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Abstract

We investigate the repeated and sequential portfolio St. Peters-
burg games. For the repeated St. Petersburg game, we show an upper
bound on the tail distribution, which implies a strong law for a trunca-
tion. Moreover, we consider the problem of limit distribution. For the
sequential portfolio St. Petersburg game, we obtain tight asymptotic
results for the growth rate of the game.

1 Introduction

Consider the simple St. Petersburg game, where the player invests 1$ and a
fair coin is tossed until a tail first appears, ending the game. If the first tail
∗The work was supported in part by the Computer and Automation Research Institute

of the Hungarian Academy of Sciences and by the PASCAL2 Network of Excellence under
EC grant no. 216886 and by the Hungarian Scientific Research Fund, Grant T-048360.
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appears in step k then the payoff X is 2k and the probability of this event
is 2−k:

P{X = 2k} = 2−k. (1)

The distribution function of the gain is

F (x) = P{X ≤ x} =

{
0, if x < 2 ,
1− 1

2blog2 xc
= 1− 2{log2 x}

x , if x ≥ 2 ,
(2)

where bxc is the usual integer part of x, {x} stands for the fractional part
and log2 denotes the logarithm with base 2

Since E{X} = ∞, this game has delicate properties (cf. Bernoulli [2]).
In the literature, usually the repeated St. Petersburg game (called iterated
St. Petersburg game, too) means multi-period game such that it is a sequence
of simple St. Petersburg games, where in each round the player invests 1$.
Let Xn denote the payoff for the n-th simple game. Assume that the se-
quence {Xn}∞n=1 is i.i.d. After n rounds the player’s gain in the repeated
game is

∑n
i=1Xi, then Feller [12] proved that

lim
n→∞

∑n
i=1Xi

n log2 n
= 1

in probability.
In Section 2 we revisit the a.s. properties of the repeated St. Petersburg

game, in Section 3 we investigate the limit distributions of the truncated
sums under different truncation levels. This analysis allow us to understand
‘where the important things happen’. In Section 4 we show the consequences
for sequential portfolio games with fair St. Petersburg components, while
Section 5 contains some further refinements concerning the asymptotics.

2 Almost sure properties

Chow and Robbins [4] and Adler [1] proved that

lim inf
n→∞

∑n
i=1Xi

n log2 n
= 1 a.s.

and

lim sup
n→∞

∑n
i=1Xi

n log2 n
=∞ a.s.
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For the sum with the largest payoff withheld, one has that

lim
n→∞

∑n
i=1Xi −max1≤i≤nXi

n log2 n
= 1

a.s. (cf. Csörgő and Simons [11]).

Theorem 1 For c > 2 let denote X(c) the St. Petersburg random variable
cut at c, that is

X(c) =
{
X, if X ≤ c,
c, if X > c.

Introduce the notation S
(c)
n =

∑n
k=1X

(c)
k for the sums. For any ε > 0, we

have that

P

{∣∣∣∣∣S(n)
n − E{S(n)

n }
n log2 n

∣∣∣∣∣ > ε

}
< 2n4−ε ln lnn log2 e.

Proof. For any λ > 0, we apply the Chernoff bounding technique:

P

{∑n
i=1(X(n)

i − E{X(n)
i })

n log2 n
> ε

}
= P

{
n∑
i=1

(X(n)
i − E{X(n)

i }) > εn log2 n

}

≤
E
{
eλ
∑n
i=1(X

(n)
i −E{X(n)

i })
}

eλεn log2 n

=
E
{
eλ(X

(n)
1 −E{X(n)

1 })
}n

eλεn log2 n
.

For any k ≥ 2, we have that

E
{

(X(n)
1 )k

}
=

blog2 nc∑
i=1

2ki2−i + 2k log2 n
∞∑

i=blog2 nc+1

2−i

=
blog2 nc∑
i=1

2(k−1)i + 2k log2 n2−blog2 nc

≤ 3nk−1,

while for k = 1 we have

E
{
X

(n)
1

}
≤ log2 n+ 1 .
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If I denotes the indicator function then using the inequality

E
[(
X

(n)
1 − EX(n)

1

)k]
≤ E

[
I{X(n)

1 >EX(n)
1 }

(
X

(n)
1

)k]
+ E

[
I{X(n)

1 ≤EX(n)
1 }(EX

(n)
1 )k

]
≤ E

[(
X

(n)
1

)k]
+ (log2 n+ 1)k

≤ 4nk−1 ,

we obtain

E
{
eλ(X

(n)
1 −E{X(n)

1 })
}

=
∞∑
k=0

E

{
(λ(X(n)

1 − E{X(n)
1 }))k

k!

}

= 1 +
∞∑
k=2

E

{
(λ(X(n)

1 − E{X(n)
1 }))k

k!

}

≤ 1 +
∞∑
k=2

E
{
λk4nk−1

k!

}
,

and so

E
{
eλ(X

(n)
1 −E{X(n)

1 })
}
≤ 1 +

4
n

∞∑
k=0

E
{
λknk

k!

}
= 1 +

4
n
eλn.

Thus, the choice λ = ln lnn
n implies that

P

{∑n
i=1(X(n)

i − E{X(n)
i })

n log2 n
> ε

}
≤

(1 + 4
ne

λn)n

eλεn log2 n

≤ e4eλn

eλεn log2 n

≤ e4 lnn

eln lnnε log2 n

= n4−ε ln lnn log2 e.

In the same way we get that

P

{∑n
i=1(E{X(n)

i } −X
(n)
i )

n log2 n
> ε

}
≤ n4−ε ln lnn log2 e,
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therefore

P

{∣∣∣∣∣
∑n

i=1(X(n)
i − E{X(n)

i })
n log2 n

∣∣∣∣∣ > ε

}
< 2n4−ε ln lnn log2 e.

This theorem and the Borel – Cantelli lemma imply that

lim
n→∞

∑n
i=1X

(n)
i

n log2 n
= 1 a.s.

We can achieve some asymptotic results for Sn − S(n)
n , where Sn = X1 +

· · ·+Xn stands for the whole sum. Writing

Sn − S(n)
n =

n∑
i=1

(Xi −min{Xi, n}) =
n∑
i=1

(Xi − n)+ ,

where x+ = max{x, 0} stands for the positive part of x, Feller’s weak law
and Theorem 1 imply that∑n

i=1(Xi − n)+

n log2 n
→ 0 in probability,

while the almost sure lim inf and lim sup results have the consequences

lim inf
n→∞

∑n
i=1(Xi − n)+

n log2 n
= 0 a.s., and

lim sup
n→∞

∑n
i=1(Xi − n)+

n log2 n
=∞ a.s.

3 Limit distribution properties

As in the previous section, let X1, X2, . . . be independent St. Petersburg
random variables and let denote Sn = X1 + · · ·+Xn its partial sums. Since
the bounded oscillating function 2{log2 x} in the numerator of (2) is not slowly
varying at infinity, by the classical Doeblin – Gnedenko criterion (cf. [13]) the
underlying St. Petersburg distribution is not in the domain of attraction of
any stable law. That is there is no asymptotic distribution for (Sn− cn)/an,
in the usual sense, whatever the centering and norming constants are. This
is where the main difficulty lies for the St. Petersburg games.

However, asymptotic distributions do exist along subsequences of the
natural numbers. Martin-Löf [16] ‘clarified the St. Petersburg paradox’,
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showing that S2k/2k − k converge in distribution, as k →∞. It turned out
in [8] that there are continuum different types of asymptotic distributions of
Sn/n− log2 n along different subsequences of N. As Csörgő wrote [6] there
are continuum many different clarification of the St. Petersburg paradox.
In order to state the necessary and sufficient condition for the existence of
the limit, we introduce the positional parameter γn = n/2dlog2 ne ∈ (1/2, 1],
which shows the position of n between two consecutive powers of 2. We
say that a sequence {λn}∞n=1 circularly converge to λ ∈ (1/2, 1], λn

cir−→λ, if
λn → λ ∈ (1/2, 1] in the usual sense, or λn → 1/2, or {λn}∞n=1 has exactly
two limit points: 1 and 1/2. In the latter two cases the circular limit is
defined to be 1. In this terminology, the theorem of Csörgő and Dodunekova
[8] states that Snk/nk− log2 nk converges in distribution to a nondegenerate

limit as k →∞, if and only if γnk = nk/2dlog2 nke cir−→γ. In this case the limit
random variable Wγ , γ ∈ (1/2, 1] has characteristic function

gγ(t) = E
(
eitWγ

)
=
∫ ∞
−∞

eitx dGγ(x) = eyγ(t), t ∈ R,

and distribution function Gγ(x) = P{Wγ ≤ x}, x ∈ R, where

yγ(t) = itsγ +
−∞∑
l=0

(
exp

{
it2l

γ

}
− 1− it2l

γ

)
γ

2l
+
∞∑
l=1

(
exp

{
it2l

γ

}
− 1
)
γ

2l

= exp
{
it [sγ + uγ ] +

∫ ∞
0

(
eitx − 1− itx

1 + x2

)
dRγ(x)

}
,

with finite constants sγ = − log2 γ and

uγ =
∞∑
l=1

γ2

γ2 + 4l
−
∞∑
l=0

1
1 + γ24l

and right-hand-side Lévy function

Rγ(x) = − γ

2blog2(γx)c = − γ

2blog2(γx)c = −2{log2(γx)}

x
, x > 0.

From this form, it is clear that Wγ is a semistable random variable with
characteristic exponent 1.

Moreover, it turned out that a so-called merging theorem holds: Csörgő
[5] showed that

sup
x∈R

∣∣∣∣P{Snn − log2 n ≤ x
}
−Gγn(x)

∣∣∣∣→ 0. (3)
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We note that this behavior holds in a more general setup when the under-
lying random variables are from the domain of geometric partial attraction
of a semistable law, see Csörgő, Megyesi [10]. For more precise asymptotics
for the St. Petersburg sums we refer to Csörgő [5], [7] and Csörgő, Kevei [9].

Now we turn to the asymptotic behavior of the sums of the truncated
variables, under different truncation levels. The following two theorems say
that in some sense the exact truncation is at level n, since in this case both
the truncated variables, both the truncations shows the same limit behavior
as the whole sums.

First we consider the truncations. Also notice the analogue of this the-
orem and the lim inf and lim sup results at the end of the previous section.

Theorem 2 The normalized sum∑n
i=1(Xi − n)+

n

converges in distribution along a subsequence {nk}∞k=1 ⊂ N to a nondegen-

erate limit, if and only if γnk
cir−→γ as k → ∞, for some γ ∈ (1/2, 1] and in

this case the limit variable Yγ has characteristic function

E(eitYγ ) = exp
{∫ ∞

0

(
eitx − 1− itx

1 + x2

)
dQ1

γ(x)
}
,

where

Q1
γ(x) = −2{log2[γ(x+1)]}

x+ 1
.

Proof. According to (2) the distribution function of one summand is

Fn(x) = P
{

(Xi − n)+

n
≤ x

}
= P{Xi ≤ n(x+ 1)} = 1− 1

2blog2(n(x+1))c ,

for x ≥ 0, and 0 elsewhere. By Theorem 25.1 in [13],
∑n

i=1(Xi−n)+/n−An
converges in distribution along the subsequence {nk}, for some appropriate
centering sequence An, if and only if

nk [1− Fnk(x)] = nk
2{log2(nk(x+1))}

2log2(nk(x+1))

=
1

x+ 1
2{log2(nk(x+1))} → −R(x) (4)
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in every continuity point of R, and

lim
ε→0

lim sup
k→∞

nk

∫
|x|<ε

x2 dFnk(x) = 0 .

Here the right-sided Lévy function R is a non-decreasing right-continuous
function, for which limx→∞R(x) = 0 and

∫ ε
0 x

2dR(x) <∞ for every ε > 0.
In this case the centering constant can be chosen as An = n

∫
|x|<τ xdFn(x),

τ > 0.
The latter condition is trivially hold along the whole sequence of the

natural numbers, since

n

∫
|x|<ε

x2 dFn(x) ≤ ε2n

∫
0<x<ε

dFn(x) ≤ ε2n[1− Fn(0)] ≤ 2 ε2.

Similar calculation shows that we may choose An ≡ 0.
It is easy to check that (4) holds if and only if γnk

cir−→γ for some γ ∈
(1/2, 1], and in this case Q1

γ has the desired form.

Exactly the same way we can prove a limit theorem for the sum S
(n)
n of

the truncated variables. We omit the proof.

Theorem 3 The centered and weighted sum

S
(nk)
nk

nk
− log2 nk

has a nondegenerate limit, if and only if γnk
cir−→γ as k → ∞, for some

γ ∈ (1/2, 1], and in this case the characteristic function of the limit variable
Zγ is

E(eitZγ ) = exp
{∫ ∞

0

(
eitx − 1− itx

1 + x2

)
dQ2

γ(x)
}
,

where

Q2
γ(x) =

{
−2{log2(γx)}

x , if x < 1 ,
0, otherwise.

Notice that if we define Q1
γ(x) = 0 on (−1, 0], then Q1

γ(x− 1) +Q2
γ(x) =

Rγ(x), x > 0.
Next we investigate the asymptotic normality of the truncated variables

under general truncation. Theorem 3 says that truncation at n is not enough
for the existence of a usual limit. According to the following theorem a
slightly stronger truncation implies asymptotic normality. In a very informal
way these three theorems together show that the interesting things happen
around n.
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Theorem 4 The asymptotic normality

S
(cn)
n − ES(cn)

n√
VarS(cn)

n

D−→ N(0, 1)

holds, if and only if cn/n→ 0.

Proof. We use the Lindeberg – Lévy central limit theorem, which says
that the distributional convergence

S
(cn)
n − ES(cn)

n√
VarS(cn)

n

D−→ N(0, 1)

holds, if and only if Ln(ε)→ 0 for each ε > 0, where

Ln(ε) =
n

s2
n

∫
{|X(cn)−EX(cn)|>εsn}

(X(cn) − EX(cn))2 dP ,

and s2
n = VarS(cn)

n .
To exclude trivial cases, we assume that cn →∞.
First we show the sufficiency part, that is we assume that cn/n→ 0. For

the second moment of a truncated variable we have

E
{[
X(c)

]2
}

=
blog2 cc∑
k=1

1
2k

22k +
1

2blog2 cc
c2 = 2

(
2blog2 cc − 1

)
+ c2{log2 c}

=
(

21−{log2 c} + 2{log2 c}
)
c− 2. (5)

So for the variance we obtain

s2
n = VarS(cn)

n = nVarX(cn) = ncn

(
21−{log2 cn} + 2{log2 cn} + o(1)

)
,

where o(1) → 0 as n → ∞. Therefore, using that 2x + 21−x ∈ [2
√

2, 3] for
x ∈ [0, 1], and the assumption cn/n → 0, we obtain that cn/sn → 0. Since
we cut at cn, in this case the domain of integration in the definition of Ln(ε)
will be empty for n large enough, so clearly Ln(ε)→ 0, for every ε > 0.

For the converse we indirectly assume that cn/n 6→ 0. This means that
we can choose an ε0 > 0 and a subsequence {nk}∞k=1 ⊂ N, for which cnk/nk >
ε0. The same asymptotic as in the previous part of the proof shows that
cnk/snk > ε0/2 = ε, for k large enough.
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The asymptotic order of the expectation log cn is negligible to the vari-
ance cn, therefore easy computation shows that instead of the integral∫

{|X(cn)−EX(cn)|>εsn}
(X(cn) − EX(cn))2 dP

we may investigate ∫
{X(cn)>εsn}

(X(cn))2 dP .

Writing nk instead of n, the latter can be computed as

=
blog2 cnkc∑

j=blog2(εsnk )c+1

2j + c2
nk

P{X > cnk}

= cnk

(
21−{log2 cnk} + 2{log2 cnk}

)
− 2− (εsnk21−{log2(εsnk )} − 2)

= cnk

(
21−{log2 cnk} + 2{log2 cnk}

)
− εsnk21−{log2(εsnk )} .

Multiplying by nk/s
2
nk

, it is clear that the first term converges to 1, while
the second cannot converge to 1 for all ε > 0. So Ln(ε) does not converge to
0, that is Lindeberg’s condition fails, and the theorem is completely proved
now.

Finally, as a counterpart of the previous theorem we note that if the
truncation level cn is asymptotically greater than n, that is cn/n→∞, then
for the sum of the truncations we have∑n

i=1(Xi − cn)+

n
→ 0

in probability.

4 Growth rate of sequential St. Petersburg port-
folio games

According to the previous results
∑n

i=1Xi ≈ n log2 n. Györfi and Kevei [14]
introduced sequential St. Petersburg game and sequential St. Petersburg
portfolio game, having exponential growth. The sequential St. Petersburg
game means that the player starts with initial capital C0 = 1$, and there
is a sequence of simple St. Petersburg games, and for each simple game the
player reinvests his capital. If Cn−1 is the capital after the (n−1)-th simple
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game then the invested capital is Cn−1/4, while 3Cn−1/4 is the proportional
cost of the simple game with commission factor c = 3/4. It means that after
the n-th round the capital is

Cn = Cn−1Xn/4 =
n∏
i=1

(Xi/4).

Because of its multiplicative definition, Sn has exponential trend:

Cn = 2nWn ≈ 2nW ,

with average growth rate Wn := 1
n log2Cn and with asymptotic average

growth rate W := limn→∞
1
n log2Cn. The strong law of large numbers

implies that

W = lim
n→∞

1
n

n∑
i=1

log2Xi/4 = E{log2X1/4} = 0,

i.e., the growth rate of this sequential game is 0. In the sequel, the sequential
game with payoff X1/4 is called fair.

Using the model of constantly rebalanced portfolio (CRP) one can achieve
positive growth rate out of financial instruments of zero growth rate such
that the sequential portfolio game is operating on several simple games and
cash, and in each round of the games the player rebalance his wealth ac-
cording to a portfolio. The aim is to achieve the best possible growth rate
of the wealth. In the model of log-optimal portfolio theory, one can access d
fair St. Petersburg component and cash and a portfolio vector is denoted by
b = (b(1), . . . , b(d+1)). The j-th component b(j) of b denotes the proportion
of the investor’s capital invested in financial instrument j (j ≤ d), while
b(d+1) denotes the weight of the cash. We assume that the portfolio vector
b has nonnegative components sum up to 1. The set of portfolio vectors is
denoted by

∆d+1 =

b = (b(1), . . . , b(d+1)); b(j) ≥ 0,
d+1∑
j=1

b(j) = 1

 .

The behavior of the market is given by the sequence of return vectors
{xn} as follows:

xn = (x(1)
n , . . . , x(d)

n , 1)
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such that the j-th component x(j)
n of the return vector xn denotes the amount

obtained after investing a unit capital in the j-th financial instrument on
the n-th round (1 ≤ j ≤ d).

In case of CRP we fix a portfolio vector b ∈ ∆d+1. At the beginning
of the first round the initial capital C0 = 1 such that b(j) is invested into
financial instrument j, and it results in return b(j)x

(j)
1 , therefore at the end

of the first round the investor’s wealth becomes

C1 =
d+1∑
j=1

b(j)x
(j)
1 = 〈b , x1〉 ,

where 〈· , ·〉 denotes inner product. For the second round, C1 is the new
initial capital

C2 = C1 · 〈b , x2〉 = 〈b , x1〉 · 〈b , x2〉 .

By induction, for the round n the initial capital is Cn−1, therefore

Cn = Cn−1 〈b , xn〉 =
n∏
i=1

〈b , xi〉 .

The average growth rate of this portfolio selection is

1
n

log2Cn =
1
n

n∑
i=1

log2 〈b , xi〉 .

If the market process {Xi} is memoryless, i.e., it is a sequence of inde-
pendent and identically distributed (i.i.d.) random return vectors then the
best constantly rebalanced portfolio (BCRP) is the log-optimal portfolio:

b∗ := arg max
b∈∆d+1

E{log2 〈b , X1〉}.

This optimality means that if C∗n = Cn(b∗) denotes the capital after round
n achieved by a log-optimum portfolio strategy b∗, then for any portfolio
strategy b with finite E{log2 〈b , X1〉} and with capital Cn = Cn(b) and for
any memoryless market process {Xn}∞n=1,

lim
n→∞

1
n

log2Cn ≤ lim
n→∞

1
n

log2C
∗
n almost surely

and maximal asymptotic average growth rate is

lim
n→∞

1
n

log2C
∗
n = W ∗ := E{log2 〈b∗ , X1〉} a.s.
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(cf. Breiman [3] and Kelly [15]).
Consider the portfolio game, where a fraction of the capital is invested

in simple fair St. Petersburg games and the rest is kept in cash, i.e., it is a
CRP problem with the return vector

X = (X(1), . . . , X(d), X(d+1)) = (X1/4, . . . , Xd/4, 1)

(d ≥ 1) such that the first d i.i.d. components of the return vector X are
fair St. Petersburg payoffs, while the last component is the cash. The main
aim is to calculate the largest growth rate W ∗d .

Györfi and Kevei [14] proved that, for d = 1, b∗ = (0.385, 0.615) and,
for d = 2, b∗ = (0.364, 0.364, 0.272). For d ≥ 3, the best portfolio is the
uniform portfolio such that the cash has zero weight:

b∗ = (1/d, . . . , 1/d, 0)

and the asymptotic average growth rate is

W ∗d = E

{
log2

(
1
4d

d∑
i=1

Xi

)}
.

Here are the first few values:

d 1 2 3 4 5 6 7 8
W ∗d 0.149 0.289 0.421 0.526 0.606 0.669 0.721 0.765

Table 1: Numerical results

Györfi and Kevei [14] proved that

log2

Sn
n log2 n

→ 0

in L1, which implies that

W ∗d = E

{
log2

(
1
4d

d∑
i=1

Xi

)}

= E
{

log2

Sd
d log2 d

}
+ log2 log2 d− 2 ≈ log2 log2 d− 2

such that

− 0.8
ln 2

1
log2 d

≤W ∗d − log2 log2 d+ 2 ≤ log2 log2 d+ 4
ln 2 log2 d

.
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Next we slightly extend this asymptotics which implies that

W ∗d ≈ log2 log2 d− 2 +
log2 log2 d

ln 2 log2 d
.

Theorem 5 We have

0.16 + o(1)
log2 n

≤ E
{

log2

Sn
n log2 n

}
− log2 log2 n

ln 2 log2 n
≤ 2.52 + o(1)

log2 n
.

From this theorem we get that

0.16 ≤ log2 n

(
E
{

log2

Sn
n log2 n

}
− log2 log2 n

ln 2 log2 n

)
≤ 2.52.

Introduce the notation

∆n := log2 n

(
E
{

log2

Sn
n log2 n

}
− log2 log2 n

ln 2 log2 n

)
= log2 n

(
E {log2 Sn} − log2 n− log2 log2 n−

log2 log2 n

ln 2 log2 n

)
.

We conjecture that the limit

c := lim
n→∞

∆n

exists. In order to prove or disprove it, we performed some simulations.
Table 2 contains some values of E{log2 Sn}, Var (log2 Sn) (which goes to 0,
according to Remark 2), ∆n and W ∗n such that, for each n, there were 20000

n 8 16 32 64
log2 2n 4 5 6 7

E{log2 Sn} 5.76 6.97 8.17 9.35
Var (log2 Sn) 1.56 1.40 1.20 1.10

∆n 1.24 1.02 0.92 0.85
W ∗n = E{log2 Sn} − log2 n− 2 0.76 0.97 1.17 1.35

E{log2 S
(cn)
n } 5.35 6.69 7.92 9.13

Var (log2 S
(cn)
n ) 0.31 0.36 0.35 0.32

Table 2: Simulation results
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runs. Since Sn ≥ 2n, we include log2 2n, too. Notice that the exact value of
W ∗8 in Table 1 and the simulated value in Table 2 are close to each other.
In addition, we included in Table 2 values of E{log2 S

(cn)
n }, Var (log2 S

(cn)
n )

with cn = n log2 n, too.
In order to prove Theorem 5, apply the decomposition

log2

Sn
n log2 n

= log2

Sn

S
(cn)
n

+ log2

S
(cn)
n

n log2 n
,

where S(cn)
n is defined in Theorem 1 with cn = n log2 n. Next we formulate

bounds for the two terms on the right hand side.
Concerning the first term one has that

0 ≤ E

{
log2

Sn

S
(cn)
n

}
≤ 2n
cn ln 2

(cf. Györfi and Kevei [14]).

Proposition 1 For cn = n log2 n we have

1 + o(1)
log2 n

≤ E

{
log2

Sn

S
(cn)
n

}
≤ 2 + o(1)

log2 n
.

Proof. If X1 ≤ cn, . . . , Xn ≤ cn then Sn = S
(cn)
n , therefore

E

{
log2

Sn

S
(cn)
n

}
=

n∑
k=1

(
n

k

)
E

{
log2

Sn

S
(cn)
n

I{X1>cn,...,Xk>cn}I{Xk+1≤cn,...,Xn≤cn}

}
.

For k = 1

nE

{
log2

Sn

S
(cn)
n

I{X1>cn}I{X2≤cn,...,Xn≤cn}

}

= nE
{

log2

X1 +
∑n

i=2Xi

cn +
∑n

i=2Xi
I{X1>cn}I{X2≤cn,...,Xn≤cn}

}
= n

∫ ∞
0

P
{

log2

X1 +
∑n

i=2Xi

cn +
∑n

i=2Xi
I{X1>cn}I{X2≤cn,...,Xn≤cn} ≥ x

}
dx

= n

∫ ∞
0

P
{
X1 +

∑n
i=2Xi

cn +
∑n

i=2Xi
≥ 2x, X1 > cn, X2 ≤ cn, . . . , Xn ≤ cn

}
dx

= n

∫ ∞
0

P

{
X1 ≥ 2xcn + (2x − 1)

n∑
i=2

Xi, X2 ≤ cn, . . . , Xn ≤ cn

}
dx. (6)
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Concerning the lower bound of the proposition, (2) implies that

E

{
log2

Sn

S
(cn)
n

}

≥ nE

{
log2

Sn

S
(cn)
n

I{X1>cn}I{X2≤cn,...,Xn≤cn}

}

= n

∫ ∞
0

E

{
P

{
X1 ≥ 2xcn + (2x − 1)

n∑
i=2

Xi

∣∣∣X2 ≤ cn, . . . , Xn ≤ cn

}}
dx

×P {X2 ≤ cn, . . . , Xn ≤ cn}

≥ n

∫ ∞
0

E

{
1

2xcn + (2x − 1)
∑n

i=2X
(cn)
i

∣∣∣X2 ≤ cn, . . . , Xn ≤ cn

}
dx

× (1− 2/cn)n−1 ,

therefore Jensen’s inequality implies that

E

{
log2

Sn

S
(cn)
n

}

≥ n

∫ ∞
0

1

2xcn + (2x − 1)
∑n

i=2 E
{
X

(cn)
i | X2 ≤ cn, . . . , Xn ≤ cn

}dx
×(1 + o(1))

≥ n

∫ ∞
0

1
2xcn + (2x − 1)n log2 cn

dx(1 + o(1))

≥ n

cn

∫ ∞
0

1
2 · 2x − 1

dx(1 + o(1))

=
1 + o(1)
log2 n

,

where the last equality follows from∫ ∞
0

1
2 · 2x − 1

dx = 1.

Concerning the upper bound, (2) and (6) imply that

nE

{
log2

Sn

S
(cn)
n

I{X1>cn}I{X2≤cn,...,Xn≤cn}

}

≤ n

∫ ∞
0

E

{
2

2xcn + (2x − 1)
∑n

i=2X
(cn)
i

}
dx.

16



Using Fubini’s theorem we have∫ ∞
0

E

{
2

2xcn + (2x − 1)
∑n

i=2X
(cn)
i

}
dx

= E

{∫ ∞
0

2

2xcn + (2x − 1)
∑n

i=2X
(cn)
i

dx

}
.

For computing the inner integral notice that
∫

(ey− 1)−1dy = ln(ey− 1)− y,
and so straightforward calculation implies that∫ ∞

0

dx

c2x − d
=

1
d

log2

c

c− d
.

Therefore we obtain∫ ∞
0

E

{
2

2xcn + (2x − 1)
∑n

i=2X
(cn)
i

}
dx = E

{
2

S
(cn)
n−1

log2

(
1 +

S
(cn)
n−1

cn

)}

=
2

ln 2
E

{
1

S
(cn)
n−1

ln

(
1 +

S
(cn)
n−1

cn

)}

By Feller’s weak law

P

{∣∣∣∣∣S
(cn)
n−1

cn
− 1

∣∣∣∣∣ > ε

}
→ 0.

Let An(ε) = {|S(cn)
n−1/cn − 1| ≤ ε}. Using that [ln(1 + x)]/x ≤ 1, x > 0, and

integrating on An(ε) and on An(ε)c we obtain

1
cn

ln(2− ε) + o(1)
1 + ε

≤ E

{
1

S
(cn)
n−1

ln

(
1 +

S
(cn)
n−1

cn

)}
≤ 1
cn

ln(2 + ε) + o(1)
1− ε

.

Since this holds for every ε > 0 we have that

n

∫ ∞
0

E

{
2

2xcn + (2x − 1)
∑n

i=2X
(cn)
i

}
dx =

2 + o(1)
log2 n

.

17



Thus,

E

{
log2

Sn

S
(cn)
n

}

=
n∑
k=1

(
n

k

)
E

{
log2

Sn

S
(cn)
n

I{X1>cn,...,Xk>cn}I{Xk+1≤cn,...,Xn≤cn}

}

≤ 2 + o(1)
log2 n

+
n∑
k=2

(
n

k

)
E

{
log2

∑k
i=1Xi +

∑n
i=k+1Xi

kcn +
∑n

i=k+1Xi
I{X1>cn,...,Xk>cn}

}

≤ 2 + o(1)
log2 n

+
n∑
k=2

(
n

k

)
E

{
log2

∑k
i=1Xi

kcn
I{X1>cn,...,Xk>cn}

}

=
2 + o(1)
log2 n

+
n∑
k=2

(
n

k

)
E

{
log2

∑k
i=1Xi

kcn

∣∣∣X1 > cn, . . . , Xk > cn

}
×P {X1 > cn, . . . , Xk > cn} .

From the union bound and from (2) we get that

E

{
log2

∑k
i=1Xi

kcn

∣∣∣X1 > cn, . . . , Xk > cn

}

=
∫ ∞

0
P

{
log2

∑k
i=1Xi

kcn
≥ x

∣∣∣X1 > cn, . . . , Xk > cn

}
dx

≤
∫ ∞

0
P
{
∪ki=1{Xi ≥ 2xcn}

∣∣∣X1 > cn, . . . , Xk > cn

}
dx

≤ k

∫ ∞
0

P {X1 ≥ 2xcn | X1 > cn} dx

≤ k

∫ ∞
0

2/(2xcn)
1/cn

dx = k
2

ln 2
,

therefore

n∑
k=2

(
n

k

)
E

{
log2

∑k
i=1Xi

kcn
I{X1>cn,...,Xk>cn}

}
≤

n∑
k=2

(
n

k

)
k

2
ln 2

(
2
cn

)k
≤

n∑
k=2

(
2

log2 n

)k 2
ln 2

= o(1/ log2 n),

and the upper bound in the proposition is proved.
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The following remark is a kind of probabilistic essence of the St.Peters-
burg distribution, and also gives another proof for the upper bound in the
previous proposition.

Remark 1 For each c > 0 we have that

E
{

log2

Sk
c

∣∣∣X1 > c, . . . ,Xk > c

}
≤ E {log2 Sk} .

Proof. The idea behind the simple proof is that a St. Petersburg random
variable X can be represented as 2Y , where Y is the memoryless discrete
random variable, that is a geometric random variable with parameter 1/2,
P{Y = k} = 2−k, k = 1, 2, . . .. We have

E
{

log2

Sk
c

∣∣∣X1 > c, . . . ,Xk > c

}
=

∑
ji≥blog2 cc+1

log2

∑k
i=1 2ji

c

1∏k
i=1 2ji

2kblog2 cc

=
∑

ji≥blog2 cc+1

log2

(
k∑
i=1

2ji−log2 c

)
1∏k

i=1 2ji−blog2 cc

≤
∑
ji≥1

log2

(
k∑
i=1

2ji
)

1∏k
i=1 2ji

= E {log2 Sk} ,

which proves our statement.

Proposition 2 We have

−0.84 + o(1)
log2 n

≤ E

{
log2

S
(cn)
n

n log2 n

}
− log2 log2 n

ln 2 log2 n
≤ 0.52 + o(1)

log2 n
.

Proof. Concerning the upper bound, we apply the inequality

ln z ≤ (z − 1)− (z − 1)2

2
+

(z − 1)3

3
, z > 0,
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which implies that

E

{
log2

S
(cn)
n

n log2 n

}
=

1
ln 2

E

{
ln

S
(cn)
n

n log2 n

}

≤ 1
ln 2

E

(
S

(cn)
n

n log2 n
− 1

)
− 1

2
E

(
S

(cn)
n

n log2 n
− 1

)2

+
1
3

E

(
S

(cn)
n

n log2 n
− 1

)3
 . (7)

Easy computation shows that

E{X(c)} =
blog2 cc∑
k=1

1 + cP{X > c} = blog2 cc+
c

2blog2 cc

= log2 c+ 2{log2 c} − {log2 c},

therefore for the first order term in the inequality (7) we get the bound

E

{
S

(cn)
n

n log2 n
− 1

}
= E

{
X

(cn)
1

log2 n
− 1

}
≤

log2
cn
n + 1

log2 n
.

For the second order term in the inequality (7), (5) implies the bound

E

(
S

(cn)
n

n log2 n
− 1

)2

=
VarS(cn)

n +
(
ES(cn)

n − n log2 n
)2

n2 log2
2 n

≥ VarS(cn)
n

n2 log2
2 n

=
nVarX(cn)

1

n2 log2
2 n

=
E
{[
X(cn)

]2}− {E
[
X(cn)

]}2

n log2
2 n

≥
cn
(
21−{log2 cn} + 2{log2 cn}

)
− 2− (log2 cn + 1)2

n log2
2 n

≥ cn2
√

2− 2− (log2 cn + 1)2

n log2
2 n

.
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Concerning the third order term in the inequality (7), we get that

E
{[
X(c) − E

{
X(c)

}]3
}
≤ E

{[
X(c)

]3
}

=
blog2 cc∑
k=1

1
2k

23k +
1

2blog2 cc
c3

= 4
4blog2 cc − 1

3
+ c22{log2 c}

=

(
41−{log2 c}

3
+ 2{log2 c}

)
c2 − 4

3

≤ 7c2

3

and

E
{[
S(cn)
n − n log2 n

]3
}

= E
{[
S(cn)
n − ES(cn)

n + ES(cn)
n − n log2 n

]3
}

= E
[
S(cn)
n − ES(cn)

n

]3
+ 3E

[
S(cn)
n − ES(cn)

n

]2 (
ES(cn)

n − n log2 n
)

+
(
ES(cn)

n − n log2 n
)3

= nE
[
X(cn) − EX(cn)

]3
+ n3

(
log2

cn
n

+ 2{log2 cn} − {log2 cn}
)3

+3n2 E
[
X(cn) − EX(cn)

]2 (
log2

cn
n

+ 2{log2 cn} − {log2 cn}
)
,

which imply that

E

[
S

(cn)
n

n log2 n
− 1

]3

≤ 7c2
n

3n2 log3
2 n

+

(
log2

cn
n + 1

)3
log3

2 n
+ 9

cn
(
log2

cn
n + 1

)
n log3

2 n
,

where at the estimation of the last term we used (5). Summarizing these
inequalities we get the upper bound

E

{
log2

S
(cn)
n

n log2 n

}
≤ 1

ln 2

(
log2

cn
n + 1

log2 n
− cn2

√
2− 2− (log2 cn + 1)2

2n log2
2 n

+
7c2
n

9n2 log3
2 n

+

(
log2

cn
n + 1

)3
3 log3

2 n
+ 3

cn
(
log2

cn
n + 1

)
n log3

2 n

)
.
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Choose cn = n log2 n, then we have that

E

{
log2

S
(cn)
n

n log2 n

}
≤ 1

ln 2
log2 log2 n

log2 n
+

1−
√

2 + 7/9
ln 2 log2 n

+ o(1/ log2 n).

Concerning the lower bound, for fixed 0 < ε < 1, let bε be the solution
of the equation

ln(1− ε) = −ε− bεε2,

i.e.,

bε =
− ln(1− ε)− ε

ε2
,

then
lim
ε→0

bε = 1/2.

The definition of bε implies that, for all 1− ε ≤ z, we have

ln z ≥ (z − 1)− bε(z − 1)2.

Moreover, for z ≥ 2/ log2 n,

ln z ≥ −an,

where an = ln log2 n. These inequalities imply that, for z ≥ 2/ log2 n,

ln z ≥ (z − 1)− bε(z − 1)2 − anI{z<1−ε}. (8)

From inequality (8) we get the lower bound

E

{
log2

S
(cn)
n

n log2 n

}
≥ 1

ln 2

(
E{S(cn)

n }
n log2 n

− 1− bεE

(
S

(cn)
n

n log2 n
− 1

)2

−anP

{
S

(cn)
n

n log2 n
< 1− ε

})
. (9)

For the first term in the inequality (9) we obtain

E{S(cn)
n }

n log2 n
− 1 =

EX(cn) − log2 n

log2 n
≥

log2
cn
n + c∗

log2 n
,

where
c∗ = min

c
(2{log2 c} − {log2 c}) = 0.914.
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Using (5), for the second term in the inequality (9) we have

E

(
S

(cn)
n

n log2 n
− 1

)2

=
VarS(cn)

n +
(
ES(cn)

n − n log2 n
)2

n2 log2
2 n

≤ 3ncn + n2 (log2 cn − log2 n+ 1)2

n2 log2
2 n

=
3cn

n log2
2 n

+

(
log2

cn
n + 1

)2
log2

2 n
.

For the third term in the inequality (9) and for cn > n, Theorem 1 implies
that

P

{
S

(cn)
n

n log2 n
< 1− ε

}
≤ P

{
S

(n)
n

n log2 n
< 1− ε

}

= P

{
S

(n)
n − E{S(n)

n }
n log2 n

< 1− ε− E{S(n)
n }

n log2 n

}

= P

{
S

(n)
n − E{S(n)

n }
n log2 n

< 1− ε− nE{X(n)
1 }

n log2 n

}

≤ P

{
S

(n)
n − E{S(n)

n }
n log2 n

< −ε

}
≤ n4−ε ln lnn log2 e.

Summarizing these inequalities we get that

E

{
log2

S
(cn)
n

n log2 n

}

≥ 1
ln 2

E{S(cn)
n }

n log2 n
− 1− bεE

(
S

(cn)
n

n log2 n
− 1

)2

− anP

{
S

(cn)
n

n log2 n
< 1− ε

}
≥ 1

ln 2

(
log2

cn
n + c∗

log2 n
− bε

(
3cn

n log2
2 n

+

(
log2

cn
n + 1

)2
log2

2 n

)
− ann4−ε ln lnn log2 e

)
.
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Choose cn = n log2 n, then

E

{
log2

S
(cn)
n

n log2 n

}

≥ 1
ln 2

(
log2 log2 n+ c∗

log2 n
− 3bε

log2 n
− bε (log2 log2 n+ 1)2

log2
2 n

− ann4−ε ln lnn log2 e

)

=
log2 log2 n

ln 2 log2 n
+

c∗ − 3bε
ln 2 log2 n

+ o(1/ log2 n),

which implies the lower bound, since for small ε, bε ≈ 1/2.

5 Further refinements

Next we show that
log2

Sn
n log2 n

→ 0

in L2:

Theorem 6 We have that

E

{(
log2

Sn
n log2 n

)2
}

= O(1/ lnn).

Proof. Apply the notations of the previous section, then

E

{(
log2

Sn
n log2 n

)2
}

= E


(

log2

Sn

S
(cn)
n

+ log2

S
(cn)
n

n log2 n

)2


≤ 2 E


(

log2

Sn

S
(cn)
n

)2
+ 2 E


(

log2

S
(cn)
n

n log2 n

)2
 ,
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with cn = n log2 n. For the first term, (2) implies that

E


(

log2

Sn

S
(cn)
n

)2
 =

∫ ∞
0

2xP

{
log2

Sn

S
(cn)
n

> x

}
dx

≤
∫ ∞

0
2xP

{
∪ni=1{Xi > 2xX(cn)

i }
}
dx

≤
∫ ∞

0
2xnP

{
X1 > 2xX(cn)

1

}
dx

=
∫ ∞

0
2xnP {X1 > 2xcn} dx

≤
∫ ∞

0
2x

2n
2xcn

dx = O(1/ lnn).

Concerning the second term, for x > 1 we have that

lnx ≤ x− 1,

while for 2/ log2 n ≤ x ≤ 1 and ε = 1/2, (8) means that

lnx ≥ (x− 1)− b1/2(x− 1)2 − anI{x<1/2},

therefore

| lnx| ≤ |x− 1|+ (x− 1)2 + anI{x<1/2} ≤ 2|x− 1|+ anI{x<1/2}.

Thus,

(lnx)2 ≤ (2|x− 1|+ anI{x<1/2})
2 ≤ 8(x− 1)2 + 2a2

nI{x<1/2}.

These two bounds imply that, for x ≥ 2/ log2 n, one has

(lnx)2 ≤ 8(x− 1)2 + 2a2
nI{x<1/2}.

Let’s apply the inequalities in the proof of Proposition 2, then

E


(

log2

S
(cn)
n

n log2 n

)2


≤ 8
(ln 2)2

E


(

S
(cn)
n

n log2 n
− 1

)2
+

2a2
n

(ln 2)2
P

{
S

(cn)
n

n log2 n
< 1/2

}
= O(1/ lnn).
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Remark 2 Theorem 6 implies the surprising limit:

Var (log2 Sn) = Var
(

log2

Sn
n log2 n

)
≤ E

{(
log2

Sn
n log2 n

)2
}
→ 0.

Figures 1, 2, 3 and 4 show histograms for log2 Sn and for log2 S
(cn)
n with

cn = n log2 n. The main advantage of the log-scale is that from these figures
we can observe that these histograms are approximately the mixtures of two
distributions. One component is nearly normal, and the other one has small
weight with fluctuation of period 1. This second component of the mixture
is not convergent.

It is interesting to note that asymptotic normality still does not hold for
log2 Sn. We have

P

{
log2 Sn − E log2 Sn√

Var log2 Sn
≤ x

}
= P

{
Sn ≤ 2x

√
Var log2 Sn+E log2 Sn

}
= P

{
Sn
n
− log2 n ≤ log2 n

(
2hn(x) − 1

)}
,

where

hn(x) = x
√

Var log2 Sn + E log2 Sn − log2 n− log2 log2 n,

and since Var log2 Sn = O(1/ lnn), hn(x)→ 0 for each fix x. Therefore

2hn(x) − 1 ∼ ln 2hn(x)

and we may continue writing

= P
{
Sn
n
− log2 n ≤ log2 n ln 2hn(x) + o(1)

}
= Gγn(log2 n ln 2hn(x)) + o(1),

where at the last equality we used (3). Since

hn(x) = x
√

Var log2 Sn +O(1/ log2 n) +
log2 log2 n

ln 2 log2 n
,

for every x ≥ 0 we have that hn(x) log2 n→∞, which means that the right
side goes to 1. That is for every x ≥ 0

P

{
log2 Sn − E log2 Sn√

Var log2 Sn
≤ x

}
→ 1,
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Figure 1: The histogram for log2 S8 and for log2 S
(24)
8
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Figure 2: The histogram for log2 S16 and for log2 S
(64)
16
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Figure 3: The histogram for log2 S32 and for log2 S
(160)
32
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Figure 4: The histogram for log2 S64 and for log2 S
(384)
64

30



so asymptotic normality does not hold.
Finally, we note that the same method shows that there is no limit distri-

bution for (log2 Sn − cn)/an whatever the centering and norming constants
are.
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