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Digital islands

Grid, height function
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Digital islands

Grid, height function, water level: 2
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Digital islands

Grid, height function, water level: 4
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Digital islands

Grid, height function, island system
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Digital islands

CD-independent: Comparable or Disjoint
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Eszter K. Horváth, Szeged Co-author: Sándor Radeleczki ()Pairwise comparable or disjoint elemets in a poset 2018. September. 9 / 76



Tree

CD-independent: Comparable or Disjoint
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CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets
in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2
(2009).

Any two CD-bases of a finite distributive lattice have the same number of
elements.

If all finite lattices in a lattice variety have this property, then the variety
must coincide with the variety of distributive lattices.
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CD-independent subsets in posets

Let P = (P,≤) be a partially ordered set, and let a, b ∈ P.

The elements a and b are called disjoint and we write a ⊥ b if

either P has least element 0 ∈ P and inf{a, b} = 0,
or P is without 0 and the elements a and b have no common lowerbound.

A nonempty set X ⊆ P is called CD-independent if for any x , y ∈ X ,
x ≤ y or y ≤ x , or x ⊥ y holds.

Maximal CD-independent sets (with respect to ⊆) are called CD-bases in
P.
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Sets of pairwise disjoint elements

Definition

A nonempty set D of nonzero elements of P is called a set of pairwise
disjoint element in P if x ⊥ y holds for all x , y ∈ D, x 6= y ; if P has
0-element, then {0} is considered to be a set of pairwise disjont
elements, too.

D is a set of pairwise disjoint elements if and only if it is a
CD-independent antichain in P.
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Order ideals

Let X ⊆ P.

The order ideal {y ∈ P | y ≤ x for some x ∈ X} is denoted by ↓X .

The order-ideals of any poset form a (distributive) lattice with respect to
⊆.

So, the antichains of a poset can be ordered as follows:

Definition

If A1,A2 are antichains in P, then we say that A1 is dominated by
A2, and we denote it by A1 6 A2 if ↓A1 ⊆ ↓A2.

Remark
6 is a partial order.
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Eszter K. Horváth, Szeged Co-author: Sándor Radeleczki ()Pairwise comparable or disjoint elemets in a poset 2018. September. 18 / 76



Order ideals

Let X ⊆ P.

The order ideal {y ∈ P | y ≤ x for some x ∈ X} is denoted by ↓X .

The order-ideals of any poset form a (distributive) lattice with respect to
⊆.

So, the antichains of a poset can be ordered as follows:

Definition

If A1,A2 are antichains in P, then we say that A1 is dominated by
A2, and we denote it by A1 6 A2 if ↓A1 ⊆ ↓A2.

Remark
6 is a partial order.
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D(P)

Let D(P) denote the set of all sets of pairwise disjont elements of P.

As sets of pairwise disjont elements of P are also antichains, restricting 6
to D(P), we obtain a poset (D(P),6).

The connection between CD-bases of a poset P and the poset (D(P),6) is
shown by the next theorem:
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Theorem ( E. K. H., S. Radeleczki)

Let B be a CD-base of a finite poset (P,≤), and let |B| = n.

Then there exists a maximal chain {Di}1≤i≤n in D(P) such that

B =
n⋃

i=1
Di .

Moreover, for any maximal chain {Di}1≤i≤m in D(P) the set D =
m⋃
i=1

Di

is a CD-base in (P,≤) with |D| = m.
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P1 és D(P1)
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P1 és D(P1), maximális lánc D(P1)-ben
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P2 and D(P2)
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P2 és D(P2), maximális lánc D(P2)-ben
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P3 and D(P3)
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P3 és D(P3), maximális lánc D(P3)-ban
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Proof

Any poset (P,≤) without least element becomes a poset with 0 by adding
a new element 0 to P. In this way both the number of the elements in the CD-bases of P and the length of the maximal chains
in D(P) are increased by one. Therefore, without loss of generality we may assume that P contains 0 and |P| ≥ 2.

To prove the first part of Theorem 1.5, assume that B is a CD-base in P. Then clearly 0 ∈ B and |B| ≥ 2. Let D1 = max(B).
Take any m1 ∈ D1 and form D2 = max(B \ {m1}). Then, in view of Lemma 1.7, D1,D2 ∈ D(P), D1 � D2, and D1 is a
maximal element in D(P). Further, suppose that we already have a sequence (Di ,mi ), 1 ≤ i ≤ k (k ≥ 2) such that mi ∈ Di ,
D1 � ... � Dk in D(P) and

Dk = max(B \ {m1, ...,mk−1}).

We show that for all i ∈ {1, ..., k − 1} and d ∈ Dk we have d � mi . (5)

This is clear for i = 1 since m1 ∈ max(B) and d ∈ B, d 6= m1. If 2 ≤ i ≤ k − 1, then mi ∈ max(B \ {m1, ...,mi−1}), and
since d ∈ B \ {m1, ...,mi−1}, d ≥ mi would imply mi = d ∈ B \ {m1, ...,mi , ...,mk−1}, a contradiction.
Further, if |B \ {m1, ...,mk−1}| ≥ 2, then form the next set Dk+1 := max(B \ {m1, ...,mk−1,mk}) and let
mk+1 ∈ Dk+1. Since Dk+1 is an antichain in the CD-base B, it is a disjoint set, and clearly Dk+1 6= Dk .
In order to prove Dk � Dk+1, consider the subposet (I (Dk ),≤). By Proposition 1.4, Bk := B ∩ I (Dk ) is a CD-base in
(I (Dk ),≤). We claim that

Bk = B \ {m1, ...,mk−1}.

Indeed, Dk = max(B \ {m1, ...,mk−1}) implies B \ {m1, ...,mk−1} ⊆ B ∩ I (Dk ) = Bk . On the other hand, (5) implies
{m1, ...,mk−1} ∩ I (Dk ) = ∅, whence we get Bk ⊆ B \ {m1, ...,mk−1}, proving our claim. Hence Dk = max(Bk ), and
Dk+1 = max (B \ {m1, ...,mk−1,mk}) = max(Bk \ {mk}).
Now, by applying Lemma 1.7, we obtain that Dk+1 ≺ Dk holds in D(I (Dk )). Finally, observe that any S ∈ D(P) with
S 6 Dk is also a disjoint set in (I (Dk ),≤) according to (A). Moreover, since Dk+1 ≺ Dk holds in D(I (Dk )),
Dk+1 6 S 6 Dk implies either S = Dk or S = Dk+1. This means that Dk+1 ≺ Dk holds in D(P), too.
Thus we conclude by induction that the chain D1 � ... � Dk � ... can be continued as long as the condition
|B \ {m1, ...,mk−1}| ≥ 2 is still valid. Since P is finite, the process stops after finite - let say n − 1 steps, when
|B \ {m1, ...,mn−1}| = 1, and the last set is Dn = B \ {m1, ...,mn−1}. As 0 ∈ B, and since 0 /∈ max(X ) whenever
|X | ≥ 2, we get {0} = B \ {m1, ...,mn−1} = Dn . As D1 is a maximal element and Dn = {0} is the least element in
D(P), D1 � ... � Dn is a maximal chain in D(P). Since B = {m1, ...,mn−1, 0}, we obtain |B| = n.
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{m1, ...,mk−1} ∩ I (Dk ) = ∅, whence we get Bk ⊆ B \ {m1, ...,mk−1}, proving our claim. Hence Dk = max(Bk ), and
Dk+1 = max (B \ {m1, ...,mk−1,mk}) = max(Bk \ {mk}).
Now, by applying Lemma 1.7, we obtain that Dk+1 ≺ Dk holds in D(I (Dk )). Finally, observe that any S ∈ D(P) with
S 6 Dk is also a disjoint set in (I (Dk ),≤) according to (A). Moreover, since Dk+1 ≺ Dk holds in D(I (Dk )),
Dk+1 6 S 6 Dk implies either S = Dk or S = Dk+1. This means that Dk+1 ≺ Dk holds in D(P), too.
Thus we conclude by induction that the chain D1 � ... � Dk � ... can be continued as long as the condition
|B \ {m1, ...,mk−1}| ≥ 2 is still valid. Since P is finite, the process stops after finite - let say n − 1 steps, when
|B \ {m1, ...,mn−1}| = 1, and the last set is Dn = B \ {m1, ...,mn−1}. As 0 ∈ B, and since 0 /∈ max(X ) whenever
|X | ≥ 2, we get {0} = B \ {m1, ...,mn−1} = Dn . As D1 is a maximal element and Dn = {0} is the least element in
D(P), D1 � ... � Dn is a maximal chain in D(P). Since B = {m1, ...,mn−1, 0}, we obtain |B| = n.
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Bizonýıtás
To prove the second part of Theorem 1.5, assume that the disjoint sets D1, ...,Dm form a maximal chain C:

D1 ≺ ... ≺ Dm

in D(P). Then D1 = {0}. Let D =
m⋃
i=1

Di . First, we prove that the set D is CD-independent. Indeed, take any x, y ∈ D, i.e.

x ∈ Di and y ∈ Dj for some 1 ≤ i ≤ j ≤ m. Then x ≤ z for some z ∈ Dj by (A). Assume that x and y are not comparable.
Then z 6= y , and z ⊥ y implies x ⊥ y by (1). This means that D is CD-independent.
Now, assume that D is not a CD-base. Then there is an x ∈ P \ D such that D ∪ {x} is CD-independent. Next, consider the
set

E = {Di ∈ C | x � d for all d ∈ Di}.

Clearly, D1 = {0} ∈ E since x � 0. Let Di ∈ E. Then d ⊥ x or d < x holds for each d ∈ Di because D ∪ {x} is
CD-independent. Thus Ti := {x} ∪ {d ∈ Di | d ≮ x} is a disjoint set, and d < x or d ∈ Ti holds for all d ∈ Di . Hence

Di < Ti , (6)

in view of (A) and x /∈ Di . Observe that Dm /∈ E since Dm < Tm is not possible because C is a maximal chain. Thus, there
exists a k ≤ m − 1 such that Dk ∈ E but Dk+1 /∈ E. This means that x � d for all d ∈ Dk , and x ≤ z holds for some
z ∈ Dk+1. Then Tk = {x} ∪ {d ∈ Dk | d ≮ x} ∈ D(P) satisfies Dk < Tk in virtue of (6). Since Tk \ {x} ⊆ Dk < Dk+1
and x ≤ z, for each t ∈ Tk there is a v ∈ Dk+1 with t ≤ v . In view of (A) we get Dk < Tk < Dk+1 because
x /∈ Dk+1 ⊆ D. Since this fact contradicts Dk ≺ Dk+1, we conclude that D is a CD-base.
Further, in view of (4), it follows that any set Di \Di−1, 2 ≤ i ≤ m contains exactly one element, let say, ai . Observe also that

D =
m⋃
i=1

Di = D1 ∪
(

m⋃
i=2

(Di \ Di−1)

)
.

Since D1 = {0} and Di \ Di−1 = {ai}, we get D = {0, a2, ..., am}. We prove that all the elements 0, a2, ..., am are
different: Clearly, 0 /∈ {a2, ..., am}. Take any i, j ∈ {2, ...,m}, i < j . Then Di 6 Dj−1 ≺ Dj . As ai ∈ Di , there is a
b ∈ Dj−1 with 0 < ai ≤ b by (A). As aj ∈ Dj \ Dj−1, b < aj or b ⊥ aj holds by (2). Since both facts imply ai 6= aj , we
conclude that D contains m different elements. �
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Lemma 1

If D1 ≺ D2 in D(P), then D2 = {a} ∪
{

y ∈ D1 \ {0} | y ⊥ a
}

for some
minimal element a of the set

S =
{

s ∈ P \ (D1 ∪ {0}) | y ⊥ s or y < s for all y ∈ D1

}
.

Moreover, D1 ≺ {a} ∪
{

y ∈ D1 \ {0} | y ⊥ a
}

holds for any minimal
element a of the set S .
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Illustration for Lemma 1
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Lemma 2

Assume that B is a CD-base with at least two elements in a finite poset
P = (P,≤), M = max(B), and m ∈ M. Then M and N := max(B \ {m})
are disjoint sets.

Moreover M is a maximal element in D(P), and N ≺ M holds in D(P).
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Illustration for Lemma 2
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Corollary

Let P =(P,≤) be a finite poset.

The poset P is called graded, if all its maximal chains have the same
cardinality.

The CD-bases of P have the same number of elements if and only if the
poset D(P) is graded.
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Corollary

Let B ⊆ P be a CD-base of P , and (B,≤) the poset under the restricted
ordering.

Then any maximal chain C = {Di}1≤i≤m in D(B) is also a maximal chain
in D(P).
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Illustration: P and D(P)
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Illustration: P and D(P), B and D(B)
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Illustration: P and D(P), B and D(B); a maximal chain
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Illustration: P and D(P), B and D(B); other
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DC(P)

A set of pairwise disjoint elements D of a poset (P,≤) is called complete,
if there is no p ∈ P \ D such that D ∪ {p} is also a set of pairwise disjoint
elements.
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P , D(P) and DC(P)
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Equivalent conditions

Let P = (P,≤) be a finite poset with 0. Then the following conditions are
equivalent:

(i) The CD-bases of P have the same number of elements,

(ii) D(P) is graded.

(iii) DC(P) is graded.
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Weakly 0-modular lattices

A poset with least element 0 and greatest element 1 is called bounded.

A lattice L = (L,≤) with 0 is called 0-modular if for all a, b, c ∈ L

a ≤ b and b ∧ c = 0 imply b ∧ (a ∨ c) = a (M0,)

We know that that the tolerance lattices of algebras belonging to
congruence distributive varieties are 0-modular (but not necessarily
modular).

If (M0) is satisfied under the assumptions that a is an atom and c ≺ b ∨ c ,
then L is called weakly 0-modular.
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Weakly 0-modular lattices

L is called lower-semimodular if for all a, b, c ∈ L, b ≺ c implies
a ∧ b � a ∧ c.

It belongs to the folklore that join-semidistributivity and lower
semimodularity characterize the closure lattices of finite convex geometries.

It is easy to see that any lower-semimodular lattice and any 0-modular
lattice is weakly 0-modular.

We say that a poset P with 0 is weakly 0-modular if the above weak form
of (M0) holds whenever sup{a, c} and sup{b, c} exist in P.
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If P is a finite bounded poset

Let P be a finite bounded poset.

If all the principal ideals ↓a of P are weakly 0-modular, then A(P) ∪ C is a
CD-base for every maximal chain C in P.

If each principal ideal of P is weakly 0-modular and D(P) is graded, then P
is also graded, and any CD-base of P contains |A(P)|+ l(P) elements.
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Eszter K. Horváth, Szeged Co-author: Sándor Radeleczki ()Pairwise comparable or disjoint elemets in a poset 2018. September. 58 / 76



Poset with 0

Lemma

Let P be a poset with 0. Assume that K 6= ∅ is an index set and, for
each k ∈ K , Dk is a set of pairwise disjoint elements in P. If for every
choice function f ∈

∏
k∈K Dk the meet

∧
k∈K f (k) exists in P, then∧

k∈K
Dk exists in D(P).

In particular, for K = {1, 2} and D1 = {ai | i ∈ I}, D2 = {bj | j ∈ J} ∈
D(P) such that all the ai ∧ bj exists, we have

D1 ∧ D2 =

{
M} if M 6= ∅;
{0} otherwise,

where M := {ai ∧ bj | i ∈ I , j ∈ J, ai ∧ bj 6= 0
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CD-bases in semilattices and lattices / 2

Let P = (P,∧) be a semilattice with 0.

A pair a, b ∈ P with least upperbound a ∨ b in P is called a distributive
pair if (c ∧ a) ∨ (c ∧ b) exists in P for all c ∈ P, and
c ∧ (a ∨ b) = (c ∧ a) ∨ (c ∧ b).

We say that (P,∧) is dp-distributive (distributive with respect to disjoint
pairs) if any pair a, b ∈ P with a ∧ b = 0 is a distributive pair.

Theorem 2. (E. K. H., S. Radeleczki)

(i) If P = (P,∧) is a semilattice with 0, then D(P) is a dp-distributive
semilattice. Furthermore, for all D1,D2 ∈ D(P), if D1 ∪ D2 is a
CD-independent set, then D1,D2 is a distributive pair in D(P).

(ii) If P is a complete lattice, then D(P) is a dp-distributive complete
lattice.
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CD-bases in semilattices and lattices / 3

Let (P,≤) be a poset and A ⊆ P. (A,≤) is called a sublattice of (P,≤),
if (A,≤) is a lattice such that for any a, b ∈ A the infimum and the
supremum of {a, b} is the same in the subposet (A,≤) and in (P,≤).

Theorem 3. (E. K. H., S. Radeleczki)

Let P = (P,≤) be a poset with 0 and B a CD-base of it. Then
(D(B),6) is a distributive cover-preserving sublattice of the poset
(D(P),6).

If P is a ∧-semilattice, then for any D ∈ D(P) and D1,D2 ∈ D(B) we
have

(D1 ∨ D2) ∧ D = (D1 ∧ D) ∨ (D2 ∧ D)

in (D(P),6).
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in (D(P),6).
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Eszter K. Horváth, Szeged Co-author: Sándor Radeleczki ()Pairwise comparable or disjoint elemets in a poset 2018. September. 61 / 76



CD-bases in particular lattice classes

Let L = (L,≤) be a lattice. We say that L is 0 -distributive, that is, for all
a, b, x ∈ L, x ∧ a = 0 and x ∧ b = 0 imply x ∧ (a ∨ b) = 0.

We say that L is weakly 0-distributive if this implication holds under the
condition a ∧ b = 0.

Remark
If D is a set of pairwise disjoint elements in a weakly 0-distributive
lattice and |D| ≥ 2, then it is easy to see that replacing two different
elements d1, d2 ∈ D by their join d1 ∨ d2, we obtain again a set of
pairwise disjoint elements.
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CD-bases in particular lattice classes

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom of the
poset D(L).

Then either D = {d} for some d ∈ L with d ≺ 1, or D consist of two
different elements d1, d2 ∈ L with d1 ∨ d2 = 1.

Let L be a graded lattice, and a ∈ L. Then the height of a is the length
of the interval [0, a], denoted by l(a).

A graded lattice L is 0-modular, whenever l(a) + l(b) = l(a ∨ b) holds
for all a, b ∈ L with a ∧ b = 0.
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CD-bases in particular lattice classes

Theorem 4. (E. K. H., S. Radeleczki )

Let L be a finite, weakly 0-distributive lattice. Then the following are
equivalent:

(i) L is graded, and l(a) + l(b) = l(a ∨ b) holds for all a, b ∈ L with
a ∧ b = 0.

(ii) L is 0-modular, and the CD-bases of L have the same number
of elements.
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Modular pair

We say that two elements a, b ∈ L form a modular pair in the lattice L and
we write (a, b)M if for all x ∈ L, x ≤ b implies x ∨ (a ∧ b) = (x ∨ a) ∧ b.

Also, a and b form a dual-modular pair if for all x ∈ L, x ≥ b implies
x ∧ (a ∨ b) = (x ∧ a) ∨ b. This is denoted by (a, b)M∗.

Clearly, if a and b form a distributive pair, then (a, b)M∗ is satisfied.

By means of modular pairs, the 0-modularity condition can be
reformulated as follows: For all a, b ∈ L,

Lemma (M. Stern) In a graded lattice of finite length, (a, b)M implies
l(a) + l(b) ≤ l(a ∧ b) + l(a ∨ b).
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CD-bases

With the help of the previous Lemma of M. Stern above, using an N5

sublattice containing 0 as well as the dual lattice, we obtain

Proposition If L is a lattice with 0 such that (a, b)M∗ holds for all
a, b ∈ L with a ∧ b = 0, then L is 0-modular. If in addition L is a
graded lattice of finite length, then l(a ∨ b) = l(a) + l(b) holds for all
a, b ∈ L with a ∧ b = 0.

Corollary (i) Let L be a finite, weakly 0-distributive lattice such that
for each a, b ∈ L with a ∧ b = 0, condition (a, b)M∗ holds. Then the
CD-bases of L have the same number of elements if and only if L is
graded.
(ii) If L is a finite pseudocomplemented modular lattice, then the
CD-bases of L have the same number of elements.
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dp-distributive lattices

As any dp-distributive lattice L is weakly 0-distributive, and (a, b)M∗ holds
for all a, b ∈ L with a ∧ b = 0 since (a, b) is a distributive pair, we obtain

Corollary
(i) Any dp-distributive lattice is 0-modular. If L is a dp-distributive
graded lattice with finite length, then l(a ∨ b) = l(a) + l(b) holds for all
a, b ∈ L with a ∧ b = 0.
(ii) The CD-bases in a finite dp-distributive lattice L have the same
number of elements if and only if L is graded.
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Interval system

An interval system (V , I) is an algebraic closure system satisfying the
axioms:

(I0) {x} ∈ I for all x ∈ V , and ∅ ∈ I;

(I1) A,B ∈ I and A ∩ B 6= ∅ imply A ∪ B ∈ I;

(I2) For any A,B ∈ I the relations A ∩ B 6= ∅, A " B and B " A imply
A \ B ∈ I (and B \ A ∈ I).

The modules (X -sets, or autonomous sets) of an undirected graph
G = (V ,E ), the intervals of an n-ary relation R j V n on the set V for
n ≥ 2 – in particular, the usual intervals of a linearly ordered set (V ,≤) –
form interval systems.
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Generalizing interval systems

Let us consider now the condition:

(II) If a ∧ b 6= 0, then (x ≤ a ∨ b and x ∧ a = 0)⇒ x ≤ b for all
a, b, x ∈ L.

Lattices with 0 satisfying condition (II) and with the property that ↑a is
a modular lattice for all a ∈ L, a 6= 0, can be considered as a
generalization of the lattice (I,⊆) of an interval system (V , I). To study
their CD-bases, first we proved:
Lemma Let L be an atomic lattice satisfying condition (II). Assume
D ∈ D(L) and define SD =

{
s ∈ L \ (D ∪ {0}) | d ∧ s = 0 or d < s, for

all d ∈ D
}
. Then for all b, c ∈ SD with b ∧ c 6= 0 and all d ∈ D,

d ∧ (b ∨ c) 6= 0 if and only if 0 < d < b or 0 < d < c holds.
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Generalizing interval systems

Let us consider now the condition:

Remark Let L be a finite lattice and D = {dj | j ∈ J} ∈ DC(L). If
D ≺ D ′ for some D ′ ∈ D(L); then, there is a minimal element a ∈ SD

such that D ′ = {a} ∪ {dj ∈ D \ {0} | dj ∧ a = 0}. In this case there
exists a set K ⊆ J such that
K = {j ∈ J | dj < a} 6= ∅ and D ′ = {a} ∪ {dj | j ∈ J \ K}. (14)
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Birkhoff’s condition

It is well-known that a finite lattice L is semimodular if and only if it
satisfies Birkhoff’s condition, namely, for all a, b ∈ L

(Bi) a ∧ b ≺ a, b implies a, b ≺ a ∨ b.

We also say that a pair a, b ∈ L satisfies Birkhoff’s condition if the above
implication (Bi) is valid for a, b. It is known that any distributive pair
a, b ∈ L satisfies Birkhoff’s condition.

Theorem 5. (K. H. E., Radeleczki S.) Let L be a finite lattice
satisfying condition (II) such that any principal filter ↑a with
a ∈ L \ {0} is a modular lattice. Then DC(L) is a semimodular lattice.
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CD-bases

Corollary (i) If L is a finite distributive lattice, then DC(L) is a
semimodular lattice.

(ii) If L is a finite lattice that satisfies the conditions in Theorem 3,
then its CD-bases have the same number of elements.

By applying this to interval systems we obtain:

Corollary

If (V , I) is a finite interval system, then the CD-bases of the lattice (I,⊆)
contain the same number of elements.
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Island domain

U ∈ C ⊆ K ⊆ P (U)

Let h : U → R be a height function and let S ∈ C be a nonempty set.

We say that S is an pre-island with respect to the triple (C,K, h), if every
K ∈ K with S ≺ K satisfies

min h (K ) < min h (S) .

We say that S is a island with respect to the triple (C,K, h), if every
K ∈ K with S ≺ K satisfies

h (u) < min h (S) for all u ∈ K \ S .
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Connective island domains

Definition

A pair (C,K) is an connective island domain if

∀A,B ∈ C : (A ∩ B 6= ∅ and B * A) =⇒ ∃K ∈ K : A ⊂ K ⊆ A ∪ B.
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Connective island domains

Theorem 5. (S. Foldes, E. K. H., S. Radeleczki, T. Waldhauser)

The following three conditions are equivalent for any pair (C,K):

(i) (C,K) is a connective island domain.

(ii) Every system of pre-islands corresponding to (C,K) is
CD-independent.
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Thank you for your attention!
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