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Abstract. We investigate the performance of the constantly rebalanced
portfolios, when the random vectors of the market process {Xi} are inde-
pendent, and each of them distributed as (X(1), X(2), . . . , X(d), 1), d ≥ 1,
where X(1), X(2), . . . , X(d) are nonnegative iid random variables. Under
general conditions we show that the optimal strategy is the uniform:
(1/d, . . . , 1/d, 0), at least for d large enough. In case of St. Petersburg
components we compute the average growth rate and the optimal strat-
egy for d = 1, 2. In order to make the problem non-trivial, a commission
factor is introduced and tuned to result in zero growth rate on any in-
dividual St. Petersburg components. One of the interesting observations
made is that a combination of two components of zero growth can result
in a strictly positive growth. For d ≥ 3 we prove that the uniform strat-
egy is the best, and we obtain tight asymptotic results for the growth
rate.

1 Constantly rebalanced portfolio

Consider a hypothetical investor who can access d financial instruments (asset,
bond, cash, return of a game, etc.), and who can rebalance his wealth in each
round according to a portfolio vector b = (b(1), . . . , b(d)). The j-th component
b(j) of b denotes the proportion of the investor’s capital invested in financial
instrument j. We assume that the portfolio vector b has nonnegative components
and sum up to 1. The nonnegativity assumption means that short selling is not
allowed, while the latter condition means that our investor does not consume
nor deposit new cash into his portfolio, but reinvests it in each round. The set
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of portfolio vectors is denoted by

∆d =



b = (b(1), . . . , b(d)); b(j) ≥ 0,

d∑

j=1

b(j) = 1



 .

The behavior of the market is given by the sequence of return vectors {xn},
xn = (x(1)

n , . . . , x
(d)
n ), such that the j-th component x

(j)
n of the return vector xn

denotes the amount obtained after investing a unit capital in the j-th financial
instrument on the n-th round.

Let S0 denote the investor’s initial capital. Then at the beginning of the
first round S0b

(j)
1 is invested into financial instrument j, and it results in return

S0b
(j)
1 x

(j)
1 , therefore at the end of the first round the investor’s wealth becomes

S1 = S0

d∑

j=1

b
(j)
1 x

(j)
1 = S0 〈b1 , x1〉 ,

where 〈· , ·〉 denotes inner product. For the second round b2 is the new portfolio
and S1 is the new initial capital, so

S2 = S1 · 〈b2 , x2〉 = S0 · 〈b1 , x1〉 · 〈b2 , x2〉 .

By induction, for the round n the initial capital is Sn−1, therefore

Sn = Sn−1 〈bn , xn〉 = S0

n∏

i=1

〈bi , xi〉 . (1)

Of course the problem is to find the optimal investment strategy for a long
run period, that is to maximize Sn in some sense. The best strategy depends
on the optimality criteria. A naive attitude is to maximize the expected return
in each round. This leads to the risky strategy to invest all the money into
the financial instrument j, with EX

(j)
n = max{EX

(i)
n : i = 1, 2, . . . , n}, where

Xn = (X(1)
n , X

(2)
n , . . . , X

(d)
n ) is the market vector in the n-th round. Since the

random variable X
(j)
n can be 0 with positive probability, repeated application of

this strategy lead to quick bankrupt. The underlying phenomena is the simple
fact that E(Sn) may increase exponentially, while Sn → 0 almost surely. A more
delicate optimality criterion was introduced by Breiman [3]: in each round we
maximize the expectation E ln〈b,Xn〉 for b ∈ ∆d. This is the so-called log-
optimal portfolio, which is optimal under general conditions [3].

If the market process {Xi} is memoryless, i.e., it is a sequence of independent
and identically distributed (i.i.d.) random return vectors then the log-optimal
portfolio vector is the same in each round:

b∗ := arg max
b∈∆d

E{ln 〈b , X1〉}.
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In case of constantly rebalanced portfolio (CRP) we fix a portfolio vector
b ∈ ∆d. In this special case, according to (1) we get Sn = S0

∏n
i=1 〈b , xi〉, and

so the average growth rate of this portfolio selection is

1
n

ln Sn =
1
n

ln S0 +
1
n

n∑

i=1

ln 〈b , xi〉 ,

therefore without loss of generality we can assume in the sequel that the initial
capital S0 = 1.

The optimality of b∗ means that if S∗n = Sn(b∗) denotes the capital after
round n achieved by a log-optimum portfolio strategy b∗, then for any portfolio
strategy b with finite E{ln 〈b , X1〉} and with capital Sn = Sn(b) and for any
memoryless market process {Xn}∞1 ,

lim
n→∞

1
n

ln Sn ≤ lim
n→∞

1
n

ln S∗n almost surely

and maximal asymptotic average growth rate is

lim
n→∞

1
n

ln S∗n = W ∗ := E{ln 〈b∗ , X1〉} almost surely.

The proof of the optimality is a simple consequence of the strong law of large
numbers. Introduce the notation

W (b) = E{ln 〈b , X1〉}.

Then the strong law of large numbers implies that

1
n

ln Sn =
1
n

n∑

i=1

ln 〈b , Xi〉

=
1
n

n∑

i=1

E{ln 〈b , Xi〉}+
1
n

n∑

i=1

(ln 〈b , Xi〉 − E{ln 〈b , Xi〉})

= W (b) +
1
n

n∑

i=1

(ln 〈b , Xi〉 − E{ln 〈b , Xi〉})

→ W (b) almost surely.

Similarly,

lim
n→∞

1
n

ln S∗n = W (b∗) = max
b

W (b) almost surely.

In connection with CRP in a more general setup we refer to Kelly [8] and
Breiman [3].

In the following we assume that the i.i.d. random vectors {Xi}, have the
general form X = (X(1), X(2), . . . , X(d), X(d+1)), where X(1), X(2), . . . , X(d) are
nonnegative i.i.d. random variables and X(d+1) is the cash, that is X(d+1) ≡ 1,
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and d ≥ 1. Then the concavity of the logarithm, and the symmetry of the first
d components immediately imply that the log-optimal portfolio has the form
b = (b, b, . . . , b, 1 − db), where of course 0 ≤ b ≤ 1/d. When does b = 1/d
correspond to the optimal strategy; that is when should we play with all our
money? In our special case W has the form

W (b) = E

{
ln

(
b

d∑

i=1

X(i) + 1− bd

)}
.

Let denote Zd =
∑d

i=1 X(i). Interchanging the order of integration and differen-
tiation, we obtain

d

db
W (b) = E

{
d

db
ln

(
b

d∑

i=1

X(i) + 1− bd

)}
= E

{
Zd − d

bZd + 1− bd

}
.

For b = 0 we have W ′(0) = E(Zd) − d, which is nonnegative if and only if
E(X(1)) ≥ 1. This implies the intuitively clear statement that we should risk at
all, if and only if the expectation of the game is not less than one. Otherwise the
optimal strategy is to take all your wealth in cash. The function W (·) is concave,
therefore the maximum is in b = 1/d if W ′(1/d) ≥ 0, which means that

E
{

d

Zd

}
≤ 1 . (2)

According to the strong law of large numbers d/Zd → 1/E(X(1)) a.s. as d →∞,
thus under some additional assumptions for the underlying variables E(d/Zd) →
1/E(X(1)), as d → ∞. Therefore if E(X(1)) > 1, then for d large enough the
optimal strategy is (1/d, . . . , 1/d, 0).

In the latter computations we tacitly assumed some regularity conditions,
that is we can interchange the order of differentiation and integration, and that
we can take the L1-limit instead of almost sure limit. One can show that these
conditions are satisfied if the underlying random variables have strictly positive
infimum. We skip the technical details.

2 St.Petersburg game

2.1 Iterated St.Petersburg game

Consider the simple St.Petersburg game, where the player invests 1$ and a fair
coin is tossed until a tail first appears, ending the game. If the first tail appears
in step k then the the payoff X is 2k and the probability of this event is 2−k:

P{X = 2k} = 2−k. (3)

The distribution function of the gain is

F (x) = P{X ≤ x} =

{
0, if x < 2 ,

1− 1
2blog2 xc = 1− 2{log2 x}

x , if x ≥ 2 ,
(4)
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where bxc is the usual integer part of x and {x} stands for the fractional part.
Since E{X} = ∞, this game has delicate properties (cf. Aumann [1], Bernoulli

[2], Haigh [7], and Samuelson [10]). In the literature, usually the repeated St.
Petersburg game (called iterated St.Petersburg game, too) means multi-period
game such that it is a sequence of simple St.Petersburg games, where in each
round the player invests 1$. Let Xn denote the payoff for the n-th simple game.
Assume that the sequence {Xn}∞n=1 is i.i.d. After n rounds the player’s gain in
the repeated game is S̄n =

∑n
i=1 Xi, then

lim
n→∞

S̄n

n log2 n
= 1

in probability, where log2 denotes the logarithm with base 2 (cf. Feller [6]).
Moreover,

lim inf
n→∞

S̄n

n log2 n
= 1

a.s. and

lim sup
n→∞

S̄n

n log2 n
= ∞

a.s. (cf. Chow and Robbins [4]). Introducing the notation for the largest payoff

X∗
n = max

1≤i≤n
Xi

and for the sum with the largest payoff withheld

S∗n =
n∑

i=1

Xi −X∗
n = S̄n −X∗

n,

one has that
lim

n→∞
S∗n

n log2 n
= 1

a.s. (cf. Csörgő and Simons [5]).

2.2 Sequential St.Petersburg game

According to the previous results S̄n ≈ n log2 n. Next we introduce the sequential
St.Petersburg game, having exponential growth. The sequential St.Petersburg
game means that the player starts with initial capital S0 = 1$, and there is a
sequence of simple St.Petersburg games, and for each simple game the player
reinvests his capital. If S

(c)
n−1 is the capital after the (n− 1)-th simple game then

the invested capital is S
(c)
n−1(1 − c), while S

(c)
n−1c is the proportional cost of the

simple game with commission factor 0 < c < 1. It means that after the n-th
round the capital is

S(c)
n = S

(c)
n−1(1− c)Xn = S0(1− c)n

n∏

i=1

Xi = (1− c)n
n∏

i=1

Xi.
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Because of its multiplicative definition, S
(c)
n has exponential trend:

S(c)
n = 2nW (c)

n ≈ 2nW (c)
,

with average growth rate

W (c)
n :=

1
n

log2 S(c)
n

and with asymptotic average growth rate

W (c) := lim
n→∞

1
n

log2 S(c)
n .

Let’s calculate the the asymptotic average growth rate. Because of

W (c)
n =

1
n

log2 S(c)
n =

1
n

(
n log2(1− c) +

n∑

i=1

log2 Xi

)
,

the strong law of large numbers implies that

W (c) = log2(1− c) + lim
n→∞

1
n

n∑

i=1

log2 Xi = log2(1− c) + E{log2 X1}

a.s., so W (c) can be calculated via expected log-utility (cf. Kenneth [9]). A com-
mission factor c is called fair if

W (c) = 0,

so the growth rate of the sequential game is 0. Let’s calculate the fair c:

log2(1− c) = −E{log2 X1} = −
∞∑

k=1

k · 2−k = −2,

i.e., c = 3/4.

2.3 Portfolio game with one or two St.Petersburg components

Consider the portfolio game, where a fraction of the capital is invested in simple
fair St.Petersburg games and the rest is kept in cash, i.e., it is a CRP problem
with the return vector

X = (X(1), . . . , X(d), X(d+1)) = (X ′
1, . . . , X

′
d, 1)

(d ≥ 1) such that the first d i.i.d. components of the return vector X are of the
form

P{X ′ = 2k−2} = 2−k, (5)

(k ≥ 1), while the last component is the cash. The main aim is to calculate the
largest growth rate W ∗

d .
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Proposition 1. We have that W ∗
1 = 0.149 and W ∗

2 = 0.289.

Proof. For d = 1, fix a portfolio vector b = (b, 1 − b), with 0 ≤ b ≤ 1. The
asymptotic average growth rate of this portfolio game is

W (b) = E{log2 〈b , X〉} = E{log2(bX
′ + 1− b)} = E{log2(b(X/4− 1) + 1)}.

The function log2 is concave, therefore W (b) is concave, too, so W (0) = 0 (keep
everything in cash) and W (1) = 0 (the simple game is fair) imply that for all
0 < b < 1, W (b) > 0. Let’s calculate maxb W (b). We have that

W (b) =
∞∑

k=1

log2(b(2
k/4− 1) + 1) · 2−k

= log2(1− b/2) · 2−1 +
∞∑

k=3

log2(b(2
k−2 − 1) + 1) · 2−k.

Figure 1 shows the curve of the average growth rate of the portfolio game. The
function W (·) attains its maximum at b = 0.385, that is

b∗ = (0.385, 0.615) ,

where the growth rate is W ∗
1 = W (0.385) = 0.149. It means that if for each round

of the game one reinvests 38.5% of his capital such that the real investment is
9.6%, while the cost is 28.9%, then the growth rate is approximately 11%, i.e.,
the portfolio game with two components of zero growth rate (fair St.Petersburg
game and cash) can result in growth rate of 10.9%.

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 1. The growth rate for one St.Petersburg component
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Consider next d = 2. At the end of Section 1 we proved that the log-optimal
portfolio vector has the form b = (b, b, 1−2b), with 0 ≤ b ≤ 1/2. The asymptotic
average growth rate of this portfolio game is

W (b) = E{log2 〈b , X〉} = E{log2(bX
′
1 + bX ′

2 + 1− 2b)}
= E{log2(b((X1 + X2)/4− 2) + 1)}.

Figure 2 shows the curve of the average growth rate of the portfolio game.
Numerically we can determine that the maximum is taken at b = 0.364, so

b∗ = (0.364, 0.364, 0.272) ,

where the growth rate is W ∗
2 = W (0.364) = 0.289.

0.1 0.2 0.3 0.4 0.5

0.05

0.1

0.15

0.2

0.25

Figure 2. The growth rate for two St.Petersburg component

2.4 Portfolio game with at least three St.Petersburg components

Consider the portfolio game with d ≥ 3 St.Petersburg components. We saw that
the log-optimal portfolio has the form b = (b, . . . , b, 1− db) with b ≤ 1/d.

Proposition 2. For d ≥ 3, we have that

b∗ = (1/d, . . . , 1/d, 0).

Proof. Using the notations at the end of Section 1, we have to prove the
inequality

d

db
W (1/d) ≥ 0 .
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According to (2) this is equivalent with

1 ≥ E
{

d

X ′
1 + · · ·+ X ′

d

}
.

For d = 3, 4, 5, numerically one can check this inequality. One has to prove the
proposition for d ≥ 6, which means that

1 ≥ E
{

1
1
d

∑d
i=1 X ′

i

}
. (6)

We use induction. Assume that (6) holds until d− 1. Choose the integers d1 ≥ 3
and d2 ≥ 3 such that d = d1 + d2. Then

1
1
d

∑d
i=1 X ′

i

=
1

1
d

∑d1
i=1 X ′

i + 1
d

∑d
i=d1+1 X ′

i

=
1

d1
d

1
d1

∑d1
i=1 X ′

i + d2
d

1
d2

∑d
i=d1+1 X ′

i

,

therefore the Jensen inequality implies that

1
1
d

∑d
i=1 X ′

i

≤ d1

d

1
1
d1

∑d1
i=1 X ′

i

+
d2

d

1
1
d2

∑d
i=d1+1 X ′

i

,

and so

E

{
1

1
d

∑d
i=1 X ′

i

}
≤ E

{
d1

d

1
1
d1

∑d1
i=1 X ′

i

+
d2

d

1
1
d2

∑d
i=d1+1 X ′

i

}

=
d1

d
E

{
1

1
d1

∑d1
i=1 X ′

i

}
+

d2

d
E

{
1

1
d2

∑d2
i=1 X ′

i

}

≤ d1

d
+

d2

d
= 1,

where the last inequality follows from the assumption of the induction.

2.5 Portfolio game with many St.Petersburg components

For d ≥ 3, the best portfolio is the uniform portfolio with asymptotic average
growth rate

W ∗
d = E

{
log2

(
1
d

d∑

i=1

X ′
i

)}
= E

{
log2

(
1
4d

d∑

i=1

Xi

)}
.

First we compute this growth rate numerically for small values of d, then we
determine the exact asymptotic growth rate for d →∞.
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For d ≥ 2 arbitrary, by (3) we may write

E

{
log2

(
d∑

i=1

Xi

)}
=

∞∑

i1,i2,...,id=1

log2

(
2i1 + 2i2 + · · ·+ 2id

)

2i1+i2+···+id
.

Straightforward calculation shows that for d ≤ 8, summing from 1 to 20 in each
index independently, that is taking only 20d terms, the error is less then 1/1000.
Here are the first few values:

d 1 2 3 4 5 6 7 8
W ∗

d 0.149 0.289 0.421 0.526 0.606 0.669 0.721 0.765

Notice that W ∗
1 and W ∗

2 come from Section 2.3.
Now we return to the asymptotic results.

Theorem 1. For the asymptotic behavior of the average growth rate we have

− 0.8
ln 2

1
log2 d

≤ W ∗
d − log2 log2 d + 2 ≤ log2 log2 d + 4

ln 2 log2 d
.

Proof. Because of

W ∗
d = E

{
log2

(
1
4d

d∑

i=1

Xi

)}
= E

{
log2

(∑d
i=1 Xi

d log2 d

)}
+ log2 log2 d− 2,

we have to show that

− 0.8
ln 2

1
log2 d

≤ E
{

log2

∑d
i=1 Xi

d log2 d

}
≤ log2 log2 d + 4

ln 2 log2 d
.

Concerning the upper bound in the theorem, use the decomposition

log2

∑d
i=1 Xi

d log2 d
= log2

∑d
i=1 X̃i

d log2 d
+ log2

∑d
i=1 Xi∑d
i=1 X̃i

,

where

X̃i =
{

Xi, if Xi ≤ d log2 d ,
d log2 d, otherwise.

We prove that

E

{
log2

∑d
i=1 X̃i

d log2 d

}
≤ log2 log2 d + 2

ln 2 log2 d
, (7)

and

0 ≤ E
{

log2

∑d
i=1 Xi∑d
i=1 X̃i

}
≤ 2

ln 2 log2 d
. (8)
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For (8), we have that

P

{
log2

∑d
i=1 Xi∑d
i=1 X̃i

≥ x

}
= P

{∑d
i=1 Xi∑d
i=1 X̃i

≥ 2x

}

≤ P{∃ i ≤ d : Xi ≥ 2xX̃i}
= P{∃ i ≤ d : Xi ≥ 2x min{Xi, d log2 d}}
= P{∃ i ≤ d : Xi ≥ 2xd log2 d}
≤ dP{X ≥ 2xd log2 d}
≤ d

2
2xd log2 d

,

where we used that P{X ≥ x} ≤ 2/x, which is an immediate consequence of (4).
Therefore

E

{
log2

∑d
i=1 Xi∑d
i=1 X̃i

}
=

∫ ∞

0

P

{
log2

∑d
i=1 Xi∑d
i=1 X̃i

≥ x

}
dx

≤
∫ ∞

0

2
2x log2 d

dx =
2

ln 2 log2 d
,

and the proof of (8) is finished. For (7), put l = blog2(d log2 d)c. Then for the
expectation of the truncated variable we have

E(X̃1) =
l∑

k=1

2k 1
2k

+ d log2 d

∞∑

k=l+1

1
2k

= l + d log2 d
1

2l+1
2 = l +

d log2 d

2blog2(d log2 d)c ≤ l + 2 .

Thus,

E

{
log2

∑d
i=1 X̃i

d log2 d

}
=

1
ln 2

E

{
ln

∑d
i=1 X̃i

d log2 d

}

≤ 1
ln 2

E

{∑d
i=1 X̃i

d log2 d
− 1

}

=
1

ln 2

(
E{X̃1}
log2 d

− 1

)

≤ 1
ln 2

(
l + 2
log2 d

− 1
)

=
1

ln 2

(blog2(d log2 d)c+ 2
log2 d

− 1
)

≤ 1
ln 2

(
log2 d + log2 log2 d + 2

log2 d
− 1

)

=
1

ln 2
log2 log2 d + 2

log2 d
.
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Concerning the lower bound in the theorem, consider the decomposition

log2

∑d
i=1 Xi

d log2 d
=

(
log2

∑d
i=1 Xi

d log2 d

)+

−
(

log2

∑d
i=1 Xi

d log2 d

)−

.

On the one hand for arbitrary ε > 0, we have that

P

{∑d
i=1 Xi

d log2 d
≤ 2x

}
≤ P { for all i ≤ d, Xi ≤ 2xd log2 d}

= P {X ≤ 2xd log2 d}d

≤
(

1− 1
2xd log2 d

)d

≤ e−
1

2x log2 d

≤ 1− 1− ε

2x log2 d
,

for d large enough, where we used the inequality e−z ≤ 1− (1− ε)z, which holds
for z ≤ − ln(1− ε). Thus

P

{∑d
i=1 Xi

d log2 d
> 2x

}
≥ 1− ε

2x log2 d
,

which implies that

E





(
log2

∑d
i=1 Xi

d log2 d

)+


 =

∫ ∞

0

P

{
log2

∑d
i=1 Xi

d log2 d
> x

}
dx

=
∫ ∞

0

P

{∑d
i=1 Xi

d log2 d
> 2x

}
dx

≥
∫ ∞

0

1− ε

2x log2 d
dx

=
1

log2 d

1− ε

ln 2
.

Since ε is arbitrary we obtain

E





(
log2

∑d
i=1 Xi

d log2 d

)+


 ≥ 1

log2 d

1
ln 2

.

For the estimation of the negative part we use an other truncation method.
Now we cut the variable at d, so put

X̂i =
{

Xi, if Xi ≤ d ,
d, otherwise.
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Introduce also the notations Ŝd =
∑d

i=1 X̂i and cd = E(X̂1)/ log2 d. Similar
computations as before show that

E(X̂1) = blog2 dc+
d

2blog2 dc = log2 d + 2{log2 d} − {log2 d} and

E
[
X̂2

1

]
≤ 2

(
2blog2 dc − 1

)
+

d2

2blog2 dc = d
(
21−{log2 d} + 2{log2 d}

)
≤ 3d ,

where we used that 2
√

2 ≤ 21−y +2y ≤ 3 for y ∈ [0, 1]; this can be proved easily.
Simple analysis shows again that 0.9 ≤ 2y−y ≤ 1 for y ∈ [0, 1], and so for cd−1
we obtain

0.9
log2 d

< cd − 1 <
1

log2 d
.

Since
∑d

i=1 Xi ≥
∑d

i=1 X̂i we have that

E





(
log2

∑d
i=1 Xi

d log2 d

)−

 ≤ E





(
log2

∑d
i=1 X̂i

d log2 d

)−

 .

Noticing that

log2

Ŝd

d log2 d
> log2

2d

d log2 d
= 1− log2 log2 d ,

we obtain

E





(
log2

Ŝd

d log2 d

)−

 =

∫ 0

− log2 log2 d

P

{
log2

Ŝd

d log2 d
≤ x

}
dx ,

thus we have to estimate the tail probabilities of Ŝd.
According to Bernstein’s inequality, for x < 0 we have

P

{
log2

Ŝd

d log2 d
≤ x

}
= P

{
Ŝd − E(Ŝd)

d log2 d
≤ 2x − E(Ŝd)

d log2 d

}

= P

{
Ŝd − E(Ŝd)

d log2 d
≤ 2x − cd

}

≤ exp



−

d2 log2
2 d (cd − 2x)2

2
(
dE[(X̂)2] + d2 log2 d (cd−2x)

3

)




≤ exp
{
− log2

2 d (cd − 2x)2

6 + 2
3 log2 d (cd − 2x)

}
.

Let γ > 0 be fixed, we define it later. For x < −γ and d large enough the last
upper bound ≤ d−(1−2−γ)2 , therefore

∫ −γ

− log2 log2 d

P

{
log2

Ŝd

d log2 d
≤ x

}
dx ≤ log2 log2 d

d(1−2−γ)2
.



14 L. Györfi and P. Kevei

We give an estimation for the integral on [−γ, 0]:

∫ 0

−γ

P

{
log2

Ŝd

d log2 d
≤ x

}
dx ≤

∫ γ

0

exp
{
− log2

2 d (cd − 2−x)2

6 + 2
3 log2 d (cd − 2−x)

}
dx

=
1

ln 2

∫ γ ln 2

0

exp
{
− log2

2 d (cd − e−x)2

6 + 2
3 log2 d (cd − e−x)

}
dx .

For arbitrarily fixed ε > 0 we choose γ > 0 such that 1−x ≤ e−x ≤ 1− (1− ε)x,
for 0 ≤ x ≤ γ ln 2. Using also our estimations for cd − 1 we may write

exp
{
− log2

2 d (cd − e−x)2

6 + 2
3 log2 d (cd − e−x)

}
≤ exp

{
− log2

2 d (0.9/ log2 d + (1− ε)x)2

6 + 2
3 log2 d (1/ log2 d + x)

}

and continuing the estimation of the integral we have

≤ 1
ln 2

∫ γ ln 2

0

exp
{
− log2

2 d (0.9/ log2 d + (1− ε)x)2

6 + 2
3 log2 d (1/ log2 d + x)

}
dx

=
1

ln 2
1

log2 d

∫ log2 d γ ln 2

0

exp
{
− (0.9 + (1− ε)x)2

6 + 2
3 (1 + x)

}
dx

≤ 1
ln 2

1
log2 d

∫ ∞

0

exp
{
− (0.9 + (1− ε)x)2

6 + 2
3 (1 + x)

}
dx

≤ 1.7
ln 2

1
log2 d

,

where the last inequality holds if ε is small enough.
Summarizing, we have

E





(
log2

∑d
i=1 X̂i

d log2 d

)−

 =

∫ 0

− log2 log2 d

P

{
log2

Ŝd

d log2 d
≤ x

}
dx

≤ log2 log2 d

d(1−2−γ)2
+

1.7
ln 2

1
log2 d

≤ 1.8
ln 2

1
log2 d

,

for d large enough. Together with the estimation of the positive part this proves
our theorem.
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