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Definition/1

Grid, neighbourhood relation
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Definition/2

We call a rectangle/triangle an island, if for the cell t, if we denote its
height by at , then for each cell t̂ neighbouring with a cell of the
rectange/triangle T, the inequality at̂ < min{at : t ∈ T} holds.
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History/1

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of
Combinatorics, Information and System Sci., 31 (2006), 317-326.
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History/2

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive
lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a m × n rectangular board
on square grid:

f (m, n) = [
mn + m + n − 1

2
].
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History/3

Rectangular islands in higher dimensions

G. Pluhár: The number of brick islands by means of distributive
lattices, Acta Sci. Math., to appear.
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History/4

Triangular islands

E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular
islands on a triangular grid, Periodica Mathematica Hungarica, 58
(2009), 25–34.
Available at http://www.math.u-szeged.hu/˜horvath

For the maximum number of triangular islands in an equilateral rectangle
of side length n, n2+3n

5 ≤ f (n) ≤ 3n2+9n+2
14 holds.
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History/5

Square islands (also in higher dimensions)

E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of
square islands on a rectangular sea, Acta Sci. Math., submitted.
Available at http://www.math.u-szeged.hu/˜horvath

1

3
(rs − 2r − 2s) ≤ f (r , s) ≤ 1

3
(rs − 1)
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History/6

Some exact formulas

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
p(m, n) = f (m, n) = [(mn + m + n − 1)/2].

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If n ≥ 2, then h1(m, n) = [ (m+1)n
2 ].

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K.
Horváth):

If n ≥ 2, then h2(m, n) = [ (m+1)n
2 ] + [ (m−1)

2 ].

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If m, n ≥ 2, then t(m, n) = [mn

2 ].
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History/7

Further results on rectangular islands

Zs. Lengvárszky: The minimum cardinality of maximal systems of
rectangular islands, European Journal of Combinatorics, 30 (2009),
216-219.
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Islands in Boolean algebras, i.e. in hypercubes /1

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a
Boolean algebra BA = {0, 1}n.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in BA = {0, 1}n by b(n).

Theorem 1
b(n) = 1 + 2n−1.
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Islands in Boolean algebras, i.e. in hypercubes /2

Theorem 1
b(n) = 1 + 2n−1.

Proof:

b(n) ≥ 1 + 2n−1 because we can put one-cell islands to all vertices with an
odd number of 1-s.

We show b(n) ≤ 1 + 2n−1 by induction on n. For n = 0, 1 the statement is
easy to check.
For n ≥ 2, we cut the hypercube into two half-hypercubes, of size 2n−1. If
one of them is an island, then the other cannot contain island.
If neither of them is an island, then by the induction hypothesis, in both
half-hypercubes, the maximum cardinality of a system of islands is at most
2n−2.
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Rectangular fuzzy relations/1

Joint work with Branimir Šešelja and Andreja Tepavčević

Let A and B nonempty sets and L a lattice. Then a fuzzy relation ρ is a
mapping from A× B to L.

For every p ∈ L, cut relation is an ordinary relation ρp on A×B defined by

(x , y) ∈ ρp if and only if ρ(x , y) ≥ p.
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Rectangular fuzzy relations/2

We consider special lattice valued fuzzy relations:
The set {1, 2, ...,m} × {1, 2, ..., n}, m, n ∈ N, is called a table of size
m × n. Such a table is the domain of a fuzzy relation. We consider

ΓN : {1, 2, ...,m} × {1, 2, ..., n} → N.

Here the co-domain is the lattice (N,≤), where N is the set of natural
numbers under the usual ordering ≤ and suprema and infima are max and
min, respectively. Moreover

Γ[0,1] : {1, 2, ...,m} × {1, 2, ..., n} → [0, 1].

Here the co-domain is a lattice ([0, 1],≤) in which suprema and infima are
max and min, respectively.
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Rectangular fuzzy relations/3

We say that two rectangles {α, ..., β} × {γ, ..., δ} and
{α1, ..., β1} × {γ1, ..., δ1} are distant if they are disjoint and for every two
cells, namely (a, b) from the first rectangle and (c , d) from the second, we
have (a− c)2 + (b − d)2 ≥ 4.

Fuzzy relation Γ is called rectangular if for every p ∈ N, every nonempty
p-cut of Γ is a union of distant rectangles.
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Rectangular fuzzy relations/4

5 5 3 5 5

4 4 2 4 4

2 2 1 2 2

Γ1 = {1, 2, 3, 4, 5} × {1, 2, 3},
Γ2 = {1, 2, 3, 4, 5} × {1, 2, 3} \ {(3, 1)},
Γ3 = {(1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (4, 2), (4, 3), (5, 2), (5, 3)},
Γ4 = {(1, 2), (1, 3), (2, 2), (2, 3), (4, 2), (4, 3), (5, 2), (5, 3)} and
Γ5 = {(1, 3), (2, 3), (4, 3), (5, 3)}
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Rectangular fuzzy relations/5
CHARACTERIZATION THEOREM / A

Theorem 2 / A
A fuzzy relation ΓN : {1, 2, ...,m} × {1, 2, ..., n} → N is rectangular if
and only if for all (α, γ), (β, δ) ∈ {1, 2, ...,m} × {1, 2, ..., n} either

these are not neighboring cells and there is a cell (µ, ν) between
(α, γ) and (β, δ) such that ΓN(µ, ν) < min{ΓN(α, γ), ΓN(β, δ)}, or
for all (µ, ν) ∈ [min{α, β},max{α, β}]× [min{γ, δ},max{γ, δ}],

ΓN(µ, ν) ≥ min{ΓN(α, γ), ΓN(β, δ)}.
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Rectangular fuzzy relations/6
CHARACTERIZATION THEOREM / B

Theorem 2 / B
A fuzzy relation Γ[0,1] : {1, 2, ...,m} × {1, 2, ..., n} → [0, 1] is rectangular
if and only if for all (α, γ), (β, δ) ∈ {1, 2, ...,m} × {1, 2, ..., n} either

these are not neighboring cells and there is a cell (µ, ν) between
(α, γ) and (β, δ) such that
Γ[0,1](µ, ν) < min{Γ[0,1](α, γ), Γ[0,1](β, δ)}, or
for all (µ, ν) ∈ [min{α, β},max{α, β}]× [min{γ, δ},max{γ, δ}],

Γ[0,1](µ, ν) ≥ min{Γ[0,1](α, γ), Γ[0,1](β, δ)}.
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Rectangular fuzzy relations/6
CHARACTERIZATION THEOREM / B

Theorem 2 / B
A fuzzy relation Γ[0,1] : {1, 2, ...,m} × {1, 2, ..., n} → [0, 1] is rectangular
if and only if for all (α, γ), (β, δ) ∈ {1, 2, ...,m} × {1, 2, ..., n} either

these are not neighboring cells and there is a cell (µ, ν) between
(α, γ) and (β, δ) such that
Γ[0,1](µ, ν) < min{Γ[0,1](α, γ), Γ[0,1](β, δ)}, or
for all (µ, ν) ∈ [min{α, β},max{α, β}]× [min{γ, δ},max{γ, δ}],

Γ[0,1](µ, ν) ≥ min{Γ[0,1](α, γ), Γ[0,1](β, δ)}.
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Theorem 3

For every fuzzy relation ΓN : {1, 2, ..., n} × {1, 2, ...,m} → N, there is a
rectangular fuzzy relation ΦN : {1, 2, ..., n} × {1, 2, ...,m} → N, having
the same islands.

For every fuzzy relation Γ[0,1] : {1, 2, ..., n} × {1, 2, ...,m} → [0, 1], there
is a rectangular fuzzy relation Φ[0,1] : {1, 2, ..., n} × {1, 2, ...,m} → [0, 1],
having the same islands.
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CONSTRUCTING ALGORITHM

Let Γ[0,1] : {1, 2, ...,m} × {1, 2, ..., n} → [0, 1] be a fuzzy relation. Let
{a1, a2, ..., ah} be the set of different values of Γ[0,1], such that
0 ≤ a0 < a1 < ... < ah ≤ 1.
1. Let i := h
2. Let (x , y) = (1, 1)
3. If Γ(x , y) 6= ai , then go to 6
4. Let Φ(x , y) := Γ(x , y).
5. Take ak to be Φ(x , y). If there is an island of Γ(x , y) that contains
(x , y) which is a subset of Γak

then go to 6.
Otherwise Φ(x , y) = ak−1.
6. If x < m, then x := x + 1, go to 3. Otherwise, go to 7.
7. If y < n, then y := y + 1 and x := 1, go to 3. Otherwise, if x < m go
to 6 and if x = m go to 8.
8. If i 6= 0, then i := i − 1 and go to 2. Otherwise go to 9.
9. End.
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LATTICE-VALUED REPRESENTATION

Theorem 4

Let ΓN : {1, 2, ...,m} × {1, 2, ..., n} → N be a rectangular fuzzy relation.
Then there is a lattice L and an L-valued relation Φ, such that the cuts
of Φ are precisely all islands of ΓN.

Let Γ[0,1] : {1, 2, ...,m} × {1, 2, ..., n} → [0, 1] be a rectangular fuzzy
relation. Then there is a lattice L and an L-valued relation Φ, such that
the cuts of Φ are precisely all islands of Γ[0,1].
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Let Γ : {1, 2, 3, 4, 5} × {1, 2, 3, 4} → [0, 1] be a fuzzy relation.

4 0.9 0.8 0.7 0.1 0.5
3 0.8 0.8 0.7 0.1 0.4
2 0.7 0.7 0.7 0.1 0.5
1 0.2 0.2 0.2 0.1 0.6

1 2 3 4 5
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Γ is a rectangular fuzzy relation. Its islands are:

I1 = {(1, 4)},
I2 = {(1, 3), (1, 4), (2, 3), (2, 4)},
I3 = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)},
I4 = {(5, 1)},
I5 = {(5, 1), (5, 2)},
I6 = {(5, 4)},
I7 = {(5, 1), (5, 2), (5, 3), (5, 4)},
I8 = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3),
(2, 4), (3, 2), (3, 3), (3, 4), (1, 1), (2, 1), (3, 1)},
I9 = {1, 2, 3, 4, 5} × {1, 2, 3, 4}.
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Its cut relations are:

Γ1 = ∅
Γ0.9 = I1 (one-element island)
Γ0.8 = I2 (four-element square island)
Γ0.7 = I3 (nine-element square island)
Γ0.6 = I3 ∪ I4 (this cut is a disjoint union of two islands)
Γ0.5 = I3 ∪ I5 ∪ I6 (union of three islands)
Γ0.4 = I3 ∪ I7 (union of two islands)
Γ0.2 = I7 ∪ I8 (union of two islands)
Γ0.1 = {1, 2, 3, 4, 5} × {1, 2, 3, 4} = I9 (the whole domain)
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L = (I0(Γ),⊇)
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Theorem 5
For every rectangular fuzzy relation
ΦN : {1, 2, ..., n} × {1, 2, ...,m} → N, there is a rectangular fuzzy
relation ΨN : {1, 2, ..., n} × {1, 2, ...,m} → N, having the same islands
and in ΨN every island appears exactly in one cut.

If a fuzzy rectangular relation ΨN has the property that each island
appears exactly in one cut, then we call it standard fuzzy rectangular
relation. We denote by Λ(m, n) the maximum number of different
p-cuts of a standard fuzzy rectangular relation on the rectangular table
of size m × n.

Theorem 6
Λ(m, n) = m + n − 1.
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