and, conversely, L(x) = inf{s > 0 : ψ1(s) ≥ x},
x < 0, and R(x) = − inf{s > 0 : ψ2(s) ≥ −x}, x > 0. Let W (ψ1, ψ2, σ) be an
infinitely divisible random variable with characteristic function

E
(
eitW (ψ1,ψ2,σ)

)
= exp

{
− σ2

2
t2 +

∫ 0

−∞
βt(x) dL(x) +

∫ ∞

0

βt(x) dR(x)
}

= exp
{
− σ2

2
t2 +

∫ ∞

0

βt(ψ1(u)) du+
∫ ∞

0

βt(−ψ2(u)) du
}
,

(1)

where the second equality follows by Theorem 3 in Ref. 4. The uniqueness of
σ, L(·), R(·) and the one-to-one correspondence immediately implies the uniqueness
of the triple σ, ψ1(·), ψ2(·). A concrete version of W (ψ1, ψ2, σ) is given in Ref. 6
and, to keep complete accord with Ref. 6 as far as constants go, we also introduce
V (ψ1, ψ2, σ) = W (ψ1, ψ2, σ) + θ(ψ1)− θ(ψ2), where

θ(ψ) =
∫ 1

0

ψ(s)
1 + ψ2(s)

ds−
∫ ∞

1

ψ3(s)
1 + ψ2(s)

ds, ψ ∈ Ψ,

and for its distribution function we put

Gψ1,ψ2,σ(x) = P
{
V (ψ1, ψ2, σ) ≤ x

}
, x ∈ R. (2)

Referring to Refs. 13, 11, 14 and 6 for background, we describe semistable laws
in the present framework as follows: an infinitely divisible law Gψ1,ψ2,σ is semistable
if and only if either (ψ1, ψ2, σ) = (0, 0, σ) for some σ > 0, the normal distribution
as a semistable distribution of exponent 2, or (ψ1, ψ2, σ) = (ψα1 , ψ

α
2 , 0), where

ψαj (s) = −Mj(s)
s1/α

, s > 0, j = 1, 2, (3)

for some α ∈ (0, 2), defining a semistable law of exponent α, where M1(·) and
M2(·) are non-negative, right-continuous functions on (0,∞), either identically zero
or bounded away from both zero and infinity, such that at least one of them is
not identically zero, the functions ψαj (·) are non-decreasing and the multiplicative
periodicity property Mj(cs) = Mj(s) holds for all s > 0, for some constant c >
1, j = 1, 2. (The superscript α in ψαj is a label, not a power exponent.) For
the Lévy form this means that there exist non-negative bounded functions ML(·)
on (−∞, 0) and MR(·) on (0,∞), one of which has strictly positive infimum and
the other one either has strictly positive infimum or is identically zero, such that
L(x) = ML(x)/|x|α, x < 0, is left-continuous and non-decreasing on (−∞, 0) and
R(x) = −MR(x)/xα, x > 0, is right-continuous and non-decreasing on (0,∞) and
ML(c1/αx) = ML(x) for all x > 0 and MR(c1/αx) = MR(x) for all x < 0, with the
same period c > 1. Clearly, the two descriptions are equivalent.
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Let X1, X2, . . . be independent and identically distributed random variables
with the common distribution function F (·) and let V (ψ1, ψ2, σ) and Gψ1,ψ2,σ be
as in (2). Then F is in the domain of partial attraction of G = Gψ1,ψ2,σ, written
F ∈ Dp(G), if for some centering and norming constants ckn

∈ R and akn
> 0 the

convergence in distribution

1
akn

(
kn∑

j=1

Xj − ckn

)
D−→ V (ψ1, ψ2, σ), (4)

holds along a subsequence {kn}∞n=1 ⊂ N = {1, 2, 3, . . .}, where, and throughout the
paper, all asymptotic relations are meant as n → ∞ unless otherwise specified.
The following theorem of Kruglov(13) highlights the importance of semistability; see
Refs. 14 and 6 for further references. If (4) holds for some F (·) along some {kn}
for which limn→∞ kn+1/kn = c for some c ∈ (1,∞), then Gψ1,ψ2,σ is necessarily
semistable and, when the exponent α < 2, the common multiplicative period of
M1(·) andM2(·) in (3) is the c from the latter growth condition on {kn}. Conversely,
for an arbitrary semistable distribution Gψ1,ψ2,σ there exists a distribution function
F (·) for which (4) holds along some {kn} ⊂ N satisfying

lim
n→∞

kn+1

kn
= c for some c ∈ [1,∞). (5)

We say that a distribution F (·) is in the domain of geometric partial attraction of
G with rank c ≥ 1, written F ∈ D(c)

gp (G), if (4) holds along a subsequence {kn}∞n=1 ⊂
N satisfying (5). Clearly, if Dgp(G) :=

⋃
c≥1 D

(c)
gp (G) 6= ∅ then G is semistable.

Define c = c(Gψα
1 ,ψ

α
2 ,0

) = inf{c > 1: Mj(cs) = Mj(s), s > 0, j = 1, 2}, the minimal
common period of the functions M1, M2 in ψα1 , ψ

α
2 in (3), and c(G0,0,σ) = 1 for

any σ > 0. Megyesi(14) showed that the entire domain Dgp(G) =
⋃
c≥1 D

(c)
gp (G) of

geometric partial attraction can be produced as Dgp(G) = D(c)
gp (G). Moreover, if

c(G) = 1 then the distribution G is necessarily stable.

The following characterization, that refines the one in Ref. 11, of Dgp(G) is
also taken from Ref. 14. Fix a subsequence {kn}∞n=1 ⊂ N satisfying (5). If c = 1
then let γx ≡ 1, x ≥ 1. If c > 1, then there exists an x0 large enough such that
for each x > x0 there is a unique index n∗(x) for which kn∗(x)−1 < x ≤ kn∗(x).
Then let γx = x/kn∗(x), for x ∈ (x0,∞) and γx = 1 otherwise. We see by (5)
that for any ε > 0 the inequality c−1 − ε ≤ γx ≤ 1 holds for all x large enough.
We emphasize that γx depends on the subsequence {kn}∞n=1. For s ∈ (0, 1) let
Q(s) = inf{x : F (x) ≥ s} be the quantile function of F (·), and let Q+(·) denote
its right-continuous version. Then (4) holds along the previously fixed subsequence
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{kn}∞n=1 for an arbitrary non-normal semistable distribution G = Gψα
1 ,ψ

α
2 ,0

if and
only if

Q+(s) = −s−1/α l(s)
[
M1(1/γ1/s) + h1(s)

]
and

Q(1− s) = s−1/α l(s)
[
M2(1/γ1/s) + h2(s)

]
for all s ∈ (0, 1),

(6)

where l(·) is a positive right-continuous function, slowly varying at zero, and the
error terms h1(·), h2(·) are right-continuous functions such that lims↓0 hj(s) = 0
if Mj is continuous, while if Mj has discontinuities then hj(s) may not go to zero
but limn→∞ hj(t/kn) = 0 for t ∈ C(Mj), j = 1, 2, where C(f) stands for the set
of continuity points of the function f . (The slightly different form of the quantile
function here and in Ref. 14, p. 412, and Ref. 6 is due to the inverse relation between
the two γ functions: instead of the γ(·) in Refs. 14 and 6, here we use γ(s) = 1/γ1/s.)
Conversely, if the Q(·) of F (·) satisfies (6), then F ∈ Dgp(Gψα

1 ,ψ
α
2 ,0

) and

∑kn

j=1Xj − kn
∫ 1−1/kn

1/kn
Q(u)du

k
1/α
n l(1/kn)

D−→ V (ψα1 , ψ
α
2 , 0),

where X1, X2, . . . are independent with the common distribution function F .

The form (6) can be simplified for the simplest possible subsequence when (4)
holds for kn ≡ bcnc for c = c(Gψα

1 ,ψ
α
2 ,0

) > 1. Then, as shown in Ref. 14,

Q+(s) =− s−1/α l(s)
[
M1(s) + h1(s)

]
and

Q(1− s) = s−1/α l(s)
[
M2(s) + h2(s)

]
for all s ∈ (0, 1),

(7)

so we can just forget about the strange argument 1/γ1/s = sbcdlogcd1/seec. Here
byc = max{m ∈ Z : m ≤ y} and dye = min{m ∈ Z : m ≥ y} denote the integer part
and the ceiling of y ∈ R and logc stands for the logarithm to the base c.

To introduce the problems in this paper, let F ∈ Dgp(Gψα
1 ,ψ

α
2 ,0

) be a fixed
distribution function, where Gψα

1 ,ψ
α
2 ,0

is an arbitrary non-normal semistable distri-
bution with characteristic exponent α ∈ (0, 2). Let X1, X2, . . . be independent ran-
dom variables with the common distribution function F (·). Then X1, X2, . . . , Xn

may be viewed for each n ∈ N as the gains in ducats (losses when negative) of
n gamblers Paul1, Paul2, . . ., Pauln, each playing one trial of the same game
of chance. Our Pauls may not trust their own luck and, before they play, they
may agree to use a pooling strategy pn = (p1,n, p2,n, . . . , pn,n), where the com-
ponents are non-negative and add to unity. Using this strategy, Paul1 receives
p1,nX1+p2,nX2+· · ·+pn,nXn ducats, Paul2 receives pn,nX1+p1,nX2+· · ·+pn−1,nXn

ducats, . . ., and Pauln receives p2,nX1 + p3,nX2 + · · ·+ p1,nXn ducats. Then all the

4



individual winnings are pooled and this rotating system is fair to every Paul since
their pooled winnings are equally distributed. The prototypes of such games are
the generalized St. Petersburg(α, p) games, in which for a single gain X we have
P {X = rk/α} = qk−1p, k ∈ N, for α ∈ (0, 2), p ∈ (0, 1), q = 1− p and r = 1/q. The
distribution of X is also the prototype of one in the domain of geometric partial at-
traction of a semistable law with characteristic exponent α; this is shown in Ref. 14
directly by (6). The motivating paradoxical result is that in St. Petersburg(1, p)
games there are strategies pn which are better than the individualistic strategies,
that is, each Paul expects more ducats from the pool than by holding on to their
own personal winnings even though their total gain is the same X1 + · · ·+Xn. This
was proved for the classical case p = 1/2 in Ref. 8, and later in Ref. 12 in general.
For n → ∞, the asymptotic behavior of pooled winning of Paul1 was investigated
in Refs. 8 and 7 for α = 1, and in Ref. 5 for arbitrary α ∈ (0, 2) and p ∈ (0, 1).

Returning now to the general situation when F ∈ Dgp(Gψα
1 ,ψ

α
2 ,0

), our first main
interest in this paper is the asymptotic distribution of the random variable

Sα,pn =
n∑

j=1

p
1/α
j,n

l(pj,n)
Xj −

n∑

j=1

p
1/α
j,n

l(pj,n)

∫ 1−pj,n

pj,n

Q(s) ds, (8)

where the slowly varying function l(·) is from the representation (6) of the quantile
function Q corresponding to F . We consider a sequence of strategies {pn} that
satisfies the asymptotic negligibility condition pn = max{pj,n : j = 1, 2, . . . , n} → 0.

The main result in this paper is Theorem 2.1 below, a merge theorem for Sα,pn

in (8). The phenomenon of merge takes place when neither of two sequences of
distributions converges weakly, but the Lévy or supremum distance between the
n-th terms goes to zero as n→∞ along the entire sequence N.

These linear combinations Sα,pn belong to a real pooling strategy only when
α = 1 and the slowly varying function l(·) ≡ 1 in (6). The equivalent Theo-
rem 2.2 contains a satisfactory version after a simple transformation. A surprising
consequence is that for some sequences of strategies {pn} ordinary asymptotic dis-
tributions of Sα,pn exist as n → ∞ along the entire N. In Section 3 we investigate
merge on R in general and obtain necessary and sufficient Fourier–analytic condi-
tions under weak assumptions. All the proofs are placed in Section 4.

2. MERGING SEMISTABLE APPROXIMATIONS OF LINEAR COM-
BINATIONS

Let G = Gψα
1 ,ψ

α
2 ,0

be semistable with exponent α ∈ (0, 2) as before. For ψ ∈ Ψ
and λ > 0, let λψ(s) = ψ(s/λ) and put ψα,λj (s) = λ−1/α

λψ
α
j (s) = −Mj(s/λ)s−1/α,
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s > 0, where the functions Mj are from (3), j = 1, 2. Introduce

Vα,λ(M1,M2) = V (ψα,λ1 , ψα,λ2 , 0) and E(eitVα,λ(M1,M2)) = eyα,λ(t), t ∈ R, (9)

and notice the identity Vα,λ(M1,M2) = λ−1/α V (λψα1 , λψ
α
2 , 0). The notation is the

same as in Ref. 6 with two important exceptions. The random variable that belongs
to λ here, belongs to λ−1 there (Ref. 6, p. 96). The other exception is the function γx
mentioned before. The reason for the deviation is that for generalized St. Petersburg
games our theorems here must reduce to the merge theorems in Refs. 3 and 5.

We restate a basic result from Ref. 6 in terms of what we call circular conver-
gence. For a given c > 1 we say that the sequence {un}∞n=1 ⊂ R converges circularly
to u ∈ (c−1, 1], written un

cir−→u, if either u ∈ (c−1, 1) and un → u, or u = 1 and the
sequence {un} has limit points c−1 or 1, or both. (For c = 1 the notion un

cir−→ 1
simply means that un → 1.) Let the distribution function F ∈ Dgp(G) be such
that (4) holds along a subsequence {kn}∞n=1 satisfying (5), where c = c(G); this and
nothing else is assumed for Theorems 2.1, 2.2 and the Corollary below. Part of the
surprising result in Theorem 1 in Ref. 6 is that there are as many different limiting
distributions as the continuum along different subsequences. In particular, if along
a subsequence {nr}∞r=1 ⊂ N,

∑nr

j=1Xj − cnr

anr

D−→W as r →∞ (10)

for a non-degenerate random variable W , then γnr

cir−→κ ∈ (c−1, 1] as r → ∞,
and the distribution of W is necessarily that of an affine linear transformation of
Vα,κ(M1,M2). Conversely, if γnr

cir−→κ ∈ (c−1, 1] as r → ∞, then (10) holds with

cnr = nr
∫ 1−n−1

r

n−1
r

Q(s) ds, anr = n
1/α
r l(1/nr) and W = Vα,κ(M1,M2).

Now let pn = (p1,n, p2,n, . . . , pn,n) be any strategy, so that p1,n, p2,n, . . . , pn,n ≥
0 and

∑n
j=1 pj,n = 1, and for simplicity put γj,n = γ1/pj,n

if pj,n > 0, j = 1, . . . , n.
The merging semistable approximation to the distribution functions of Sα,pn in
(8) is given in the following main result by the distribution functions Gα,pn

(x) =
P {Vα,pn ≤ x}, x ∈ R, of random variables Vα,pn that have characteristic functions

E
(
eitVα,pn

)
=

∫ ∞

−∞
eitx dGα,pn(x) = exp

{
n∑

j=1

pj,n yα,γj,n(t)

}
, t ∈ R, (11)

where yα,γj,n(·) is the exponent function in the characteristic function of Vα,γj,n in
(9), explicitly given in the proof of Lemma 1 below.

Theorem 2.1. For any sequence {pn}∞n=1 of strategies such that pn → 0,

sup
x∈R

∣∣P{
Sα,pn ≤ x

}−Gα,pn(x)
∣∣ → 0.
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It follows from (11) that for the uniform strategies p¦n = (1/n, 1/n, . . . , 1/n) the
distributional equality Vα,pn

D= Vα,γn
(M1,M2) holds, and hence Theorem 2.1 reduces

to the most important special case of full sums in Theorem 2 in Ref. 6.

As noted before, there is real pooling of winnings only if α = 1 and l(·) ≡ 1
when the sum of the coefficients in (8) is 1. However, by a transformation we obtain
a version of Theorem 2.1 that is satisfactory in this respect. This transformation is
a generally implicit extension of that given in Ref. 5. The function f(s) = s1/α/l(s)
in (6) is regularly varying of order 1/α at zero, and hence by general theory (Ref. 1,
p. 23) it is asymptotically equivalent to a non-decreasing function. Therefore, to
state Theorem 2.2 below, we may and do assume that f(s) = s1/α/l(s) is itself
non-decreasing and hence, by monotonicity, its inverse function g(s) exists and
it is also non-decreasing for s in a right neighborhood of zero. Then, if pn =
(p1,n, p2,n, . . . , pn,n) is an arbitrary strategy, consider

qj,n =
p
1/α
j,n

l(pj,n)

(
n∑

k=1

p
1/α
k,n

l(pk,n)

)−1

=
f(pj,n)∑n
k=1 f(pk,n)

, j = 1, 2, . . . , n.

Then, clearly, qn = (q1,n, q2,n, . . . , qn,n) is a strategy. We need a one-to-one cor-
respondence, that is, we have to determine pn in terms of qn. Multiplying the
defining equation by

∑n
k=1 f(pk,n) and applying the inverse function g(·), we get

the equation g(qj,n
∑n
k=1 f(pk,n)) = pj,n, so that

∑n
j=1 g(qj,n

∑n
k=1 f(pk,n)) = 1.

The monotonicity of g(·) implies that for a given strategy qn there exists a unique
constant Aqn > 0 for which

∑n
j=1 g(qj,nAqn) = 1, so that Aqn =

∑n
k=1 f(pk,n).

Thus pj,n = g(qj,nAqn), j = 1, 2, . . . , n, that is, the correspondence between pn and
qn is one-to-one indeed. Now we can define the functions and random variables
related to the strategy qn. Set νk,n = γ1/g(qk,nAqn ), k = 1, . . . , n, introduce

Tα,qn = Aqn

n∑

k=1

qk,nXk −Aqn

n∑

k=1

qk,n

∫ 1−g(qk,nAqn )

g(qk,nAqn )

Q(s) ds

and let Hα,qn(·) be the semistable distribution function with characteristic function
∫ ∞

−∞
eitx dHα,qn(x) = exp

{
n∑

k=1

g(qk,nAqn) yα,νk,n
(t)

}
.

Then a reformulated equivalent version of Theorem 2.1 is

Theorem 2.2. For any sequence {qn}∞n=1 of strategies such that g(qnAqn) → 0,

sup
x∈R

∣∣P{
Tα,qn ≤ x

}−Hα,qn(x)
∣∣ → 0.

The strange-looking assumption is needed because the relations pn → 0 and
qn → 0 are independent in the sense that neither of them implies the other. This
can be seen by easily constructed examples, even in the simplest case l(·) ≡ 1.
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Now we turn back to the setup in (8) and (11) and show that for special se-
quences {pn} the merge in Theorem 2.1 reduces to ordinary limit theorems. Since
for c = 1 the approximating distribution is one and the same stable distribution
already, we assume that c > 1, in which case our conclusion is truly surprising.

Let {nr}∞r=1 ⊂ N be an increasing subsequence and consider the sequence of
strategies pn = (1/nr, 1/nr, . . . , 1/nr, 0, 0, . . . , 0) with nr non-zero elements, where
nr ≤ n < nr+1. This is the same situation as in (10), so there exists a limiting
distribution for {pn}∞n=1 if and only if it exists in (10) along {nr}∞r=1. There may
be too many zero components in this type of strategies in the sense that in some
of them the proportion of zeros is approximately 1 − c−1 if limr→∞ nr+1/nr = c.
The following notion excludes such cases: we call a sequence {pn}∞n=1 of strategies
balanced if

lim inf
n→∞

min{pj,n : j = 1, 2, . . . , n}
max{pj,n : j = 1, 2, . . . , n} > 0.

Roughly speaking this condition means that each component is important.

Classical theory says that if a limiting distribution exists for the uniform strate-
gies p¦n = (1/n, 1/n, . . . , 1/n), it must be stable. As an essence of semistability, the
following corollary claims that semistable limiting distributions can be achieved by
such balanced strategies that practically consist of only two different components.

Corollary. For an arbitrary κ ∈ (c−1, 1] there exists a balanced sequence
{pn}∞n=1 of strategies such that Sα,pn

D−→ Vα,κ(M1,M2), where Vα,κ(M1,M2) is as
in (9). Moreover, for each n ∈ {2, 3, . . .} the strategy pn = (p1,n, p2,n, . . . , pn,n) can
be constructed in such a way that there are at most two different values among its
first n− 1 components.

It will be clear from the proof that the n-th component pn,n, which can have a
third different value, is just to make pn a strategy, that is, to make

∑n
j=1 pj,n = 1.

Thus in fact there are only two different important components.

The difficulties of a closer description of the merging semistable random vari-
ables Vα,pn in (11) arise from the fact that the asymptotic equality γcx ∼ γx, as
x→∞, for the function γx figuring in (6) does not reduce to true equality. Never-
theless, (7) says that for the special sequence kn ≡ bcnc we can define the function γx
through the sequence cn instead of bcnc and obtain explicitly γx = x/cdlogc xe for all
x > 0. In this case, when kn ≡ bcnc, let Vα,1, Vα,2, . . . , Vα,n be independent copies
of Vα,1(M1,M2). Then with rj,n = dlogc p

−1
j,ne and γj,n = γp−1

j,n
= (pj,ncrj,n)−1 as

before, for any strategy pn Lemmas 1 and 6 below imply the distributional equality
n∑

j=1

p
1/α
j,n Vα,j −

n∑

j=1

(
d−rj,n + pj,n cγj,n

) D= Vα,pn , (12)

where the constants cλ, λ > 0, and dm, m ∈ Z, are also from those lemmas.
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3. MERGE THEOREMS IN GENERAL

The systematic study of merge was initiated in Ref. 9 in the general setup of
separable metric spaces. The study there did not get down to the characterization
of merge in the Lévy distance on R, and the aim of the present small section is
exactly that. Of course, the deep and extended literature on Kolmogorov’s uniform
limit problem, highlighted by Arak’s and Zaitsev’s well-known results, deals with
merge in the uniform distance ever since Prokhorov’s first result in 1955. In our list
here, Refs. 2 and 6 are also examples for merge in the uniform distance.

In this section X,X1, X2, . . ., Y, Y1, Y2, . . . are real random variables with dis-
tribution and characteristic functions F, F1, F2, . . ., G,G1, G2, . . . and φ, φ1, φ2, . . .,
ψ,ψ1, ψ2, . . ., respectively. If Fn ⇒ G denotes weak convergence, that is, Fn(x) →
G(x) at each x ∈ C(G), where we recall that C(G) is the set of continuity points
of G, then of course Fn ⇒ G is the definition of Xn

D−→ Y used above, which is
equivalent to L(Fn, G) → 0, where L(· , ·) is Lévy’s distance, given by L(F,G) =
inf{h > 0 : G(x− h)− h ≤ F (x) ≤ G(x+ h) + h}. Extending this, we say that Xn

and Yn, or their distribution functions Fn and Gn, merge together if L(Fn, Gn) → 0.

Here we give necessary and sufficient conditions for merge in terms of charac-
teristic functions under the weak assumption that one of the sequences, {Yn} or
equivalently {Gn}, say, is stochastically compact, meaning that for every subse-
quence {nk}∞k=1 ⊂ N there is a further subsequence {nkj}∞j=1 ⊂ {nk}∞k=1 and a
random variable Y , such that Ynkj

D−→ Y , or equivalently Gnkj
⇒ G as j →∞.

Theorem 3.1. If {Gn}∞n=1 is stochastically compact, then L(Fn, Gn) → 0 if
and only if φn(t)− ψn(t) → 0 for every t ∈ R.

The next theorem is the basic tool in the proof of Theorem 2.1. It says that if Gn
is absolutely continuous for all n ∈ N and the corresponding density functions are
uniformly bounded, then even uniform convergence holds under the same conditions.

Theorem 3.2. Assume that {Gn}∞n=1 is stochastically compact and there is a
constant K > 0 such that supn∈N supx∈R |G ′

n(x)| ≤ K. Then Fn(x) − Gn(x) → 0
at every x ∈ R if and only if φn(t) − ψn(t) → 0 at every t ∈ R. Moreover, if this
holds, then in fact the convergence is uniform, so that supx∈R |Fn(x)−Gn(x)| → 0.

4. PROOFS

Logic dictates to prove first the general theorems from the preceding section.

Proof of Theorem 3.1. Suppose first that φn(t) − ψn(t) → 0 for all t ∈ R. Let
{nk}∞k=1 be any subsequence of N. By compactness there is a further subsequence
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{nkj
}∞j=1 ⊂ {nk}∞k=1 and a distribution function G such that Gnkj

⇒ G, so that
ψnkj

(t) → ψ(t), t ∈ R, as j →∞ by continuity theorem. By the triangle inequality
and the other direction in the continuity theorem, Fnkj

⇒ G, and so the triangle
inequality for the Lévy metric yields L(Fnkj

, Gnkj
) → 0 as j →∞. Since {nk} was

arbitrary, it follows that L(Fn, Gn) → 0. The proof of the converse is similar.

Proof of Theorem 3.2. Necessity is trivial, while the proof of sufficiency in the
first statement is similar to the one above: using the uniform boundedness of G ′

n,
one can show that the subsequential weak limits G are continuous, and so weak
convergence implies convergence in each point.

To prove the stronger second statement, fix any ε ∈ (0, 1). Stochastic compact-
ness is tightness, so there exists a T > 0 such that Gn(x) > 1− ε and Gn(−x) < ε

for all x > T and n ∈ N, and the uniform boundedness of the densities im-
plies the existence of a subdivision −T = x0 < x1 < · · · < xN = T such that
sup1≤k≤N,n∈N |Gn(xk) − Gn(xk−1)| < ε. Since Fn and Gn merge together at each
point, there is a threshold n0 ∈ N such that maxk=0,1,...,N |Fn(xk)−Gn(xk)| < ε if
n ≥ n0. Then by easy calculation supx∈R |Fn(x)−Gn(x)| < 2ε for all n ≥ n0.

Aiming at Theorem 2.1, first we prove six lemmas. The first is a scaling property
that expresses the exponent function yα,λ(·) of the characteristic function in (9) in
terms of yα,1(·), which was used for (12) and is needed for Lemmas 2 and 3.

Lemma 1. For every λ > 0 we have yα,λ(t) = λ yα,1(t/λ1/α) − itcλ, t ∈ R,
where cλ = λ(1−α)/α

∫ 1/λ

1

[
ψα2 (s)− ψα1 (s)

]
ds.

Proof. As in (1), let Lλ and Rλ denote the Lévy functions of the random
variable V (λψα1 , λψ

α
2 , 0) defined at (9). The inverse relation above (1) for the two

representations shows that Lλ(x) = inf{s : λψα1 (s) ≥ x} = inf{s : ψα1 (s/λ) ≥ x} =
λL(x), x < 0, and similarly Rλ(x) = λR(x), x > 0, where L(·) = L1(·) and
R(·) = R1(·). Thus, since V (ψ1, ψ2, σ) = W (ψ1, ψ2, σ) + θ(ψ1)− θ(ψ2) in (2),

eyα,λ(t) = E
(
eitVα,λ(M1,M2)

)
= E

(
ei t

λ1/α
V (λψ

α
1 ,λψ

α
2 ,0)

)
= exp

{
it
θ(λψα1 )− θ(λψα2 )

λ1/α

}

× exp

{
λ

∫ 0

−∞
β t

λ1/α
(x) dL(x) + λ

∫ ∞

0

β t

λ1/α
(x) dR(x)

}
,

from which, forcing the exponent yα,1(tλ−1/α) in,

eyα,λ(t) = exp
{
− it

θ(λψα2 )− θ(λψα1 )
λ1/α

+ itλ
θ(ψα2 )− θ(ψα1 )

λ1/α

}

× exp

{
λ

[
it
θ(ψα1 )− θ(ψα2 )

λ1/α
+

∫ 0

−∞
β t

λ1/α
(x) dL(x) +

∫ ∞

0

β t

λ1/α
(x) dR(x)

]}
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for all t ∈ R, which is nothing but eyα,λ(t) = e−itcλeλyα,1(tλ
−1/α), where cλ =

λ−1/α[θ(λψα2 ) − θ(λψα1 ) − λ{θ(ψα2 ) − θ(ψα1 )}]. Now, a somewhat long but straight-
forward calculation shows that θ(λψ) = λ θ(ψ) + λ

∫ 1/λ

1
ψ(t) dt. Further simple

calculation then yields the stated form of cλ.

Next, Lemmas 2 and 3 establish that the sequence Gα,pn
in (11) has uniformly

bounded densities and is stochastically compact, so that it meets the assumptions
of Theorem 3.2. Here Γ(u) =

∫∞
0
vu−1e−v dv, u > 0, is the usual gamma function.

Lemma 2. For any strategy pn the inequality

sup
x∈R

∣∣G ′
α,pn

(x)
∣∣ ≤ Γ(1/α)

παK
1/α
α

holds, where the constant Kα > 0 depends only on α.

Proof. It follows from a result of Kruglov(13) that <e yα,1(t) ≤ −Kα|t|α, t ∈ R.
Then by Lemma 1, <e yα,λ(t) = λ<e yα,1(tλ−1/α) ≤ −λKα|t|αλ−1 = −Kα|t|α, for
all λ > 0. Thus the distribution function of the variable in (9) and hence also
Gα,pn(·) in (11) is infinitely many times differentiable. In particular,

∣∣G ′
α,pn

(x)
∣∣ =

1
2π

∣∣∣∣
∫ ∞

−∞
e−itxE

(
eitVα,pn

)
dt

∣∣∣∣ ≤
1
2π

∫ ∞

−∞
exp

{
n∑

k=1

pk,n<e yα,γk,n
(t)

}
dt

≤ 1
2π

∫ ∞

−∞
exp{−Kα|t|α}dt =

Γ(1/α)

παK
1/α
α

for all x ∈ R by the density inversion formula, proving the lemma.

Lemma 3. For any sequence of strategies {pn}∞n=1, the sequence of random
variables {Vα,pn}∞n=1 is stochastically compact.

Proof. We rewrite the characteristic function in (11) in a form that was used
in the St. Petersburg case in Ref. 8, p. 984. Setting Tpn(γ) =

∑n
j=1 pj,nI(γj,n ≤ γ),

0 < γ ≤ 1, where I(A) is the indicator of the event A, we have

E
(
eitVα,pn

)
= exp

{
n∑

j=1

pj,nyα,γj,n(t)

}
= exp

{ ∫ 1

0

yα,γ(t) dTpn(γ)
}
.

By the multiplicative periodicity yα,cγ(t) = yα,γ(t) and by Lemma 1, yα,γ(t) is a
continuous and bounded function of γ in (0, 1] for each fixed t ∈ R, while Tpn is like
an empirical distribution function with support contained in [0, 1]. Since no mass
can escape, the lemma follows by an application of the Helly selection theorem.
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The following measure-theoretic lemma is also important in the proof of Theo-
rem 2.1. It allows to pass on from subsequences to the entire sequence N. Measur-
ability and almost everywhere assumptions are meant in the usual Lebesgue sense
and mes{·} stands for Lebesgue measure and mes−→ denotes convergence in measure.

Lemma 4. Let qn : I → R be sequence of measurable functions, n ∈ N, and
δ : N → Λ a sequence taking values in Λ, where I ⊂ R and Λ ⊂ R are compact
intervals, and let νλ : I → R be a set of measurable functions, λ ∈ Λ. Suppose that
if limr→∞ δ(nr) = λ for a subsequence {nr}∞r=1 ⊂ N, then qnr

(s) − νδ(nr)(s) → 0
for almost every s ∈ I as r → ∞. Then qn(·) − νδ(n)(·) mes−→ 0, that is, mes{s ∈ I :
|qn(s)− νδ(n)(s)| > ε} → 0 for every ε > 0.

Proof. Fix any ε > 0 and let An(ε) = {s : |qn(s) − νδ(n)(s)| > ε}. We have
to prove that mes{An(ε)} → 0. Let {nk}∞k=1 ⊂ N be any subsequence. Since
Λ is compact, by the Bolzano–Weierstrass theorem there is a further subsequence
{nkl

}∞l=1 ⊂ {nk}∞k=1 such that δ(nkl
) → λ for some λ ∈ Λ as l→∞. By assumption

we have qnkl
(s) − νδ(nkl

)(s) → 0 as l → ∞ for almost all s ∈ I. Then by Egorov’s
theorem there exists a measurable set E ⊂ I on which the convergence is uniform
and mes{I \ E} < ε. Thus Ankl

(ε) ⊂ I \ E and so mes(Ankl
(ε)) < ε for all l large

enough. Since {nk}∞k=1 ⊂ N was arbitrary, the proof is complete.

Lemma 4 will be used in a slightly different situation. The compact interval Λ
will be the ‘circle’ (c−1, 1] as the points c−1 and 1 are identified, and the convergence
relation limr→∞ δ(nr) = λ will be replaced by the corresponding δ(nr)

cir−→λ as
r →∞. Obviously, the lemma remains true in this setup.

Lemma 5. If {nr}∞r=1 ⊂ N is a subsequence such that γnr

cir−→κ ∈ (c−1, 1] as
r →∞, then

Q+(s/nr)

n
1/α
r l(1/nr)

− ψ
α,γnr
1 (s) → 0, s ∈ C(ψα,κ1 ),

−Q(1− s/nr)

n
1/α
r l(1/nr)

− ψ
α,γnr
2 (s) → 0, s ∈ C(ψα,κ2 )

as r →∞.

Proof. It is shown for the same {nr} in the proof of Theorem 1 in Ref. 6 that

Q+(s/nr)

n
1/α
r l(1/nr)

− ψα,κ1 (s) → 0, s ∈ C(ψα,κ1 ).

Since ψα,11 ≡ ψα,c
−1

1 , the scaling property ψα,λ1 (s) = λ−1/αψα,11 (s/λ) above (9)
implies that ψα,κn

1 (s) → ψα,κ1 (s), s ∈ C(ψα,κ1 ) whenever κn
cir−→κ. The two properties

together give the desired result. The proof of the second statement is analogous.
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The following general lemma is in fact the semistable property, which is used
in this paper only for the proof of (12). It goes back to Lévy, and the well-known
proof is just patient calculation. (In fact, a certain converse is also true.)

Lemma 6. If eyα(·) is a semistable characteristic function of exponent α ∈ (0, 2)
and c > 0 is a multiplicative period of the functions M1 and M2 in (3), then
yα(cm/αt) = cmyα(t) + itdm, t ∈ R, for every m ∈ Z, where the constants dm ∈ R
depend on the distribution.

Proof of Theorem 2.1. By Lemmas 2 and 3 the sequence {Vα,pn
} is stochastically

compact and their densities are uniformly bounded. Thus by Theorem 3.2 it suffices
to prove that ∆α,pn(t) := |E(eitSα,pn )−E(eitVα,pn )| → 0 at each t ∈ R.

Fixing t 6= 0 and setting

µ(pn) =
n∑

j=1

p
1/α
j,n

l(pj,n)

∫ 1−pj,n

pj,n

Q(s) ds =:
n∑

j=1

µj,n, (13)

by (8) and (11) we can write

∆α,pn(t) =

∣∣∣∣∣
n∏

j=1

E

(
exp

{
it
p
1/α
j,n

l(pj,n)
Xj

})
e−itµ(pn) − exp

{
n∑

j=1

pj,n yα,γj,n(t)

}∣∣∣∣∣

=

∣∣∣∣∣
n∏

j=1

(
1 + yj,n(t)

)− exp

{
n∑

j=1

pj,n yα,γj,n(t) + itµ(pn)

}∣∣∣∣∣

≤
∣∣∣∣∣
n∏

j=1

(
1 + yj,n(t)

)− exp

{
n∑

j=1

yj,n(t)

}∣∣∣∣∣

+

∣∣∣∣∣ exp

{
n∑

j=1

yj,n(t)

}
− exp

{
n∑

j=1

pj,n yα,γj,n(t) + itµ(pn)

}∣∣∣∣∣

≤
∣∣∣∣∣ exp

{
n∑

j=1

[
log

(
1 + yj,n(t)

)− yj,n(t)
]}

− 1

∣∣∣∣∣

+

∣∣∣∣∣ exp

{
n∑

j=1

[
yj,n(t)− pj,n yα,γj,n(t)− itµj,n

]}
− 1

∣∣∣∣∣,

where

yj,n(t) = E

(
exp

{
it
p
1/α
j,n

l(pj,n)
Xj

}
− 1

)
=

∫ 1

0

[
exp

{
it
p
1/α
j,n

l(pj,n)
Q(s)

}
− 1

]
ds (14)

Notice that yj,n(t) → 0 for all j = 1, . . . , n by the condition pn → 0, and so the
logarithms are well defined for all n large enough; in fact for our fixed t 6= 0 we will
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use a threshold nt ∈ N such that |yj,n(t)| ≤ 1/2, j = 1, . . . , n, for all n ≥ nt. We
must prove that

n∑

j=1

Ij,n(t) :=
n∑

j=1

∣∣ log
(
1 + yj,n(t)

)− yj,n(t)
∣∣ → 0 (15)

and
n∑

j=1

[
yj,n(t)− pj,n yα,γj,n(t)− itµj,n

] → 0. (16)

First we consider (15). Expanding the logarithm, for all n ≥ nt we obtain

Ij,n(t) =

∣∣∣∣∣
∞∑

l=2

(−1)l+1
ylj,n(t)
l

∣∣∣∣∣ ≤
|yj,n(t)|2

2

∞∑

l=0

∣∣yj,n(t)
∣∣l =

|yj,n(t)|2
2{1− |yj,n(t)|}

≤ |yj,n(t)|2 ≤ pj,n

[
1√
pj,n

∫ 1

0

∣∣∣∣∣ exp

{
it
p
1/α
j,n

l(pj,n)
Q(s)

}
− 1

∣∣∣∣∣ ds

]2

by (14). Since
∑n
j=1 pj,n = 1, it is enough to show that

fα(x) :=
1√
x

∫ 1

0

∣∣∣eitQ(s)x1/α/l(x) − 1
∣∣∣ ds→ 0 as x ↓ 0 (17)

where x ∈ (0, 1) in general. Since |eiu − 1| ≤ min{2, u}, u ∈ R, we see that

∫ 1

0

∣∣∣eitQ(s)x1/α/l(x) − 1
∣∣∣ ds ≤

∫ x

0

2 ds+ t
x1/α

l(x)

∫ 1−x

x

|Q(s)| ds+
∫ 1

1−x
2 ds.

Megyesi(14), p. 423, proved that for h0 small enough there exist constants cj > 0
such that sups∈(0,h0] |Mj(γ−1

s−1) + hj(s)| ≤ cj , where Mj(·) and hj(·) are from (6),
and we choose cj so large that the inequalities sups∈(0,∞)Mj(s) ≤ cj also hold,
j = 1, 2. Further restrictions on h0 will be introduced as we go along. Then by (6),

∣∣Q+(s)
∣∣ ≤ c1

l(s)
s1/α

and
∣∣Q(1− s)

∣∣ ≤ c2
l(s)
s1/α

, 0 < s ≤ h0,

and ψα,λj (s) ≤ cj
s1/α

, s > 0, j = 1, 2, for all λ > 0.
(18)

Hence
∫ h0

x

∣∣Q+(s)
∣∣ ds ≤ c1

∫ h0

x
l(s)s−1/α ds. Here we take h0 > 0 be so small that

l(·) is locally bounded on (0, h0), that is, l(·) is bounded on (ε, h0) for each ε > 0.
Note that l(1/v), as a function of v, is slowly varying at infinity. We now apply
Karamata’s theorem (Ref. 1, pp. 26–27) and accordingly separate three cases of α.
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If α < 1 then 1
α − 2 > −1, and so we have the asymptotic inequality

∫ h0

x

l(s)
s1/α

ds =
∫ 1/x

1/h0

v
1
α−2 l(1/v) dv ∼ α

1− α
x1− 1

α l(x) as x ↓ 0,

where we write f(u) ∼ g(u) if limu→∞ f(u)/g(u) = 1, and hence, as x ↓ 0,

fα(x) ≤ 4
√
x+ t(c1 + c2)

x
1
α− 1

2

l(x)

∫ h0

x

l(s)
s1/α

ds+ t
x

1
α− 1

2

l(x)

∫ 1−h0

h0

|Q(s)|ds

= 4
√
x+ t

(c1 + c2)α
1− α

√
x

(
1 + o(1)

)
+ t

x
1
α− 1

2

l(x)

∫ 1−h0

h0

|Q(s)| ds→ 0.

If α = 1 then 1
α −2 = −1, in which case the function l∗(x) =

∫ 1/x

1/h0
v−1l(1/v) dv

is slowly varying at 0, so that, as x ↓ 0,

f1(x) ≤ 4
√
x+ t

√
x

l(x)
(c1 + c2)

∫ h0

x

l(s)
s

ds+ t

√
x

l(x)

∫ 1−h0

h0

|Q(s)| ds

= 4
√
x+ t(c1 + c2)

√
x
l∗(x)
l(x)

+ t

√
x

l(x)

∫ 1−h0

h0

|Q(s)| ds→ 0.

Finally if α > 1 then 2− 1
α > 1, so that c3 :=

∫∞
1/h0

v
1
α−2 l(1/v) dv <∞ and

fα(x) ≤ 4
√
x+ t(c1 + c2)

x
1
α− 1

2

l(x)

∫ h0

x

l(s)
s1/α

ds+ t
x

1
α− 1

2

l(x)

∫ 1−h0

h0

|Q(s)| ds

= 4
√
x+ t(c1 + c2)c3

x
1
α− 1

2

l(x)
+ t

x
1
α− 1

2

l(x)

∫ 1−h0

h0

|Q(s)| ds→ 0,

as x ↓ 0. Thus (17) and, therefore, (15) is completely proved.

Now we turn to (16). For each j = 1, 2, . . . , n using the change of variables
s = upj,n in (13) and in (14), we see that

µj,n = pj,n

∫ 1
pj,n

−1

1

Q(upj,n)
p
1/α
j,n

l(pj,n)
du (19)

and

yj,n(t) = pj,n

∫ 1/pj,n

0

(
exp

{
itQ(upj,n)p

1/α
j,n /l(pj,n)

}
− 1

)
du

= pj,n

{ ∫ h0/pj,n

0

(
exp

{
itQ(spj,n)p

1/α
j,n /l(pj,n)

}
− 1

)
ds

+
∫ (1−h0)/pj,n

h0/pj,n

(
exp

{
itQ(spj,n)p

1/α
j,n /l(pj,n)

}
− 1

)
ds

+
∫ h0/pj,n

0

(
exp

{
itQ(1− spj,n)p

1/α
j,n /l(pj,n)

}
− 1

)
ds

}
.

(20)
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Therefore, (16) to be proved is equivalent to
∑n
j=1 pj,nJj,n(t) → 0, where

Jj,n(t) =
∫ 1

pj,n

0

[
exp

{
it
Q(spj,n)p

1/α
j,n

l(pj,n)

}
− 1

]
ds− yα,γj,n(t)

− it

∫ 1
pj,n

−1

1

Q(spj,n)p
1/α
j,n

l(pj,n)
ds

Since
∑n
j=1 pj,n = 1 and pn → 0, it suffices to show that

hα(x) → 0 as x ↓ 0, (21)

where

hα(x) =
∫ 1

x

0

[
exp

{
itQ(sx)

x1/α

l(x)

}
− 1

]
ds− yα,γ1/x

(t)− it

∫ 1
x−1

1

Q(sx)
x1/α

l(x)
ds.

Now we rewrite the characteristic function of Gα,pn(·) in the theorem. By (1),

∫ ∞

0

βt(ψ1(s)) ds =
∫ 1

0

[
eitψα,λ

1 (s) − 1
]
ds− it

∫ 1

0

ψα,λ1 (s)

1 +
{
ψα,λ1 (s)

}2 ds

+
∫ ∞

1

[
eitψα,λ

1 (s) − 1− itψα,λ1 (s)
]
ds

+ it

∫ ∞

1

[
ψα,λ1 (s)− ψα,λ1 (s)

1 +
{
ψα,λ1 (s)

}2

]
ds

=
∫ 1

0

[
eitψα,λ

1 (s) − 1
]
ds+

∫ ∞

1

[
eitψα,λ

1 (s) − 1− itψα,λ1 (s)
]
ds

− itθ
(
ψα,λ1

)
,

where θ(ψ) as above (2). With the analogous form of other integral we finally get

yα,λ(t) =
∫ 1

0

[
eitψα,λ

1 (s) − 1
]
ds+

∫ ∞

1

[
eitψα,λ

1 (s) − 1− itψα,λ1 (s)
]
ds

+
∫ 1

0

[
eit{−ψα,λ

2 (s)} − 1
]
ds+

∫ ∞

1

[
eit{−ψα,λ

2 (s)} − 1− it{−ψα,λ2 (s)}
]
ds.

16



Using this, (19) and (20), we obtain

hα(x) =
∫ 1

0

[(
exp

{
itQ(sx)

x1/α

l(x)

}
− 1

)
−

(
eitψ

α,γ1/x
1 (s) − 1

)]
ds

+
∫ h0/x

1

[
exp

{
itQ(sx)

x1/α

l(x)

}
− 1− itQ(sx)

x1/α

l(x)

−
(
eitψ

α,γ1/x
1 (s) − 1− itψ

α,γ1/x

1 (s)
)]

ds

+
∫ (1−h0)/x

h0/x

[
exp

{
itQ(sx)

x1/α

l(x)

}
− 1− itQ(sx)

x1/α

l(x)

]
ds

+
∫ 1

0

[(
exp

{
itQ(1− sx)

x1/α

l(x)

}
− 1

)
−

(
e−itψ

α,γ1/x
2 (s) − 1

)]
ds

+
∫ h0/x

1

[
exp

{
itQ(1− sx)

x1/α

l(x)

}
− 1− itQ(1− sx)

x1/α

l(x)

−
(
e−itψ

α,γ1/x
2 (s) − 1 + itψ

α,γ1/x

2 (s)
)]

ds

−
∫ ∞

h0/x

[
eitψ

α,γ1/x
1 (s)− 1− itψ

α,γ1/x

1 (s) + e−itψ
α,γ1/x
2 (s)− 1 + itψ

α,γ1/x

2 (s)
]
ds

=: hα,1(x) + hα,2(x) + hα,3(x) + hα,4(x) + hα,5(x)− hα,6(x).

Using the inequality |eiu − 1 − iu| ≤ u2/2, u ∈ R, and then the bounds
{ψα,γ1/x

j (s)}2 ≤ c2j/s
2/α, j = 1, 2, established in (18), we see that |hα,6(x)| ≤

2−1(c21 + c22) t
2
∫∞
h0/x

s−2/α ds→ 0 as x ↓ 0. Also, with the substitution sx = y,

|hα,3(x)| ≤
∫ (1−h0)/x

h0/x

t2Q2(sx)x2/α

l2(x)
ds =

x
2
α−1

l2(x)
t2

∫ 1−h0

h0

Q2(y) dy → 0 as x ↓ 0.

Clearly, hα,1(·) and hα,4(·) behave analogously and can be handled the same
way, and hα,2(·) and hα,5(·) can also be handled the same way. Hence we deal only
with hα,1(·) and hα,2(·). First note that Lemmas 4 and 5 together imply

mes
{

0 ≤ s ≤ N :
∣∣∣∣
Q+(s/n)
n1/αl(1/n)

− ψα,γn

1 (s)
∣∣∣∣ > ε

}
→ 0 for all ε > 0,

convergence in measure on [0, N ] for each N > 0. Using the monotonicity of
ψ
α,γ1/x

1 (·) and Q(·), we show that in this convergence n−1 ↓ 0 can be extended
to x ↓ 0. To this end, consider any xn ↓ 0 such that γ1/xn

cir−→κ ∈ (c−1, 1]. Then
also γb1/xnc

cir−→κ and γd1/xne
cir−→κ, so that, according to the proof of Lemma 5,

Q+(s/yn)/{y1/α
n l(1/yn)} → ψα,κ1 (s) and ψ

α,γyn
1 (s) → ψα,κ1 (s), s ∈ C(ψα,κ1 ), where
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yn can be chosen in both convergence relations as 1/xn, d1/xne and b1/xnc. Us-
ing that Q+(s/d1/xne) ≤ Q+(sxn) ≤ Q+(s/b1/xnc), l(1/b1/xnc)/l(xn) → 1 and
l(1/d1/xne)/l(xn) → 1, we get {Q+(sxn)x

1/α
n /l(xn)} − ψ

α,γ1/xn

1 (s) → 0 for all
s ∈ C(ψα,κ1 ) by standard manipulation. This implies by Lemma 4 that

mes
{

0 ≤ s ≤ N :
∣∣∣∣
Q+(sx)x1/α

l(x)
− ψ

α,γ1/x

1 (s)
∣∣∣∣ > ε

}
→ 0 for all ε > 0,

as x ↓ 0. We note that if the functions ψαj , j = 1, 2, in (3) are continuous, then
Lemma 4 is needless because convergence holds pointwise.

Thus, towards the proof of (21), we showed that in the integrands in hα,1(·)
and hα,2(·) go to 0 in measure as x ↓ 0 on each interval [0, N ]. Thus, it suffices to
find common integrable bounds. For the first integral the function 2 does the job,
so that hα,1(x) → 0 and hα,4(x) → 0 as x ↓ 0. For the second, by (18) we have

∣∣∣∣ exp
{

itQ(sx)x1/α

l(x)

}
− 1− itQ(s x)x1/α

l(x)

∣∣∣∣ +
∣∣∣eitψ

α,γ1/x
1 (s) − 1− itψ

α,γ1/x

1 (s)
∣∣∣

≤ t2
Q2(sx)x2/α

l2(x)
+ t2{ψα,γ1/x

1 (s)}2 ≤ t2
Q2(sx)x2/α

l2(x)
+ t2

c21
s2/α

,

and the second term is integrable on [1,∞). For the first term we need Potter’s
theorem (Ref. 1, p. 25), which for the function l∞(y) = l(1/y), y ≥ 1, slowly varying
at infinity, states that for each δ > 0 and A > 1 there is a K = K(A, δ) such that

l∞(y)
l∞(z)

≤ Amax
{(y

z

)δ
,
(z
y

)δ}
, y, z > K.

Take A = 2 and δ = (2α)−1 − 4−1 and let h0 < 1/K(2, δ). Then for x < h0 and
s ∈ [1, h0/x] we have {l(sx)/l(x)} ≤ 2max{sδ, s−δ} = 2sδ, and so, first by (18),

∣∣∣∣
Q2

+(sx)x2/α

l2(x)

∣∣∣∣ ≤ c21
l2(sx)
(sx)2/α

x2/α

l2(x)
= c21s

− 1
2− 1

α

(
l(sx)
l(x)sδ

)2

≤ 4c21s
− 1

2− 1
α ,

which is integrable on [1,∞). Therefore, hα,2(x) → 0 and hα,5(x) → 0 as x ↓ 0,
proving (16) and hence the theorem.

Proof of the Corollary. We construct a strategy pn such that γj,n = κ for all
j = 1, 2, . . . , n− 1, and pn,n → 0. Then for the characteristic function

E(eitVα,pn ) = exp

{
n∑

j=1

pj,n yα,γj,n(t)

}
= eyα,κ(t) epn,n [yα,γn,n(t)−yα,κ(t)],

so that E(eitVα,pn ) → eyα,κ(t), t ∈ R. Since Sα,pn and Vα,pn merge together by
Theorem 2.1, we get Sα,pn

D−→Vα,κ(M1,M2). So it is enough to find such a strategy.

Fix n ∈ N sufficiently large to have kn∗−1 < n ≤ kn∗ for n∗ = n∗(n), as
before (6), and put x0 = κkn∗ , x−1 = κkn∗−1 and x+1 = κkn∗+1. Clearly, γxj = κ,
j = 0,±1. If x0 = n, then the uniform strategy pn = (1/n, 1/n, . . . , 1/n) is suitable.
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If x0 6= n, we begin by equating each component to 1/x0. Suppose that x0 > n.
Then, starting with the first component, we proceed step by step and substitute
1/x0 by 1/x−1, so that the sum of the components is increased at each step. We
do this until the sum is still less than 1. Since n/x−1 > 1, we will not change
all components. Finally, increase the last 1/x0 to some pn,n ∈ (1/x0, 1/x−1) that
makes the sum 1, and the construction is complete.

For x0 < n the proof is similar, only we decrease 1/x0 by 1/x+1 at each step.
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