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Lattice-valued functions

Let S be a nonempty set and L a complete lattice. Every mapping
µ : S → L is called a lattice-valued (L-valued) function on S .
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Cut set (p-cut)

Let p ∈ L. A cut set of an L-valued function µ : S → L (a p-cut) is a
subset µp ⊆ S defined by:

x ∈ µp if and only if µ(x) ≥ p. (1)

In other words, a p-cut of µ : S → L is the inverse image of the
principal filter ↑p, generated by p ∈ L:

µp = µ−1(↑p). (2)

It is obvious that for every p, q ∈ L, p ≤ q implies µq ⊆ µp.
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Cuts and closure systems

If µ : S → L is an L-valued function on S , then the collection µL of all
cuts of µ is a closure system on S under the set-inclusion.

Let F be a closure system on a set S . Then there is a lattice L and an
L-valued function µ : S → L, such that the collection µL of cuts of µ is F .

A required lattice L is the collection F ordered by the
reversed-inclusion, and that µ : S → L can be defined as follows:

µ(x) =
⋂
{f ∈ F | x ∈ f }. (3)
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The relation ≈ on L

Given an L-valued function µ : S → L, we define the relation ≈ on L: for
p, q ∈ L

p ≈ q if and only if µp = µq. (4)

The relation ≈ is an equivalence on L, and

p ≈ q if and only if ↑p ∩ µ(S) = ↑q ∩ µ(S), (5)

where µ(S) = {r ∈ L | r = µ(x) for some x ∈ S}.

We denote by L/≈ the collection of equivalence classes under ≈.
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Miskolc, 2017, szeptember 13. . 5 /

32



The relation ≈ on L

Given an L-valued function µ : S → L, we define the relation ≈ on L: for
p, q ∈ L

p ≈ q if and only if µp = µq. (4)

The relation ≈ is an equivalence on L, and

p ≈ q if and only if ↑p ∩ µ(S) = ↑q ∩ µ(S), (5)

where µ(S) = {r ∈ L | r = µ(x) for some x ∈ S}.

We denote by L/≈ the collection of equivalence classes under ≈.
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The collection of cuts

Let (µL,≤) be the poset with µL = {µp | p ∈ L} (the collection of cuts of
µ) and the order ≤ being the inverse of the set-inclusion: for µp, µq ∈ µL,

µp ≤ µq if and only if µq ⊆ µp.

(µL,≤) is a complete lattice and for every collection {µp | p ∈ L1}, L1 ⊆ L
of cuts of µ, we have ⋂

{µp | p ∈ L1} = µ∨(p|p∈L1). (6)
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The quotient L/≈

Each ≈-class contains its supremum:∨
[p]≈ ∈ [p]≈. (7)

The mapping p 7→
∨

[p]≈ is a closure operator on L.

The quotient L/≈ can be ordered by the relation ≤L/≈ defined as follows:

[p]≈ ≤L/≈ [q]≈ if and only if ↑q ∩ µ(S) ⊆ ↑p ∩ µ(S).

The order ≤L/≈ of classes in L/≈ corresponds to the order of suprema of
classes in L (we denote the order in L by ≤L):
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Miskolc, 2017, szeptember 13. . 7 /

32



The quotient L/≈

Each ≈-class contains its supremum:∨
[p]≈ ∈ [p]≈. (7)

The mapping p 7→
∨

[p]≈ is a closure operator on L.

The quotient L/≈ can be ordered by the relation ≤L/≈ defined as follows:

[p]≈ ≤L/≈ [q]≈ if and only if ↑q ∩ µ(S) ⊆ ↑p ∩ µ(S).

The order ≤L/≈ of classes in L/≈ corresponds to the order of suprema of
classes in L (we denote the order in L by ≤L):
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The poset (L/≈,≤L/≈)

The poset (L/≈,≤L/≈) is a complete lattice fulfilling:

(i) [p]≈ ≤L/≈ [q]≈ if and only if
∨

[p]≈ ≤L
∨

[q]≈.

(ii) The mapping [p]≈ 7→
∨

[p]≈ is an injection of L/≈ into L.

The sub-poset (
∨

[p]≈,≤L) of L is isomorphic to the lattice (L/≈,≤L/≈)
under

∨
[p]≈ 7→ [p]≈.

Let µ : S → L be an L-valued function on S. The lattice (µL,≤) of cuts of
µ is isomorphic with the lattice (L/≈,≤L/≈) of ≈-classes in L under the
mapping µp 7→ [p]≈.
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Canonical representation of lattice-valued functions

We take the lattice (F ,≤), where F = µL ⊆ P(S) is the collection of
cuts of µ, and the order ≤ is the dual of the set inclusion.

Let µ̂ : S → F , where

µ̂(x) :=
⋂
{µp ∈ µL | x ∈ µp}. (8)

Properties:

µ̂ has the same cuts as µ.

µ̂ has one-element classes of the equivalence relation ≈ .
Every f ∈ F is equal to the corresponding cut of µ̂.
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Eszter K. Horváth, Szeged Co-authors: Branimir Šešelja, Andreja Tepavčević ()Lattice-valued functions
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Example

S = {a, b, c , d}
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Lattice-valued Boolean functions

A Boolean function is a mapping f : {0, 1}n → {0, 1}, n ∈ N.
A lattice-valued Boolean function is a mapping

f : {0, 1}n → L,

where L is a complete lattice.
We also deal with lattice-valued n-variable functions on a finite
domain {0, 1, . . . , k − 1}:

f : {0, 1, . . . , k − 1}n → L,

where L is a complete lattice.
We use also p-cuts of lattice-valued functions as characteristic
functions: for f : {0, 1, . . . , k − 1}n → L and p ∈ L, we have

fp : {0, 1, . . . , k − 1}n → {0, 1},

such that fp(x1, . . . , xn) = 1 if and only if f (x1, . . . , xn) ≥ p.
Clearly, a cut of a lattice-valued Boolean function is (as a
characteristic function) a Boolean function.
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Eszter K. Horváth, Szeged Co-authors: Branimir Šešelja, Andreja Tepavčević ()Lattice-valued functions
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Clearly, a cut of a lattice-valued Boolean function is (as a
characteristic function) a Boolean function.
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Invariance group

As usual, by Sn we denote the symmetric group of all permutations
over an n-element set. If f is an n-variable function on a finite
domain X and σ ∈ Sn, then f is invariant under σ, symbolically
σ ` f , if for all (x1, . . . , xn) ∈ X n

f (x1, . . . , xn) = f (xσ(1), . . . , xσ(n)).

If f is invariant under all permutations in G ≤ Sn and not invariant
under any permutation from Sn \ G , then G is called the invariance
group of f , and it is denoted by G (f ).
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Representability

A group G ≤ Sn is said to be (k ,m)-representable if there is a
function f : {0, 1, . . . , k − 1}n → {1, . . . ,m} whose invariance group
is G .

If G is the invariance group of a function f : {0, 1, . . . , k − 1}n → N,
then it is called (k ,∞)-representable.

G ≤ Sn is called m-representable if it is the invariance group of a
function f : {0, 1}n → {1, . . . ,m};
it is called representable if it is m-representable for some m ∈ N.

By the above, representability is equivalent with
(2,∞)-representability.
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Miskolc, 2017, szeptember 13. . 13 /

32



Representability by lattice-valued functions

We say that a permutation group G ≤ Sn is (k, L)-representable, if
there is a lattice-valued function f : {0, 1, . . . , k − 1}n → L, such that
σ ` f if and only if σ ∈ G .

In particular, a (2, L)-representable group is the invariance group of a
lattice-valued Boolean function f : {0, 1}n → L.

The notion of (2, L)-representability is more general than
(2, 2)-representability. An example is the Klein 4-group:
{id , (12)(34), (13)(24), (14)(23)}, which is (2, L) representable (for L
being a three element chain), but not (2, 2)-representable.
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A Galois connection for invariance groups

Let O
(n)
k = {f | f : kn → k} denote the set of all n-ary operations on

k, and for F ⊆ O
(n)
k and G ⊆ Sn let

F` := {σ ∈ Sn | ∀f ∈ F : σ ` f }, F
(k)

:= (F`)`,

G` := {f ∈ O
(n)
k | ∀σ ∈ G : σ ` f }, G

(k)
:= (G`)`.

The assignment G 7→ G
(k)

is a closure operator on Sn, and it is easy

to see that G
(k)

is a subgroup of Sn for every subset G ⊆ Sn (even if

G is not a group). For G ≤ Sn, we call G
(k)

the Galois closure of G

over k, and we say that G is Galois closed over k if G
(k)

= G .
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Galois closed groups

A group G ≤ Sn is Galois closed over k if and only if G is
(k,∞)-representable.

For every G ≤ Sn, we have

G
(k)

=
⋂
a∈kn

(Sn)a · G .

For arbitrary k , n ≥ 2, characterize those subgroups of Sn that are Galois
closed over k.

Theorem (H., Makay, Pöschel, Waldhauser) Let n > max
(
2d , d2 + d

)
and G ≤ Sn. Then G is not Galois closed over k if and only if
G = AB × L or G <sd SB × L, where B ⊆ n is such that D := n \ B has
less than d elements, and L is an arbitrary permutation group on D.
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Representability by lattice-valued functions

One can easily check that a permutation group G ⊆ Sn is
L-representable if and only if it is Galois closed over 2.

Similarly, it is easy to show that a permutation group is
(k, L)-representable if and only if it is Galois closed over the
k-element domain.
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Cuts of composition of functions

Theorem Let L be a complete lattice, let A 6= ∅ be a set and let
σ : A→ A, µ : A→ L, ψ : L→ L. Then, for every p ∈ L,

(σ ◦ µ ◦ ψ)p = σ ◦ µ ◦ ψp.

Corollary Let L be a complete lattice, let A 6= ∅ and let µ : A→ L.
Then the following holds.

(i) µp = µ ◦ (IL)p, where IL is the identity mapping IL : L→ L.

(ii) (σ ◦ µ)p = σ ◦ µp, for σ : A→ A.

(iii) (µ ◦ ψ)p = µ ◦ ψp, where ψ is a map ψ : L→ L.
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Miskolc, 2017, szeptember 13. . 18 /

32



Cuts of composition of functions

Theorem Let L be a complete lattice, let A 6= ∅ be a set and let
σ : A→ A, µ : A→ L, ψ : L→ L. Then, for every p ∈ L,

(σ ◦ µ ◦ ψ)p = σ ◦ µ ◦ ψp.

Corollary Let L be a complete lattice, let A 6= ∅ and let µ : A→ L.
Then the following holds.

(i) µp = µ ◦ (IL)p, where IL is the identity mapping IL : L→ L.

(ii) (σ ◦ µ)p = σ ◦ µp, for σ : A→ A.

(iii) (µ ◦ ψ)p = µ ◦ ψp, where ψ is a map ψ : L→ L.
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Invariance groups of lattice-valued functions via cuts

Proposition Let f : {0, . . . , k − 1}n → L and σ ∈ Sn. Then

σ ` f if and only if for every p ∈ L, σ ` fp.

The invariance group of a lattice-valued function f depends only on the
canonical representation of f .

If f1 : {0, . . . , k − 1}n → L1 and f2 : {0, . . . , k − 1}n → L2 are two
n-variable lattice-valued functions on the same domain, then f̂1 = f̂2
implies G (f1) = G (f2).
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Miskolc, 2017, szeptember 13. . 19 /

32



Invariance groups of lattice-valued functions via cuts

Proposition Let f : {0, . . . , k − 1}n → L and σ ∈ Sn. Then

σ ` f if and only if for every p ∈ L, σ ` fp.

The invariance group of a lattice-valued function f depends only on the
canonical representation of f .

If f1 : {0, . . . , k − 1}n → L1 and f2 : {0, . . . , k − 1}n → L2 are two
n-variable lattice-valued functions on the same domain, then f̂1 = f̂2
implies G (f1) = G (f2).
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Representation theorem

For every n ∈ N, there is a lattice L and a lattice valued Boolean
function F : {0, 1}n → L satisfying the following: If G ≤ Sn and
G = G (f ) for a Boolean function f , then G = G (Fp), for a cut Fp.
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Representation theorem on the k-element set

Every subgroups of Sn is an invariance group of a function
{0, . . . , k − 1}n → {0, . . . , k − 1} if and only if k ≥ n.

If k ≥ n, then for every subgroup G of Sn there exists a function
f : {0, . . . , k − 1}n → {0, 1} such that the invariance group of f is
exactly G .

For k, n ∈ N and k ≥ n, there is a lattice L and a lattice valued
function F : {0, . . . , k − 1}n → L such that the following holds: If
G ≤ Sn, then G = G (Fp) for a cut Fp of of F .
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Linear combination

A lattice-valued Boolean function is a map µ : {0, 1}n → L where L is
a bounded lattice and n ∈ 〈1, 2, 3, . . . 〉.
We say that µ can be given by a linear combination (in L) if there are
w1, . . . ,wn ∈ L such that, for all x = {x1, . . . , xn} ∈ {0, 1}n,

µ(x) =
n∨

i=1

wixi , that is, µ(x) =
n∨

i=1

(wi ∧ xi ). (9)
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Cuts and closure systems

For p ∈ L, the set

µp := {x ∈ {0, 1}n : µ(x) ≥ p} (10)

is called a cut of µ.

A closure system F over Bn is a ∩-subsemilattice of the powerset
lattice P(Bn) = 〈P(Bn);∪,∩〉 such that Bn ∈ F . By finiteness, F is
necessarily a complete ∩-semilattice.

A closure system F determines a closure operator in the standard
way. We only need the closures of singleton sets, that is,

for x ∈ Bn, we have x :=
⋂
{f ∈ F : x ∈ f }. (11)
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{∨, 0}-homomorphism

If µ : Bn → L such that µ(0) = 0 and, for all x , y ∈ Bn,
µ(x ∨ y) = µ(x) ∨ µ(y), then µ is called a {∨, 0}-homomorphism.

A lattice-valued function Bn → L can be given by a linear
combination in L iff it is a {∨, 0}-homomorphism.

µ(x ∨ y) =
∨

i wi (xi ∨ yi ) =
∨

i (wixi ∨ wiyi ) =
∨

i wixi ∨
∨

i wiyi =
µ(x) ∨ µ(y).

Let e(i) = 〈0, . . . , 0, 1, 0, . . . , 0〉 ∈ Bn where 1 stands in the i-th place.
Define wi := µ(e(i)). Observe that µ(e(i) · 1) = wi = wi · 1 and
µ(e(i) · 0) = 0 = wi · 0, that is, µ(e(i) · xi ) = wi · xi . Therefore, for
x ∈ Bn, we obtain µ(x) = µ(

∨
i e(i)xi ) =

∨
i µ(e(i)xi ) =

∨
i wi · xi .
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Miskolc, 2017, szeptember 13. . 24 /

32



{∨, 0}-homomorphism

If µ : Bn → L such that µ(0) = 0 and, for all x , y ∈ Bn,
µ(x ∨ y) = µ(x) ∨ µ(y), then µ is called a {∨, 0}-homomorphism.

A lattice-valued function Bn → L can be given by a linear
combination in L iff it is a {∨, 0}-homomorphism.

µ(x ∨ y) =
∨

i wi (xi ∨ yi ) =
∨

i (wixi ∨ wiyi ) =
∨

i wixi ∨
∨

i wiyi =
µ(x) ∨ µ(y).

Let e(i) = 〈0, . . . , 0, 1, 0, . . . , 0〉 ∈ Bn where 1 stands in the i-th place.
Define wi := µ(e(i)). Observe that µ(e(i) · 1) = wi = wi · 1 and
µ(e(i) · 0) = 0 = wi · 0, that is, µ(e(i) · xi ) = wi · xi . Therefore, for
x ∈ Bn, we obtain µ(x) = µ(

∨
i e(i)xi ) =

∨
i µ(e(i)xi ) =

∨
i wi · xi .
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Up-sets

If ∅ 6= X ⊆ Bn such that (∀x ∈ X )(∀y ∈ Bn)(x ≤ y then y ∈ X ),
then X is an up-set of Bn.

The lattice-valued function µ : Bn → L is isotone iff all the cuts of µ
are up-sets.
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Closure systems of up-sets, linear combinations

Let F be a set consisting of some up-sets of Bn. Then, the following
three conditions are equivalent.

(i) F is a closure system over Bn, and for all x , y ∈ Bn, x ⊆ y implies
x ∨ y = x .

(ii) F is a closure system over Bn, and for all x , y ∈ Bn,
x ∨ y = x ∩ y .

(iii) There exist a bounded lattice L and a lattice-valued function
µ : Bn → L given by a linear combination such that F is the family of
cuts of µ.
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Threshold functions

A classical threshold function is a Boolean function f : {0, 1}n → {0, 1}
such that there exist real numbers w1, . . . ,wn, t, fulfilling

f (x1, . . . , xn) = 1 if and only if
n∑

i=1

wi · xi ≥ t, (12)

where wi is called the weight of xi , for i = 1, 2, . . . , n and t is a constant
called the threshold value.
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Properties of threshold functions

Threshold functions are not closed under superposition, so they do
not constitute a clone.

It is easy to see that threshold functions with positive weights and a
threshold value are isotone.

However, an isotone Boolean function is not necessarily threshold, e.g.
f = x · y ∨ w · z is isotone, but not a threshold function. To see this,
it is enough to consider its invariance group, which is the following:
D8 = {(), (1324), (12)(34), (1423), (12), (34), (13)(24), (14)(23)},
however the invariance group of any threshold function is a direct
product of symmetric groups.
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Lattice-induced threshold function

For x ∈ {0, 1}, and w ∈ L, we define a mapping L× {0, 1} into L denoted
by ”·”, as follows:

w · x :=

{
w , if x = 1
0, if x = 0.

(13)

A function f : {0, 1}n → {0, 1} is a lattice induced threshold function,
if there is a complete lattice L and w1, . . . ,wn, t ∈ L, such that

f (x1, . . . , xn) = 1 if and only if
n∨

i=1

(wi · xi ) ≥ t. (14)
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Theorem

Every lattice-induced threshold function is isotone.

Every isotone Boolean function is a lattice induced threshold function.

The corresponding lattice in each case can be the free distributive
lattice with n generators.
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Main representative of isotone functions

Let B = ({0, 1}n,≤), n ∈ N, let LD a free distributive lattice with n
generators w1, . . . ,wn and β : B → LD , an LD-valued function on B
defined in the following way: for x = (x1, . . . , xn) ∈ B

β(x) =
n∨

i=1

(wi · xi ), (15)

.

Every up-set of a finite Boolean lattice B = ({0, 1}n,≤), n ∈ N, is a
cut of β.
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Miskolc, 2017, szeptember 13. . 31 /

32



Thank you for your attention!
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