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Definition/1

Grid, neighbourhood relation
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Definition /2

We call a rectangle/triangle an island, if for the cell t, if we denote its
height by a;, then for each cell t neighbouring with a cell of the
rectange/triangle T, the inequality a; < min{a; : t € T} holds.
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History /1

Coding theory
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History /1

Coding theory

S. Foldes and N. M. Singhi: On instantaneous codes, J. of
Combinatorics, Information and System Sci., 31 (2006), 317-326. J
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History /2

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive
lattices, European Journal of Combinatorics 30 (2009), 208-215. J
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History /2

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive
lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a m x n rectangular board
on square grid:
mn-+m-+n— 1]

> .

f(myn)=]|
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History/3

Rectangular islands in higher dimensions
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Rectangular islands in higher dimensions

G. Pluhar: The number of brick islands by means of distributive
lattices, Acta Sci. Math., to appear. J
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Triangular islands
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History /4

Triangular islands

E. K. Horvath, Z. Németh and G. Pluhar: The number of triangular
islands on a triangular grid, Periodica Mathematica Hungarica, 58
(2009), 25-34.

Available at http://www.math.u-szeged.hu/"horvath
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History /4

Triangular islands

E. K. Horvath, Z. Németh and G. Pluhar: The number of triangular

islands on a triangular grid, Periodica Mathematica Hungarica, 58
(2009), 25-34.

Available at http://www.math.u-szeged.hu/"horvath

For the maximum number of triangular islands in an equilateral rectangle
0 2 2
of side length n, %3" < f(n) < 3m31%2 holds.
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History /5

Square islands (also in higher dimensions)
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History /5

Square islands (also in higher dimensions)

E. K. Horvath, G. Horvath, Z. Németh, Cs. Szabé: The number of
square islands on a rectangular sea, Acta Sci. Math., to appear.
Available at http://www.math.u-szeged.hu/~horvath
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Proving methods/1

LATTICE THEORETICAL METHOD
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Proving methods/1

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent
subsets in lattices, Algebra Universalis 20 (1985), 194-196. J
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Proving methods/1

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent
subsets in lattices, Algebra Universalis 20 (1985), 194-196. J

Any two weak bases of a finite distributive lattice have the same number
of elements.
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Proving methods/?2

TREE-GRAPH METHOD
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Proving methods/2

TREE-GRAPH METHOD

Lemma 2 (folklore)

(i) Let T be a binary tree with ¢ leaves. Then the number of
vertices of T depends only on ¢, moreover |V| =2/ — 1.
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Proving methods/2

TREE-GRAPH METHOD

Lemma 2 (folklore)
(i) Let T be a binary tree with ¢ leaves. Then the number of
vertices of T depends only on ¢, moreover |V| =2/ — 1.
(ii) Let T be a rooted tree such that any non-leaf node has at
least 2 sons. Let / be the number of leaves in T. Then
V| <2¢—-1.
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Proving methods/2

TREE-GRAPH METHOD

Lemma 2 (folklore)

(i) Let T be a binary tree with ¢ leaves. Then the number of
vertices of T depends only on ¢, moreover |V| =2/ — 1.

(ii) Let T be a rooted tree such that any non-leaf node has at
least 2 sons. Let / be the number of leaves in 7. Then
V| <2¢—-1.

We have 4s +2d < (n+1)(m+1).
The number of leaves of T(Z) is £ = s+ d. Hence by Lemma 2 the
number of islands is

V|—d<(20—1)—d=2s+d—1< ~(n+1)(m+1)—1.

N
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ELEMENTARY METHOD
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Proving methods/3

ELEMENTARY METHOD

We define
w(R) = p(u,v) == (u+1)(v+1).
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Proving methods/3

ELEMENTARY METHOD

We define
w(R) = p(u,v) == (u+1)(v+1).
Now
fmn)=1+ Y  f(R)=1+ > M] ~1)

RemaxZ RemaxZ
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Proving methods/3

ELEMENTARY METHOD

We define
u(R) = p(u, v) == (u+1)(v +1).
Now
+1)(v+1
fmmy =1+ Y fR) =1+ Y ( u] ~1)
RemaxZ RemaxZ
(u, V) #(C)
=5 <1- — .
+ Z —1) <1—|maxZ|+ | > ]
RemaxZ
If [maxZ| > 2, then the proof is ready. Case |maxZ| =1 is an easy
excersise.
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Some exact formulas

Peninsulas (semi islands) (J. Barat, P. Hajnal, E.K. Horvath):
p(m, n) = f(m, n) = [(mn+m+n—1)/2]. J
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Some exact formulas

Peninsulas (semi islands) (J. Barat, P. Hajnal, E.K. Horvath):
p(m, n) = f(m, n) = [(mn+m+n—1)/2].

Cylindric board, rectangular islands (J. Barat, P. Hajnal, E.K. Horvath):
If n > 2, then hi(m,n) = [W]

Cylindric board, cylindric and rectangular islands (J. Barat, P. Hajnal, E.K.
Horvath):

If n > 2, then ho(m, n) = [(m-;l)n] 4 [(m2—1)].
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Some exact formulas

Peninsulas (semi islands) (J. Barat, P. Hajnal, E.K. Horvath):
p(m, n) = f(m, n) = [(mn+m+n—1)/2].

Cylindric board, rectangular islands (J. Barat, P. Hajnal, E.K. Horvath):
If n > 2, then hi(m,n) = [W]

Cylindric board, cylindric and rectangular islands (J. Barat, P. Hajnal, E.K.
Horvath):

If n > 2, then ho(m, n) = [(m-;l)n] 4 [(m2—1)].

Torus board, rectangular islands (J. Barat, P. Hajnal, E.K. Horvéth):
If m,n> 2, then t(m, n) = [F].
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History /7

Further results on rectangular islands
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History /7

Further results on rectangular islands

Zs. Lengvarszky: The minimum cardinality of maximal systems of
rectangular islands, European Journal of Combinatorics, 30 (2009),
216-219.
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The board consists of all vertices of a hypercube, i.e. the elements of a
Boolean algebra BA = {0, 1}". J
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The board consists of all vertices of a hypercube, i.e. the elements of a
Boolean algebra BA = {0, 1}". J

We consider two cells neighbouring if their Hamming distance is 1. J

We denote the maximum number of islands in BA = {0,1}" by b(n). )
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The board consists of all vertices of a hypercube, i.e. the elements of a
Boolean algebra BA = {0, 1}". J

We consider two cells neighbouring if their Hamming distance is 1. J

We denote the maximum number of islands in BA = {0,1}" by b(n). )

Island formula for Boolean algebras (P. Hajnal, E.K. Horvath)
b(n) =1+ 21 J
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Rectangular height functions/1

Joint work with Branimir Seselja and Andreja Tepavievié

A height function h is a mapping from {1,2,....m} x {1,2,...,n} to N,
h:{1,2,...,m} x{1,2,...,n} — N.

The co-domain of the height function is the lattice (N, <), where N is the
set of natural numbers under the usual ordering < and suprema and
infima are max and min, respectively.
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Rectangular height functions/1

Joint work with Branimir Seselja and Andreja Tepavievié

A height function h is a mapping from {1,2,....m} x {1,2,...,n} to N,
h:{1,2,...,m} x{1,2,...,n} — N.

The co-domain of the height function is the lattice (N, <), where N is the
set of natural numbers under the usual ordering < and suprema and
infima are max and min, respectively.

For every p € N, the cut of the height function, i.e. the p-cut of h is an
ordinary relation h, on {1,2,...,m} x {1,2, ..., n} defined by

(x,y) € hy if and only if h(x,y) > p.
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Rectangular height functions/2

We say that two rectangles {«, ..., 3} x {,...,0} and
{a1,..., 01} x {71,...,01} are distant if they are disjoint and for every two

cells, namely (a, b) from the first rectangle and (c, d) from the second, we
have (a —c)? + (b— d)? > 4.
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Rectangular height functions/2

We say that two rectangles {«, ..., 3} x {,...,0} and

{a1,..., 01} x {71,...,01} are distant if they are disjoint and for every two
cells, namely (a, b) from the first rectangle and (c, d) from the second, we
have (a —c)? + (b— d)? > 4.

v

The height function h is called rectangular if for every p € N, every
nonempty p-cut of h is a union of distant rectangles.
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Rectangular height functions/3

S
S~
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~
N~
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Rectangular height functions/3

S
S~
N
~
N~

M ={1,2,3,4,5} x {1,2,3},

M =1{1,2,3,4,5} x {1,2,3}\ {(3,1)},

M3 ={(1,2),(1,3),(2,2),(2,3),(3,3),(4,2), (4,3),(5,2),(5,3)},
s =1{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3), (5,2),(5,3)} and
s = {(1,3),(2,3),(4,3),(53)}

Branimir Seielja Cuts of lattice-valued functions and applicat AAA 79



Rectangular height functions/4

CHARACTERIZATION THEOREM

Theorem 1
A height function hy : {1,2,...,m} x {1,2,...,n} — N is rectangular if
and only if for all («,7), (8,9) € {1,2,...,m} x {1,2,..., n} either
@ these are not neighboring cells and there is a cell (u, ) between
(a,v) and (8, 9) such that hy(p, ) < min{hx(a, ), hn(8,9)}, or
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Rectangular height functions/4

CHARACTERIZATION THEOREM

Theorem 1
A height function hy : {1,2,...,m} x {1,2,...,n} — N is rectangular if
and only if for all («,7), (8,9) € {1,2,...,m} x {1,2,..., n} either
@ these are not neighboring cells and there is a cell (u, ) between
(a,v) and (8, 9) such that hy(p, ) < min{hx(a, ), hn(8,9)}, or

o for all (u,v) € [min{a, 5}, max{a, B}] x [min{y, d}, max{~, d}],

hn(p; v) = min{hy (e, 7), (B, 0)}-
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Rectangular height functions/5

Theorem 2

For every height function h:{1,2,...,n} x {1,2,...,m} — N, there is a
rectangular height function h* : {1,2,...,n} x {1,2,...,m} — N, such
that Irect(h) = Irect(h*)‘
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Rectangular height functions/6

CONSTRUCTING ALGORITHM

1. FORi=tTOO
2.FORy=1TOn

3. FORx=1TO m

4. IF h(x,y) = a; THEN
5 =i

6. WHILE there is no island of h which is a subset of h,; that contains
(x,y) DO ji=j-1

7. ENDWHILE

8. Let h*(x,y) = a;.

9. ENDIF

10. NEXT x

11. NEXT y

12. NEXT i

13. END.
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Rectangular height functions/7

LATTICE-VALUED REPRESENTATION

Theorem 3

Let h:{1,2,....,m} x {1,2,...,n} — N be a rectangular height function.
Then there is a lattice L and an L-valued mapping ®, such that the
cuts of ® are precisely all islands of h.

Branimir Seselja Cuts of lattice-valued functions and applicat AAA 79 23 /33



Rectangular height functions/8

Let h:{1,2,3,4,5} x {1,2,3,4} — N be a height function.
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Rectangular height functions/10

Its cut relations are:

hio=0

hg = I (one-element island)

hg = k (four-element square island)

hy = 5 (nine-element square island)

he = I3 U I5 (this cut is a disjoint union of two islands)
hs = 5 U I5 U I (union of three islands)

hs = I3 U I (union of two islands)

hy =k U Ig (union of two islands)

h1 ={1,2,3,4,5} x {1,2,3,4} = Iy (the whole domain)
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Rectangular height functions/11
0
I //\\
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Rectangular height functions/12

Theorem 4
For every rectangular height function

h*:{1,2,...,n} x{1,2,....,m} = N,
there is a rectangular height function
h*:{1,2,...,n} x{1,2,....,m} — N,

such that Zyect(h*) = Zrect(h™) and in h** every island appears exactly
in one cut.
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Rectangular height functions/12

Theorem 4
For every rectangular height function

h*:{1,2,...,n} x{1,2,....,m} = N,
there is a rectangular height function
h*:{1,2,...,n} x{1,2,....,m} — N,

such that Zyect(h*) = Zrect(h™) and in h** every island appears exactly
in one cut.

If a rectangular height function h** has the property that each island
appears exactly in one cut, then we call it standard rectangular height
function.
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Rectangular height functions/13

We denote by Anax(m, n) the maximum number of different nonempty

p-cuts of a standard rectangular height function on the rectangular table
of size m x n.
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Rectangular height functions/13

We denote by Anax(m, n) the maximum number of different nonempty

p-cuts of a standard rectangular height function on the rectangular table
of size m x n.

Theorem 5 Apa(m,n) =m+n—1. J
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Rectangular height functions/14

The maximum number of different nonempty p-cuts of a standard
rectangular height function is equal to the minimum cardinality of maximal
systems of islands.
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Rectangular height functions/15

Lemma 1

If m> 3 and n > 3 and a height function

h:{1,2,...,m} x {1,2,...,n} — N has maximally many islands, then it
has exactly two maximal islands.
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Rectangular height functions/15

Lemma 1

If m> 3 and n > 3 and a height function

h:{1,2,...,m} x {1,2,...,n} — N has maximally many islands, then it
has exactly two maximal islands.

Lemma 2

If m> 3 or n> 3, then for any odd number t = 2k 4+ 1 with

1<t < max{m—2,n— 2}, there is a standard rectangular height
function h: {1,2,...,m} x {1,2,...,n} — N having the maximum
number of islands f(m,n), such that one of the side-lengths of one of the
maximal islands is equal to t.

(Remark: The statement is not true for even side-lengths, one can
construct counterexample easily!)
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Rectangular height functions/16

We denote by A{?(m, n) the number of different nonempty cuts of a
standard rectangular height function h in the case h has maximally many
islands, i.e., when the number of islands is

f(m,n) = {mn+m2+n_1J :
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Rectangular height functions/16

We denote by A{?(m, n) the number of different nonempty cuts of a
standard rectangular height function h in the case h has maximally many
islands, i.e., when the number of islands is

f(m,n) = {mn+m2+n_1J :

Theorem 6

Let h:{1,2,....,m} x {1,2,...,n} — N be a standard rectangular height
function having maximally many islands f(m, n). Then,

NZ(m, n) > [logo(m +1)] + [loga(n+1)] — 1.
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Islands and formal concepts

Neither every island is a formal concept, nor every formal concept is an J
island.
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Islands and formal concepts

Neither every island is a formal concept, nor every formal concept is an
island. J

Let (C, D) be a formal concept of the context K := (A, B, /). Then, there
are linear orderings <; and <, on A and B, respectively, such that C x D
is an island of | C (A, <1) x (B, <») if and only if there is an element

a € Asuch that a¢ C and b € B such that b ¢ D, with (a,b) & /,

(a,y) & I for every y € D and (x, b) & | for every x € C.
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Islands and formal concepts

Neither every island is a formal concept, nor every formal concept is an
island.

v

Let (C, D) be a formal concept of the context K := (A, B, /). Then, there
are linear orderings <; and <, on A and B, respectively, such that C x D
is an island of | C (A, <1) x (B, <») if and only if there is an element

a € Asuch that a¢ C and b € B such that b ¢ D, with (a,b) & /,

(a,y) & I for every y € D and (x, b) & | for every x € C.

v

If A1 x By is an island of a relation | C (A, <;1) x (B, <3), then (A1, B1) is
a concept if and only if there is no a € A\ Ay such that (a, b) € [ for all
b € By and there is no b € B\ By such that (a,b) € I for all a € A;.
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Islands and formal concepts

Neither every island is a formal concept, nor every formal concept is an
island.

Let (C, D) be a formal concept of the context K := (A, B, /). Then, there
are linear orderings <; and <, on A and B, respectively, such that C x D
is an island of | C (A, <1) x (B, <») if and only if there is an element

a € Asuch that a¢ C and b € B such that b ¢ D, with (a,b) & /,

(a,y) & I for every y € D and (x, b) & | for every x € C.

v

If A1 x By is an island of a relation | C (A, <1) x (B, <2), then (Aq, By) is
a concept if and only if there is no a € A\ Ay such that (a, b) € [ for all
b € B; and there is no b € B\ B; such that (a, b) € [ for all a € A;.

Let / be a relation | C (A, <;1) X (B, <2). Then, every island in a relation
| is a concept if and only if every x € A belongs to not more than one
island and every y € B belongs to not more then one island.
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