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Definition/1

Grid, neighbourhood relation
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Definition/2

We call a rectangle/triangle an island, if for the cell t, if we denote its
height by at , then for each cell t̂ neighbouring with a cell of the
rectange/triangle T, the inequality at̂ < min{at : t ∈ T} holds.
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History/1

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of
Combinatorics, Information and System Sci., 31 (2006), 317-326.
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History/2

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive
lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a m × n rectangular board
on square grid:

f (m, n) = [
mn + m + n − 1

2
].
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History/3

Rectangular islands in higher dimensions

G. Pluhár: The number of brick islands by means of distributive
lattices, Acta Sci. Math., to appear.
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History/4

Triangular islands

E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular
islands on a triangular grid, Periodica Mathematica Hungarica, 58
(2009), 25–34.
Available at http://www.math.u-szeged.hu/˜horvath

For the maximum number of triangular islands in an equilateral rectangle
of side length n, n2+3n

5 ≤ f (n) ≤ 3n2+9n+2
14 holds.
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History/5

Square islands (also in higher dimensions)

E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of
square islands on a rectangular sea, Acta Sci. Math., to appear.
Available at http://www.math.u-szeged.hu/˜horvath

1

3
(rs − 2r − 2s) ≤ f (r , s) ≤ 1

3
(rs − 1)

Branimir Šešelja Andreja Tepavčević Eszter K. Horváth ()Cuts of lattice-valued functions and applications to islands AAA 79 8 / 33



History/5

Square islands (also in higher dimensions)
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square islands on a rectangular sea, Acta Sci. Math., to appear.
Available at http://www.math.u-szeged.hu/˜horvath

1

3
(rs − 2r − 2s) ≤ f (r , s) ≤ 1

3
(rs − 1)
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Proving methods/1

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent
subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number
of elements.
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Proving methods/2

TREE-GRAPH METHOD
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Proving methods/2

TREE-GRAPH METHOD

Lemma 2 (folklore)

(i) Let T be a binary tree with ` leaves. Then the number of
vertices of T depends only on `, moreover |V | = 2`− 1.

(ii) Let T be a rooted tree such that any non-leaf node has at
least 2 sons. Let ` be the number of leaves in T . Then
|V | ≤ 2`− 1.

We have 4s + 2d ≤ (n + 1)(m + 1).
The number of leaves of T (I) is ` = s + d . Hence by Lemma 2 the
number of islands is

|V | − d ≤ (2`− 1)− d = 2s + d − 1 ≤ 1

2
(n + 1)(m + 1)− 1.

.
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Proving methods/3

ELEMENTARY METHOD

We define
µ(R) = µ(u, v) := (u + 1)(v + 1).

Now

f (m, n) = 1 +
∑

R∈maxI
f (R) = 1 +

∑
R∈maxI

([(u + 1)(v + 1)

2

]
− 1
)

= 1 +
∑

R∈maxI

([µ(u, v)

2

]
− 1
)
≤ 1− |maxI|+

[µ(C)

2
]
.

If |maxI| ≥ 2, then the proof is ready. Case |maxI| = 1 is an easy
excersise.
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History/6

Some exact formulas

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
p(m, n) = f (m, n) = [(mn + m + n − 1)/2].

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If n ≥ 2, then h1(m, n) = [ (m+1)n
2 ].

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K.
Horváth):

If n ≥ 2, then h2(m, n) = [ (m+1)n
2 ] + [ (m−1)

2 ].

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If m, n ≥ 2, then t(m, n) = [mn

2 ].
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p(m, n) = f (m, n) = [(mn + m + n − 1)/2].

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
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History/7

Further results on rectangular islands

Zs. Lengvárszky: The minimum cardinality of maximal systems of
rectangular islands, European Journal of Combinatorics, 30 (2009),
216-219.
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History/8

The board consists of all vertices of a hypercube, i.e. the elements of a
Boolean algebra BA = {0, 1}n.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in BA = {0, 1}n by b(n).

Island formula for Boolean algebras (P. Hajnal, E.K. Horváth)
b(n) = 1 + 2n−1.
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Rectangular height functions/1

Joint work with Branimir Šešelja and Andreja Tepavčević

A height function h is a mapping from {1, 2, ...,m} × {1, 2, ..., n} to N,
h : {1, 2, ...,m} × {1, 2, ..., n} → N.

The co-domain of the height function is the lattice (N,≤), where N is the
set of natural numbers under the usual ordering ≤ and suprema and
infima are max and min, respectively.

For every p ∈ N, the cut of the height function, i.e. the p-cut of h is an
ordinary relation hp on {1, 2, ...,m} × {1, 2, ..., n} defined by

(x , y) ∈ hp if and only if h(x , y) ≥ p.

Branimir Šešelja Andreja Tepavčević Eszter K. Horváth ()Cuts of lattice-valued functions and applications to islands AAA 79 17 / 33



Rectangular height functions/1

Joint work with Branimir Šešelja and Andreja Tepavčević
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Rectangular height functions/2

We say that two rectangles {α, ..., β} × {γ, ..., δ} and
{α1, ..., β1} × {γ1, ..., δ1} are distant if they are disjoint and for every two
cells, namely (a, b) from the first rectangle and (c , d) from the second, we
have (a− c)2 + (b − d)2 ≥ 4.

The height function h is called rectangular if for every p ∈ N, every
nonempty p-cut of h is a union of distant rectangles.
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Rectangular height functions/3

5 5 3 5 5

4 4 2 4 4

2 2 1 2 2

Γ1 = {1, 2, 3, 4, 5} × {1, 2, 3},
Γ2 = {1, 2, 3, 4, 5} × {1, 2, 3} \ {(3, 1)},
Γ3 = {(1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (4, 2), (4, 3), (5, 2), (5, 3)},
Γ4 = {(1, 2), (1, 3), (2, 2), (2, 3), (4, 2), (4, 3), (5, 2), (5, 3)} and
Γ5 = {(1, 3), (2, 3), (4, 3), (5, 3)}
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Rectangular height functions/4
CHARACTERIZATION THEOREM

Theorem 1
A height function hN : {1, 2, ...,m} × {1, 2, ..., n} → N is rectangular if
and only if for all (α, γ), (β, δ) ∈ {1, 2, ...,m} × {1, 2, ..., n} either

these are not neighboring cells and there is a cell (µ, ν) between
(α, γ) and (β, δ) such that hN(µ, ν) < min{hN(α, γ), hN(β, δ)}, or
for all (µ, ν) ∈ [min{α, β},max{α, β}]× [min{γ, δ},max{γ, δ}],

hN(µ, ν) ≥ min{hN(α, γ), hN(β, δ)}.
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Rectangular height functions/5

Theorem 2

For every height function h : {1, 2, ..., n} × {1, 2, ...,m} → N, there is a
rectangular height function h∗ : {1, 2, ..., n} × {1, 2, ...,m} → N, such
that Irect(h) = Irect(h∗).
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Rectangular height functions/6
CONSTRUCTING ALGORITHM

1. FOR i = t TO 0
2. FOR y = 1 TO n
3. FOR x = 1 TO m
4. IF h(x , y) = ai THEN
5. j:= i
6. WHILE there is no island of h which is a subset of haj that contains
(x , y) DO j:=j-1
7. ENDWHILE
8. Let h∗(x , y) := aj .
9. ENDIF
10. NEXT x
11. NEXT y
12. NEXT i
13. END.
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Rectangular height functions/7
LATTICE-VALUED REPRESENTATION

Theorem 3
Let h : {1, 2, ...,m} × {1, 2, ..., n} → N be a rectangular height function.
Then there is a lattice L and an L-valued mapping Φ, such that the
cuts of Φ are precisely all islands of h.
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Rectangular height functions/8

Let h : {1, 2, 3, 4, 5} × {1, 2, 3, 4} → N be a height function.

4 9 8 7 1 5
3 8 8 7 1 4
2 7 7 7 1 5
1 2 2 2 1 6

1 2 3 4 5
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Rectangular height functions/9

h is a rectangular height function. Its islands are:

I1 = {(1, 4)},
I2 = {(1, 3), (1, 4), (2, 3), (2, 4)},
I3 = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)},
I4 = {(5, 1)},
I5 = {(5, 1), (5, 2)},
I6 = {(5, 4)},
I7 = {(5, 1), (5, 2), (5, 3), (5, 4)},
I8 = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3),
(2, 4), (3, 2), (3, 3), (3, 4), (1, 1), (2, 1), (3, 1)},
I9 = {1, 2, 3, 4, 5} × {1, 2, 3, 4}.
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Rectangular height functions/10

Its cut relations are:

h10 = ∅
h9 = I1 (one-element island)
h8 = I2 (four-element square island)
h7 = I3 (nine-element square island)
h6 = I3 ∪ I4 (this cut is a disjoint union of two islands)
h5 = I3 ∪ I5 ∪ I6 (union of three islands)
h4 = I3 ∪ I7 (union of two islands)
h2 = I7 ∪ I8 (union of two islands)
h1 = {1, 2, 3, 4, 5} × {1, 2, 3, 4} = I9 (the whole domain)
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Rectangular height functions/11
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Rectangular height functions/12

Theorem 4
For every rectangular height function

h∗ : {1, 2, ..., n} × {1, 2, ...,m} → N,

there is a rectangular height function

h∗∗ : {1, 2, ..., n} × {1, 2, ...,m} → N,

such that Irect(h∗) = Irect(h∗∗) and in h∗∗ every island appears exactly
in one cut.

If a rectangular height function h∗∗ has the property that each island
appears exactly in one cut, then we call it standard rectangular height
function.
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Rectangular height functions/13

We denote by Λmax(m, n) the maximum number of different nonempty
p-cuts of a standard rectangular height function on the rectangular table
of size m × n.

Theorem 5 Λmax(m, n) = m + n − 1.
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Rectangular height functions/14

The maximum number of different nonempty p-cuts of a standard
rectangular height function is equal to the minimum cardinality of maximal
systems of islands.
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Rectangular height functions/15

Lemma 1
If m ≥ 3 and n ≥ 3 and a height function
h : {1, 2, ...,m} × {1, 2, ..., n} → N has maximally many islands, then it
has exactly two maximal islands.

Lemma 2
If m ≥ 3 or n ≥ 3, then for any odd number t = 2k + 1 with
1 ≤ t ≤ max{m − 2, n − 2}, there is a standard rectangular height
function h : {1, 2, ...,m} × {1, 2, ..., n} → N having the maximum
number of islands f(m,n), such that one of the side-lengths of one of the
maximal islands is equal to t.
(Remark: The statement is not true for even side-lengths, one can
construct counterexample easily!)
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Rectangular height functions/16

We denote by Λcz
h (m, n) the number of different nonempty cuts of a

standard rectangular height function h in the case h has maximally many
islands, i.e., when the number of islands is

f (m, n) =

⌊
mn + m + n − 1

2

⌋
.

Theorem 6
Let h : {1, 2, ...,m} × {1, 2, ..., n} → N be a standard rectangular height
function having maximally many islands f (m, n). Then,
Λcz

h (m, n) ≥ dlog2(m + 1)e+ dlog2(n + 1)e − 1.
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Islands and formal concepts

Neither every island is a formal concept, nor every formal concept is an
island.

Let (C ,D) be a formal concept of the context K := (A,B, I ). Then, there
are linear orderings ≤1 and ≤2 on A and B, respectively, such that C × D
is an island of I ⊆ (A,≤1)× (B,≤2) if and only if there is an element
a ∈ A such that a 6∈ C and b ∈ B such that b 6∈ D, with (a, b) 6∈ I ,
(a, y) 6∈ I for every y ∈ D and (x , b) 6∈ I for every x ∈ C .

If A1 ×B1 is an island of a relation I ⊆ (A,≤1)× (B,≤2), then (A1,B1) is
a concept if and only if there is no a ∈ A \ A1 such that (a, b) ∈ I for all
b ∈ B1 and there is no b ∈ B \ B1 such that (a, b) ∈ I for all a ∈ A1.

Let I be a relation I ⊆ (A,≤1)× (B,≤2). Then, every island in a relation
I is a concept if and only if every x ∈ A belongs to not more than one
island and every y ∈ B belongs to not more then one island.
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