Lattices and islands

Eszter K. Horváth, Szeged

Co-authors: Zoltán Németh, Gabriella Pluhár, János Barát, Péter Hajnal, Csaba Szabó, Gábor Horváth, Branimir Šešelja, Andreja Tepavčević, Attila Máder, Sándor Radeleczki

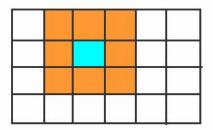
Luxembourg, 2011, June 16.

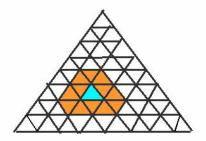
Eszter K. Horváth, Szeged

2 / 80

2 / 80

Grid, neighbourhood

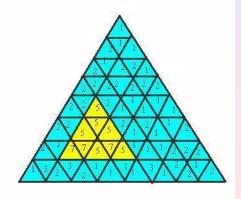




Definition/2

We call a rectangle/triangle an *island*, if for the cell t, if we denote its height by a_t , then for each cell \hat{t} neighbouring with a cell of the rectange/triangle T, the inequality $a_{\hat{t}} < min\{a_t : t \in T\}$ holds.

1	2	1	2	1
1	5	7	2	2
1	7	5	1	1
2	5	7	2	2
1	2	1	1	2
1	1	1	1	1



We put heights into the cells. How many islands do we have?

2	1	3	2
2	1	3	2
3	1	1	1

The number of islands Water level: 0,5 Nomber of islands: 1

2	1	3	2
2	1	3	2
3	1	1	1

2	IJ	3	2
22.	П	ŝ	2
<u>5</u> .	1	1	11

Water level: 1,5 Number of islands: 2

2	1	3	2
2	1	3	2
3	1	1	1

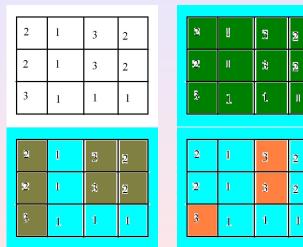
2	1	3	2
2	I	Ĵ.	2
5.	1	1	1

Water level: 2,5 Number of islands: 2

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3.	1	1	1

Altogether: 1 + 2 + 2 = 5 islands.



Could we make more islands onto this grid? (With other heights?)

Count the islands! / 6

Yes, we could make more islands, here we have 1 + 2 + 3 + 1 = 7 islands.

3	1	4	2	3	1	4	2
2	1	3	2	2	1	<u>5</u>	CNI CNI
3	1	1	1	3	1	1	I



Could we make more islands onto this grid? (With other heights?)

Count the islands! / 7

Yes, we could make more islands, here we have 1 + 2 + 4 + 2 = 9 islands.

3	1	4	3	62
2	1	2	2	2
3	1	3	4	2.0

3	1	绚	3	3	1	4	3	3	1	4	3
2	1	2	2	2	1	2	2	2	1	2	2
3	1	3	4	3	1	3	4	3	1	3	4

HOWEWER, WE CANNOT CREATE MORE !!!

Eszter K. Horváth, Szeged

The maximum number of islands on the $m \times n$ size grid (Gábor Czédli , Szeged, 2007. june 17.)

$$f(m,n)=\left[\frac{mn+m+n-1}{2}\right].$$

Soon we prove the formula !

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

Coding theory

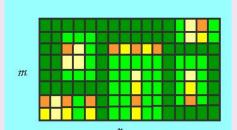
S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$



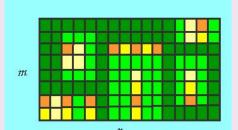
Eszter K. Horváth, Szeged

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$



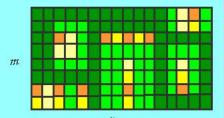
Eszter K. Horváth, Szeged

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$



Rectangular islands in higher dimensions

G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math., to appear.

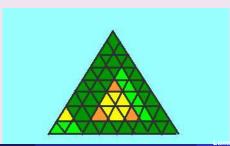
Rectangular islands in higher dimensions

G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math., to appear.

Triangular islands

E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25–34. Available at http://www.math.u-szeged.hu/~horvath

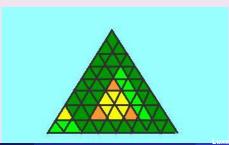
For the maximum number of triangular islands in an equilateral rectangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.



Triangular islands

E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25–34. Available at http://www.math.u-szeged.hu/~horvath

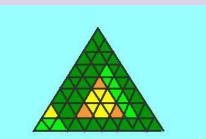
For the maximum number of triangular islands in an equilateral rectangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.



Triangular islands

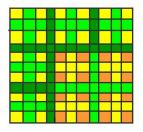
E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25–34. Available at http://www.math.u-szeged.hu/~horvath

For the maximum number of triangular islands in an equilateral rectangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.

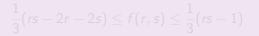


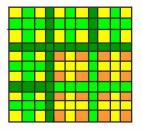
Square islands (also in higher dimensions)

$$\frac{1}{3}(rs - 2r - 2s) \le f(r, s) \le \frac{1}{3}(rs - 1)$$



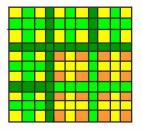
Square islands (also in higher dimensions)





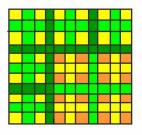
Square islands (also in higher dimensions)

$$\frac{1}{3}(rs-2r-2s) \le f(r,s) \le \frac{1}{3}(rs-1)$$



Square islands (also in higher dimensions)

$$\frac{1}{3}(rs-2r-2s) \le f(r,s) \le \frac{1}{3}(rs-1)$$



Proving $f(m, n) = \left[\frac{mn+m+n-1}{2}\right]$ THERE EXISTS:

By induction on the number of the cells: $f(m, n) \ge \left[\frac{mn+m+n-1}{2}\right]$.

If m = 1, then $\left[\frac{n+1+n-1}{2}\right] = n$, we put the numbers 1, 2, 3, ..., n in the cells and we will have exactly n islands.

If n = 1, then $\left[\frac{m+m+1-1}{2}\right] = m$. If m = n = 2:

Az $f(m, n) = \left[\frac{mn+m+n-1}{2}\right]$ képlet bizonyítása, THERE EXISTS:

Let m, n > 2.

$$f(m,n) \ge f(m-2,n) + f(1,n) + 1 \ge \left[\frac{(m-2)n + (m-2) + n - 1}{2}\right] + \left[\frac{n+1+n-1}{2}\right] + 1 = \left[\frac{(m-2)n + (m-2) + n - 1 + 2n}{2}\right] + 1 = \left[\frac{mn+m+n-1}{2}\right].$$

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number of elements.

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number of elements.

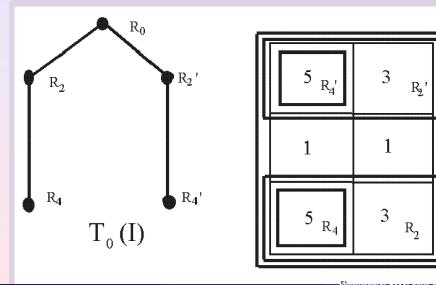
LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number of elements.

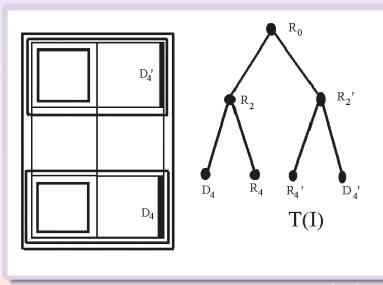
Proving methods/2

TREE-GRAPH METHOD



Proving methods/2

TREE-GRAPH METHOD



Proving methods/2

TREE-GRAPH METHOD

Lemma 2 (folklore)

(i) Let *T* be a binary tree with *l* leaves. Then the number of vertices of *T* depends only on *l*, moreover |*V*| = 2*l* − 1.
(ii) Let *T* be a rooted tree such that any non-leaf node has at least 2 sons. Let *l* be the number of leaves in *T*. Then |*V*| ≤ 2*l* − 1.

We have $4s + 2d \leq (n+1)(m+1)$. The number of leaves of $T(\mathcal{I})$ is $\ell = s + d$. Hence by Lemma 2 the number of islands is

 $|V| - d \le (2\ell - 1) - d = 2s + d - 1 \le \frac{1}{2}(n+1)(m+1) - 1.$

${\sf Proving\ methods}/2$

TREE-GRAPH METHOD

Lemma 2 (folklore)

(i) Let T be a binary tree with ℓ leaves. Then the number of vertices of T depends only on ℓ , moreover $|V| = 2\ell - 1$.

(ii) Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \le 2\ell - 1$.

We have $4s + 2d \le (n+1)(m+1)$. The number of leaves of $T(\mathcal{I})$ is $\ell = s + d$. Hence by Lemma 2 the number of islands is

 $|V| - d \le (2\ell - 1) - d = 2s + d - 1 \le \frac{1}{2}(n + 1)(m + 1) - 1.$

TREE-GRAPH METHOD

Lemma 2 (folklore)

(i) Let *T* be a binary tree with *l* leaves. Then the number of vertices of *T* depends only on *l*, moreover |*V*| = 2*l* − 1.
(ii) Let *T* be a rooted tree such that any non-leaf node has at least 2 sons. Let *l* be the number of leaves in *T*. Then |*V*| ≤ 2*l* − 1.

We have $4s + 2d \le (n+1)(m+1)$. The number of leaves of $T(\mathcal{I})$ is $\ell = s + d$. Hence by Lemma 2 the number of islands is

 $|V| - d \le (2\ell - 1) - d = 2s + d - 1 \le rac{1}{2}(n + 1)(m + 1) - 1.$

TREE-GRAPH METHOD

Lemma 2 (folklore)

(i) Let *T* be a binary tree with *l* leaves. Then the number of vertices of *T* depends only on *l*, moreover |*V*| = 2*l* − 1.
(ii) Let *T* be a rooted tree such that any non-leaf node has at least 2 sons. Let *l* be the number of leaves in *T*. Then |*V*| ≤ 2*l* − 1.

We have $4s + 2d \le (n+1)(m+1)$. The number of leaves of $T(\mathcal{I})$ is $\ell = s + d$. Hence by Lemma 2 the number of islands is

$$|V|-d \leq (2\ell-1)-d = 2s+d-1 \leq rac{1}{2}(n+1)(m+1)-1.$$

ELEMENTARY METHOD

We define

 $\mu(R) = \mu(u, v) := (u+1)(v+1).$

Now

$$f(m,n) = 1 + \sum_{R \in max\mathcal{I}} f(R) = 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{(u+1)(v+1)}{2} \right] - 1 \right)$$

$$=1+\sum_{R\in \max\mathcal{I}}\left(\left[\frac{\mu(u,v)}{2}\right]-1\right)\leq 1-|\max\mathcal{I}|+\left[\frac{\mu(\mathbf{C})}{2}\right].$$

ELEMENTARY METHOD

We define

$$\mu(R) = \mu(u, v) := (u+1)(v+1).$$

Now

$$f(m,n) = 1 + \sum_{R \in max\mathcal{I}} f(R) = 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{(u+1)(v+1)}{2} \right] - 1 \right)$$

$$=1+\sum_{R\in max\mathcal{I}}\left(\left[\frac{\mu(u,v)}{2}\right]-1\right)\leq 1-|max\mathcal{I}|+\left[\frac{\mu(C)}{2}\right].$$

ELEMENTARY METHOD

We define

$$\mu(R) = \mu(u, v) := (u+1)(v+1).$$

Now

$$f(m,n) = 1 + \sum_{R \in max\mathcal{I}} f(R) = 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{(u+1)(v+1)}{2} \right] - 1 \right)$$
$$= 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{\mu(u,v)}{2} \right] - 1 \right) \le 1 - \left[\max_{R \in max\mathcal{I}} \right] + \left[\frac{\mu(C)}{2} \right].$$

ELEMENTARY METHOD

We define

$$\mu(R) = \mu(u, v) := (u+1)(v+1).$$

Now

$$f(m,n) = 1 + \sum_{R \in max\mathcal{I}} f(R) = 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{(u+1)(v+1)}{2} \right] - 1 \right)$$

$$=1+\sum_{R\in max\mathcal{I}}\left(\left[\frac{\mu(U,V)}{2}\right]-1\right)\leq 1-|max\mathcal{I}|+\left[\frac{\mu(U)}{2}\right].$$

Some exact formulas

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_2(m, n) = \left[\frac{(m+1)n}{2}\right] + \left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \ge 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Some exact formulas

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_2(m, n) = \left\lfloor \frac{(m+1)n}{2} \right\rfloor + \left\lfloor \frac{(m-1)}{2} \right\rfloor$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \ge 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Some exact formulas

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If
$$n \ge 2$$
, then $h_2(m, n) = [\frac{(m+1)n}{2}] + [\frac{(m-1)}{2}]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \ge 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Some exact formulas

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If
$$n \ge 2$$
, then $h_2(m, n) = [\frac{(m+1)n}{2}] + [\frac{(m-1)}{2}]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \ge 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Further results on rectangular islands

Zs. Lengvárszky: The minimum cardinality of maximal systems of rectangular islands, European Journal of Combinatorics, **30** (2009) 216-219.

Further results on rectangular islands

Zs. Lengvárszky: The minimum cardinality of maximal systems of rectangular islands, European Journal of Combinatorics, **30** (2009), 216-219.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

Constructing algorithm

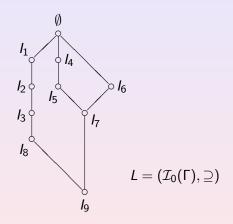
Joint work with Branimir Šešelja and Andreja Tepavčević CONSTRUCTING ALGORITHM

- 1. FOR i = t TO 0
- 2. FOR y = 1 TO n
- 3. FOR *x* = 1 TO *m*
- 4. IF $h(x, y) = a_i$ THEN
- 5. j:= i

6. WHILE there is no island of *h* which is a subset of h_{a_j} that contains

- (x, y) DO j:=j-1
- 7. ENDWHILE
- 8. Let $h^*(x, y) := a_j$.
- 9. ENDIF
- 10. NEXT x
- 11. NEXT y
- 12. NEXT i
- 13. END.

The lattice of islands

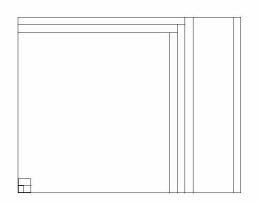


We denote by $\Lambda_{max}(m, n)$ the maximum number of different nonempty *p*-cuts of a standard rectangular height function on the rectangular table of size $m \times n$.

Theorem 5 $\Lambda_{max}(m,n) = m + n - 1$.

We denote by $\Lambda_{max}(m, n)$ the maximum number of different nonempty *p*-cuts of a standard rectangular height function on the rectangular table of size $m \times n$.

Theorem 5 $\Lambda_{max}(m, n) = m + n - 1$.



The maximum number of different nonempty *p*-cuts of a standard rectangular height function is equal to the minimum cardinality of maximal systems of islands.

Eszter K. Horváth, Szeged

We denote by $\Lambda_h^{cz}(m, n)$ the number of different nonempty cuts of a standard rectangular height function h in the case h has maximally many islands, i.e., when the number of islands is

$$f(m,n) = \left\lfloor \frac{mn+m+n-1}{2} \right\rfloor$$

Theorem

Let $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ be a standard rectangular height function having maximally many islands f(m, n). Then, $\Lambda_h^{cz}(m, n) \ge \lceil \log_2(m+1) \rceil + \lceil \log_2(n+1) \rceil - 1.$ We denote by $\Lambda_h^{cz}(m, n)$ the number of different nonempty cuts of a standard rectangular height function h in the case h has maximally many islands, i.e., when the number of islands is

$$f(m,n) = \left\lfloor \frac{mn+m+n-1}{2} \right\rfloor$$

Theorem

Let $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ be a standard rectangular height function having maximally many islands f(m, n). Then, $\Lambda_h^{cz}(m, n) \ge \lceil log_2(m+1) \rceil + \lceil log_2(n+1) \rceil - 1.$

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or if \mathbb{P} is without 0, then a and b have no common lowerbound.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called *CD-bases* in \mathbb{P} .

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or if \mathbb{P} is without 0, then a and b have no common lowerbound.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called *CD-bases* in \mathbb{P} .

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or if \mathbb{P} is without 0, then a and b have no common lowerbound.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called *CD-bases* in \mathbb{P} .

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or if \mathbb{P} is without 0, then a and b have no common lowerbound.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called CD-bases in $\mathbb{P}.$

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or if \mathbb{P} is without 0, then a and b have no common lowerbound.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called CD-bases in $\mathbb P.$

Definition

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$.

Remarks

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system, if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in P, then any antichain A ⊆ X is a disjoint system in P.

Definition

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$.

Remarks

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system, if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in P, then any antichain A ⊆ X is a disjoint system in P.

Definition

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$.

Remarks

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system, if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in P, then any antichain A ⊆ X is a disjoint system in P.

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$.

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system, if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in P, then any antichain A ⊆ X is a disjoint system in P.

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{ x \in P \mid x \le a_i, \text{ for some } i \in I \},\$$

where (a] stands for the principal ideal of an element $a \in P$. **Definition**

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if

 $I(A_1) \subseteq I(A_2).$

Remarks

• \leq is a partial order • $A_1 \leq A_2$ is satisfied if and only

for each $x \in A_1$ there exists an $y \in A_2$, with $x \leq y$.

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{ x \in P \mid x \le a_i, \text{ for some } i \in I \},\$$

where (a] stands for the principal ideal of an element $a \in P$. **Definition**

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if

 $I(A_1) \subseteq I(A_2).$

Remarks

• \leq is a partial order • $A_1 \leq A_2$ is satisfied if and on

for each $x \in A_1$ there exists an $y \in A_2$, with $x \leq y$.

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{ x \in P \mid x \le a_i, \text{ for some } i \in I \},\$$

where (a] stands for the principal ideal of an element $a \in P$. **Definition**

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if

 $I(A_1) \subseteq I(A_2).$

Remarks

• \leq is a partial order

• $A_1 \leq A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \leq y$.

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{ x \in P \mid x \le a_i, \text{ for some } i \in I \},\$$

where (a] stands for the principal ideal of an element $a \in P$. **Definition**

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if

 $I(A_1) \subseteq I(A_2).$

Remarks

- \leq is a partial order
- $A_1 \leq A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \le y$. (A)

- $I(A_1) \prec I(A_2) \Rightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leq D_2$.
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leq)$.

- $I(A_1) \prec I(A_2) \Rightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leq D_2$.
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leq)$.

- $I(A_1) \prec I(A_2) \Rightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leq D_2$.
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leq)$.

- $I(A_1) \prec I(A_2) \Rightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leq D_2$.
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leq)$.

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Let B be a CD-base of a finite poset (P, \leq) , and let |B| = n.

Then there exists a maximal chain $\{D_i\}_{1 \le i \le n}$ in $\mathcal{D}(P)$ such that $B = \bigcup_{i=1}^{n} D_i.$

Moreover, for any maximal chain $\{D_i\}_{1 \le i \le m}$ in $\mathcal{D}(P)$ the set $D = \bigcup_{i=1}^m D_i$ is a CD-base in (P, \le) with |D| = m. Let B be a CD-base of a finite poset (P, \leq) , and let |B| = n.

Then there exists a maximal chain $\{D_i\}_{1 \le i \le n}$ in $\mathcal{D}(P)$ such that $B = \bigcup_{i=1}^{n} D_i$.

Moreover, for any maximal chain $\{D_i\}_{1 \le i \le m}$ in $\mathcal{D}(P)$ the set $D = \bigcup_{i=1}^{m} D_i$ is a CD-base in (P, \le) with |D| = m.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq) , then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

If $D_1 \prec D_2$ in $\mathcal{D}(P)$, then $D_2 = \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ for some minimal element a of the set $S = \{s \in P \setminus (D_1 \cup \{0\}) \mid y \perp s \text{ or } y < s \text{ for all } y \in D_1\}.$ Moreover, $D_1 \prec \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ holds for any minimal element a of the set S.

Lemma

Assume that B is a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq), M = \max(B), and m \in M$. Then M and $N := \max(B \setminus \{m\})$ are disjoint sets. Moreover M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq) , then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

If $D_1 \prec D_2$ in $\mathcal{D}(P)$, then $D_2 = \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ for some minimal element a of the set $S = \{s \in P \setminus (D_1 \cup \{0\}) \mid y \perp s \text{ or } y < s \text{ for all } y \in D_1\}.$ Moreover, $D_1 \prec \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ holds for any minimal element a of the set S.

Lemma

Assume that B is a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq), M = \max(B), and m \in M$. Then M and $N := \max(B \setminus \{m\})$ are disjoint sets. Moreover M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq) , then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

If $D_1 \prec D_2$ in $\mathcal{D}(P)$, then $D_2 = \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ for some minimal element a of the set $S = \{s \in P \setminus (D_1 \cup \{0\}) \mid y \perp s \text{ or } y < s \text{ for all } y \in D_1\}.$ Moreover, $D_1 \prec \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ holds for any minimal element a of the set S.

Lemma

Assume that B is a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq), M = \max(B), \text{ and } m \in M$. Then M and $N := \max(B \setminus \{m\})$ are disjoint sets. Moreover M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Eszter K. Horváth, Szeged

Lattices and islands

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

Let $\mathbb{P} = (P, \leq)$ be a finite poset. Then the CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $B \subseteq P$ be a CD-base of \mathbb{P} , and (B, \leq) the poset under the restricted ordering. Then any maximal chain $\mathcal{C} = \{D_i\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

If D is a disjoint set in \mathbb{P} and the CD-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet $(I(D), \leq)$ also have the same number of elements.

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

Let $\mathbb{P} = (P, \leq)$ be a finite poset. Then the CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $B \subseteq P$ be a CD-base of \mathbb{P} , and (B, \leq) the poset under the restricted ordering. Then any maximal chain $\mathcal{C} = \{D_i\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

If D is a disjoint set in \mathbb{P} and the CD-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet $(I(D), \leq)$ also have the same number of elements.

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

Let $\mathbb{P} = (P, \leq)$ be a finite poset. Then the CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $B \subseteq P$ be a CD-base of \mathbb{P} , and (B, \leq) the poset under the restricted ordering. Then any maximal chain $\mathcal{C} = \{D_i\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

If D is a disjoint set in \mathbb{P} and the CD-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet $(I(D), \leq)$ also have the same number of elements.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of \mathbb{P} have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

A disjoint system D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

(iii) $\mathcal{DC}(P)$ is graded.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of \mathbb{P} have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

A disjoint system D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

(iii) $\mathcal{DC}(P)$ is graded.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of \mathbb{P} have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

A disjoint system D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

(iii) $\mathcal{DC}(P)$ is graded.

If all the principal ideals (a] of \mathbb{P} are weakly 0-modular, then $A(P) \cup C$ is a CD-base for every maximal chain C in \mathbb{P} .

If \mathbb{P} has weakly modular principal ideals and $\mathcal{D}(P)$ is graded, then \mathbb{P} is also graded, and any CD-base of \mathbb{P} contains |A(P)| + I(P) elements.

If all the principal ideals (a] of \mathbb{P} are weakly 0-modular, then $A(P) \cup C$ is a CD-base for every maximal chain C in \mathbb{P} .

If \mathbb{P} has weakly modular principal ideals and $\mathcal{D}(P)$ is graded, then \mathbb{P} is also graded, and any CD-base of \mathbb{P} contains |A(P)| + I(P) elements.

Let \mathbb{P} be a poset with 0 and D_k , $k \in K$ ($K \neq \emptyset$) disjoint sets in \mathbb{P} . If the meet $\bigwedge_{k \in K} a^{(k)}$ of any system of elements $a^{(k)} \in D_k$, $k \in K$ exist in \mathbb{P} , then $\bigwedge_{k \in K} D_k$ also exists in $\mathcal{D}(P)$.

A pair $a, b \in P$ with least upperbound $a \lor b$ in \mathbb{P} is called a *distributive* pair, if $(c \land a) \lor (c \land b)$ exists in \mathbb{P} for any $c \in P$, and $c \land (a \lor b) = (c \land a) \lor (c \land b)$.

We say that (P, \wedge) is *dp-distributive*, if any $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem

(i) If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(P)$ is a dp-distributive semilattice; if $D_1 \cup D_2$ is a CD-independent set for some $D_1, D_2 \in \mathcal{D}(P)$, then D_1, D_2 is a distributive pair in $\mathcal{D}(P)$.

(ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(P)$ is a dp-distributive complete lattice.

A pair $a, b \in P$ with least upperbound $a \lor b$ in \mathbb{P} is called a *distributive* pair, if $(c \land a) \lor (c \land b)$ exists in \mathbb{P} for any $c \in P$, and $c \land (a \lor b) = (c \land a) \lor (c \land b)$.

We say that (P, \wedge) is *dp-distributive*, if any $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem

(i) If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(P)$ is a dp-distributive semilattice; if $D_1 \cup D_2$ is a CD-independent set for some $D_1, D_2 \in \mathcal{D}(P)$, then D_1, D_2 is a distributive pair in $\mathcal{D}(P)$.

(ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(\mathsf{P})$ is a dp-distributive complete lattice.

Let (P, \leq) be a poset and $A \subseteq P$. (A, \leq) is called a *sublattice* of (P, \leq) , if (A, \leq) is a lattice such that for any $a, b \in A$ the infimum and the supremum of $\{a, b\}$ is the same in the subposet (A, \leq) and in (P, \leq) . If the relation $x \prec y$ in (A, \leq) for some $x, y \in A$ implies $x \prec y$ in the poset (P, \leq) , then we say that (A, \leq) is a *cover-preserving subposet* of (P, \leq) . **Theorem**

Let $\mathbb{P} = (P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leq)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leq)$. If \mathbb{P} is a \wedge -semilattice, then for any $D \in \mathcal{D}(P)$ and $D_1, D_2 \in \mathcal{D}(B)$ we have $(D_1 \vee D_2) \wedge D = (D_1 \wedge D) \vee (D_2 \wedge D)$ in $(\mathcal{D}(P), \leq)$.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite, weakly 0-distributive lattice. Then the following are equivalent:

(i) L is graded, and l(a) + l(b) = l(a ∨ b) holds for all a, b ∈ L with a ∧ b = 0.
 (ii) L is 0-modular, and the CD-bases of L have the same number of elements.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite, weakly $0\mathchar`-distributive lattice. Then the following are equivalent:$

• (i) L is graded, and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

• (ii) L is 0-modular, and the CD-bases of L have the same number of elements.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite, weakly $\mathsf{O}\text{-}distributive$ lattice. Then the following are equivalent:

• (i) L is graded, and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

• (ii) L is 0-modular, and the CD-bases of L have the same number of elements.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite, weakly 0 -distributive lattice. Then the following are equivalent:

- (i) L is graded, and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.
- (ii) L is 0-modular, and the CD-bases of L have the same number of elements.

Determine the maximum number of islands on *n* consecutive cells, if the possible heights on the grid are the following: 0, 1, 2, ..., h; where $h \ge 1$.

The solution:

 $l(n,h)=n-\left[\frac{n}{2^{h}}\right].$

Determine the maximum number of islands on *n* consecutive cells, if the possible heights on the grid are the following: 0, 1, 2, ..., h; where $h \ge 1$.

The solution:

$$I(n,h)=n-\left[\frac{n}{2^{h}}\right].$$

Joint work with Branimir Šešelja and Andreja Tepavčević

A height function h is a mapping from $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ to \mathbb{N} , $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow \mathbb{N}$.

The co-domain of the height function is the lattice (\mathbb{N}, \leq) , where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively.

For every $p \in \mathbb{N}$, the *cut of the height function*, i.e. the *p*-*cut* of *h* is an ordinary relation h_p on $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ defined by

 $(x,y) \in h_p$ if and only if $h(x,y) \ge p$.

Joint work with Branimir Šešelja and Andreja Tepavčević

A height function h is a mapping from $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ to \mathbb{N} , $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow \mathbb{N}$.

The co-domain of the height function is the lattice (\mathbb{N}, \leq) , where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively.

For every $p \in \mathbb{N}$, the *cut of the height function*, i.e. the *p*-*cut* of *h* is an ordinary relation h_p on $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ defined by

 $(x, y) \in h_p$ if and only if $h(x, y) \ge p$.

We say that two rectangles $\{\alpha, ..., \beta\} \times \{\gamma, ..., \delta\}$ and $\{\alpha_1, ..., \beta_1\} \times \{\gamma_1, ..., \delta_1\}$ are *distant* if they are disjoint and for every two cells, namely (a, b) from the first rectangle and (c, d) from the second, we have $(a - c)^2 + (b - d)^2 \ge 4$.

The height function *h* is called *rectangular* if for every $p \in \mathbb{N}$, every nonempty *p*-cut of *h* is a union of distant rectangles.

We say that two rectangles $\{\alpha, ..., \beta\} \times \{\gamma, ..., \delta\}$ and $\{\alpha_1, ..., \beta_1\} \times \{\gamma_1, ..., \delta_1\}$ are *distant* if they are disjoint and for every two cells, namely (a, b) from the first rectangle and (c, d) from the second, we have $(a - c)^2 + (b - d)^2 \ge 4$.

The height function *h* is called *rectangular* if for every $p \in \mathbb{N}$, every nonempty *p*-cut of *h* is a union of distant rectangles.

Rectangular height functions/3

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

$$\begin{split} &\Gamma_1 = \{1,2,3,4,5\} \times \{1,2,3\}, \\ &\Gamma_2 = \{1,2,3,4,5\} \times \{1,2,3\} \setminus \{(3,1)\}, \\ &\Gamma_3 = \{(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3),(5,2),(5,3)\}, \\ &\Gamma_4 = \{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3),(5,2),(5,3)\} \text{ and } \\ &\Gamma_5 = \{(1,3),(2,3),(4,3),(5,3)\} \end{split}$$

Rectangular height functions/3

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

$$\begin{split} &\Gamma_1 = \{1,2,3,4,5\} \times \{1,2,3\}, \\ &\Gamma_2 = \{1,2,3,4,5\} \times \{1,2,3\} \setminus \{(3,1)\}, \\ &\Gamma_3 = \{(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3),(5,2),(5,3)\}, \\ &\Gamma_4 = \{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3),(5,2),(5,3)\} \text{ and } \\ &\Gamma_5 = \{(1,3),(2,3),(4,3),(5,3)\} \end{split}$$

Rectangular height functions/4 CHARACTERIZATION THEOREM

Theorem 1

A height function $h_{\mathbb{N}}$: $\{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ is rectangular if and only if for all $(\alpha, \gamma), (\beta, \delta) \in \{1, 2, ..., m\} \times \{1, 2, ..., n\}$ either

• these are not neighboring cells and there is a cell (μ, ν) between (α, γ) and (β, δ) such that $h_{\mathbb{N}}(\mu, \nu) < \min\{h_{\mathbb{N}}(\alpha, \gamma), h_{\mathbb{N}}(\beta, \delta)\}$, or

• for all $(\mu, \nu) \in [\min\{\alpha, \beta\}, \max\{\alpha, \beta\}] \times [\min\{\gamma, \delta\}, \max\{\gamma, \delta\}],$

 $h_{\mathbb{N}}(\mu,\nu) \geq \min\{h_{\mathbb{N}}(\alpha,\gamma),h_{\mathbb{N}}(\beta,\delta)\}.$

Rectangular height functions/4 CHARACTERIZATION THEOREM

Theorem 1

A height function $h_{\mathbb{N}} : \{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow \mathbb{N}$ is rectangular if and only if for all $(\alpha, \gamma), (\beta, \delta) \in \{1, 2, ..., m\} \times \{1, 2, ..., n\}$ either

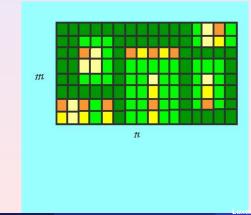
- these are not neighboring cells and there is a cell (μ, ν) between (α, γ) and (β, δ) such that $h_{\mathbb{N}}(\mu, \nu) < \min\{h_{\mathbb{N}}(\alpha, \gamma), h_{\mathbb{N}}(\beta, \delta)\}$, or
- for all $(\mu, \nu) \in [\min\{\alpha, \beta\}, \max\{\alpha, \beta\}] \times [\min\{\gamma, \delta\}, \max\{\gamma, \delta\}],$

 $h_{\mathbb{N}}(\mu,\nu) \geq \min\{h_{\mathbb{N}}(\alpha,\gamma),h_{\mathbb{N}}(\beta,\delta)\}.$

Rectangular height functions/5

Theorem 2

For every height function $h: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N}$, there is a rectangular height function $h^*: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N}$, such that $\mathcal{I}_{rect}(h) = \mathcal{I}_{rect}(h^*)$.



Rectangular height functions/6 CONSTRUCTING ALGORITHM

- 1. FOR i = t TO 0
- 2. FOR y = 1 TO n
- 3. FOR *x* = 1 TO *m*
- 4. IF $h(x, y) = a_i$ THEN
- 5. j:= i

6. WHILE there is no island of h which is a subset of h_{a_j} that contains (x, y) DO j:=j-1

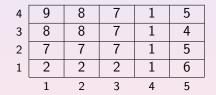
- 7. ENDWHILE
- 8. Let $h^*(x, y) := a_j$.
- 9. ENDIF
- 10. NEXT x
- 11. NEXT y
- 12. NEXT *i*
- 13. END.

Rectangular height functions/7 LATTICE-VALUED REPRESENTATION

Theorem 3

Let $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ be a rectangular height function. Then there is a lattice L and an L-valued mapping Φ , such that the cuts of Φ are precisely all islands of h.

Let $h: \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4\} \rightarrow \mathbb{N}$ be a height function.



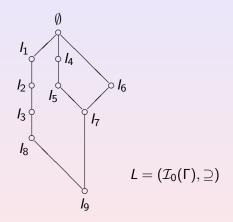
h is a rectangular height function. Its islands are:

```
\begin{split} &I_1 = \{(1,4)\}, \\ &I_2 = \{(1,3), (1,4), (2,3), (2,4)\}, \\ &I_3 = \{(1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}, \\ &I_4 = \{(5,1)\}, \\ &I_5 = \{(5,1), (5,2)\}, \\ &I_6 = \{(5,4)\}, \\ &I_7 = \{(5,1), (5,2), (5,3), (5,4)\}, \\ &I_8 = \{(1,2), (1,3), (1,4), (2,2), (2,3), \\ &(2,4), (3,2), (3,3), (3,4), (1,1), (2,1), (3,1)\}, \\ &I_9 = \{1,2,3,4,5\} \times \{1,2,3,4\}. \end{split}
```

Its cut relations are:

$$\begin{split} h_{10} &= \emptyset \\ h_9 &= I_1 \text{ (one-element island)} \\ h_8 &= I_2 \text{ (four-element square island)} \\ h_7 &= I_3 \text{ (nine-element square island)} \\ h_6 &= I_3 \cup I_4 \text{ (this cut is a disjoint union of two islands)} \\ h_5 &= I_3 \cup I_5 \cup I_6 \text{ (union of three islands)} \\ h_4 &= I_3 \cup I_7 \text{ (union of two islands)} \\ h_2 &= I_7 \cup I_8 \text{ (union of two islands)} \\ h_1 &= \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4\} = I_9 \text{ (the whole domain)} \end{split}$$

Rectangular height functions/11



Theorem 4

For every rectangular height function

$$h^*: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N},$$

there is a rectangular height function

$$h^{**}: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N},$$

such that $\mathcal{I}_{rect}(h^*) = \mathcal{I}_{rect}(h^{**})$ and in h^{**} every island appears exactly in one cut.

If a rectangular height function h^{**} has the property that each island appears exactly in one cut, then we call it *standard rectangular height function*.

Theorem 4

For every rectangular height function

$$h^*: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N},$$

there is a rectangular height function

$$h^{**}: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N},$$

such that $\mathcal{I}_{rect}(h^*) = \mathcal{I}_{rect}(h^{**})$ and in h^{**} every island appears exactly in one cut.

If a rectangular height function h^{**} has the property that each island appears exactly in one cut, then we call it *standard rectangular height function*.

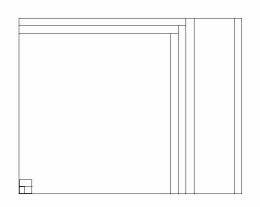
We denote by $\Lambda_{max}(m, n)$ the maximum number of different nonempty *p*-cuts of a standard rectangular height function on the rectangular table of size $m \times n$.

Theorem 5 $\Lambda_{max}(m,n) = m + n - 1$.

We denote by $\Lambda_{max}(m, n)$ the maximum number of different nonempty *p*-cuts of a standard rectangular height function on the rectangular table of size $m \times n$.

Theorem 5 $\Lambda_{max}(m, n) = m + n - 1$.

Rectangular height functions/14



The maximum number of different nonempty *p*-cuts of a standard rectangular height function is equal to the minimum cardinality of maximal systems of islands.

Eszter K. Horváth, Szeged

Lemma 1

If $m \geq 3$ and $n \geq 3$ and a height function $h : \{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow \mathbb{N}$ has maximally many islands, then it has exactly two maximal islands.

Lemma 2

If $m \ge 3$ or $n \ge 3$, then for any odd number t = 2k + 1 with $1 \le t \le max\{m-2, n-2\}$, there is a standard rectangular height function $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ having the maximum number of islands f(m,n), such that one of the side-lengths of one of the maximal islands is equal to t.

(Remark: The statement is not true for even side-lengths, one can construct counterexample easily!)

Lemma 1

If $m \ge 3$ and $n \ge 3$ and a height function $h : \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ has maximally many islands, then it has exactly two maximal islands.

Lemma 2

If $m \ge 3$ or $n \ge 3$, then for any odd number t = 2k + 1 with $1 \le t \le max\{m-2, n-2\}$, there is a standard rectangular height function $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ having the maximum number of islands f(m,n), such that one of the side-lengths of one of the maximal islands is equal to t.

(Remark: The statement is not true for even side-lengths, one can construct counterexample easily!)

We denote by $\Lambda_h^{cz}(m, n)$ the number of different nonempty cuts of a standard rectangular height function h in the case h has maximally many islands, i.e., when the number of islands is

$$f(m,n) = \left\lfloor \frac{mn+m+n-1}{2} \right\rfloor$$

Theorem 6

Let $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ be a standard rectangular height function having maximally many islands f(m, n). Then, $\Lambda_h^{cz}(m, n) \ge \lceil \log_2(m+1) \rceil + \lceil \log_2(n+1) \rceil - 1.$ We denote by $\Lambda_h^{cz}(m, n)$ the number of different nonempty cuts of a standard rectangular height function h in the case h has maximally many islands, i.e., when the number of islands is

$$f(m,n) = \left\lfloor \frac{mn+m+n-1}{2} \right\rfloor$$

Theorem 6

Let $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ be a standard rectangular height function having maximally many islands f(m, n). Then, $\Lambda_h^{cz}(m, n) \ge \lceil log_2(m+1) \rceil + \lceil log_2(n+1) \rceil - 1.$

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or if \mathbb{P} is without 0, then a and b have no common lowerbound.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called *CD-bases* in \mathbb{P} .

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or if \mathbb{P} is without 0, then a and b have no common lowerbound.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called *CD-bases* in \mathbb{P} .

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or if \mathbb{P} is without 0, then a and b have no common lowerbound.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called *CD-bases* in \mathbb{P} .

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or if \mathbb{P} is without 0, then a and b have no common lowerbound.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called CD-bases in $\mathbb{P}.$

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or if \mathbb{P} is without 0, then a and b have no common lowerbound.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called CD-bases in $\mathbb P.$

Definition

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$.

Remarks

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system, if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in P, then any antichain A ⊆ X is a disjoint system in P.

Definition

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$.

Remarks

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system, if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in P, then any antichain A ⊆ X is a disjoint system in P.

Definition

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$.

Remarks

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system, if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in P, then any antichain A ⊆ X is a disjoint system in P.

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$.

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system, if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in P, then any antichain A ⊆ X is a disjoint system in P.

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{ x \in P \mid x \le a_i, \text{ for some } i \in I \},\$$

where (a] stands for the principal ideal of an element $a \in P$. **Definition**

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if

 $I(A_1) \subseteq I(A_2).$

Remarks

≤ is a partial order
A₁ ≤ A₂ is satisfied if and only

for each $x \in A_1$ there exists an $y \in A_2$, with $x \leq y$.

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{ x \in P \mid x \le a_i, \text{ for some } i \in I \},\$$

where (a] stands for the principal ideal of an element $a \in P$. **Definition**

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if

 $I(A_1) \subseteq I(A_2).$

Remarks

• \leq is a partial order • $A_1 \leq A_2$ is satisfied if and on

for each $x \in A_1$ there exists an $y \in A_2$, with $x \leq y$.

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{ x \in P \mid x \le a_i, \text{ for some } i \in I \},\$$

where (a] stands for the principal ideal of an element $a \in P$. **Definition**

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if

 $I(A_1) \subseteq I(A_2).$

Remarks

• \leq is a partial order

• $A_1 \leq A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \leq y$.

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{ x \in P \mid x \le a_i, \text{ for some } i \in I \},\$$

where (a] stands for the principal ideal of an element $a \in P$. **Definition**

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if

 $I(A_1) \subseteq I(A_2).$

Remarks

- \leq is a partial order
- $A_1 \leq A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \le y$. (A)

- $I(A_1) \prec I(A_2) \Leftrightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leq D_2$.
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leq)$.

- $I(A_1) \prec I(A_2) \Leftrightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leq D_2$.
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leq)$.

- $I(A_1) \prec I(A_2) \Leftrightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leq D_2$.
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leq)$.

- $I(A_1) \prec I(A_2) \Leftrightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leq D_2$.
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leq)$.

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Let B be a CD-base of a finite poset (P, \leq) , and let |B| = n.

Then there exists a maximal chain $\{D_i\}_{1 \le i \le n}$ in $\mathcal{D}(P)$ such that $B = \bigcup_{i=1}^{n} D_i.$

Moreover, for any maximal chain $\{D_i\}_{1 \le i \le m}$ in $\mathcal{D}(P)$ the set $D = \bigcup_{i=1}^{m} D_i$ is a CD-base in (P, \le) with |D| = m. Let B be a CD-base of a finite poset (P, \leq) , and let |B| = n.

Then there exists a maximal chain $\{D_i\}_{1 \le i \le n}$ in $\mathcal{D}(P)$ such that $B = \bigcup_{i=1}^{n} D_i$.

Moreover, for any maximal chain $\{D_i\}_{1 \le i \le m}$ in $\mathcal{D}(P)$ the set $D = \bigcup_{i=1}^{m} D_i$ is a CD-base in (P, \le) with |D| = m.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq) , then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

If $D_1 \prec D_2$ in $\mathcal{D}(P)$, then $D_2 = \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ for some minimal element a of the set $S = \{s \in P \setminus (D_1 \cup \{0\}) \mid y \perp s \text{ or } y < s \text{ for all } y \in D_1\}.$ Moreover, $D_1 \prec \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ holds for any minimal element a of the set S.

Lemma

Assume that B is a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq), M = \max(B), and m \in M$. Then M and $N := \max(B \setminus \{m\})$ are disjoint sets. Moreover M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq) , then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

If $D_1 \prec D_2$ in $\mathcal{D}(P)$, then $D_2 = \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ for some minimal element a of the set $S = \{s \in P \setminus (D_1 \cup \{0\}) \mid y \perp s \text{ or } y < s \text{ for all } y \in D_1\}.$ Moreover, $D_1 \prec \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ holds for any minimal element a of the set S.

Lemma

Assume that B is a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq), M = \max(B), and m \in M$. Then M and $N := \max(B \setminus \{m\})$ are disjoint sets. Moreover M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq) , then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

If $D_1 \prec D_2$ in $\mathcal{D}(P)$, then $D_2 = \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ for some minimal element a of the set $S = \{s \in P \setminus (D_1 \cup \{0\}) \mid y \perp s \text{ or } y < s \text{ for all } y \in D_1\}.$ Moreover, $D_1 \prec \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ holds for any minimal element a of the set S.

Lemma

Assume that B is a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq), M = \max(B), \text{ and } m \in M$. Then M and $N := \max(B \setminus \{m\})$ are disjoint sets. Moreover M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Eszter K. Horváth, Szeged

Lattices and islands

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

Let $\mathbb{P} = (P, \leq)$ be a finite poset. Then the CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $B \subseteq P$ be a CD-base of \mathbb{P} , and (B, \leq) the poset under the restricted ordering. Then any maximal chain $\mathcal{C} = \{D_i\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

If D is a disjoint set in \mathbb{P} and the CD-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet $(I(D), \leq)$ also have the same number of elements.

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

Let $\mathbb{P} = (P, \leq)$ be a finite poset. Then the CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $B \subseteq P$ be a CD-base of \mathbb{P} , and (B, \leq) the poset under the restricted ordering. Then any maximal chain $\mathcal{C} = \{D_i\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

If D is a disjoint set in \mathbb{P} and the CD-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet $(I(D), \leq)$ also have the same number of elements.

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

Let $\mathbb{P} = (P, \leq)$ be a finite poset. Then the CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $B \subseteq P$ be a CD-base of \mathbb{P} , and (B, \leq) the poset under the restricted ordering. Then any maximal chain $\mathcal{C} = \{D_i\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

If D is a disjoint set in \mathbb{P} and the CD-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet $(I(D), \leq)$ also have the same number of elements.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of \mathbb{P} have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

A disjoint system D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

(iii) $\mathcal{DC}(P)$ is graded.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of \mathbb{P} have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

A disjoint system D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

(iii) $\mathcal{DC}(P)$ is graded.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of \mathbb{P} have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

A disjoint system D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

(iii) $\mathcal{DC}(P)$ is graded.

If all the principal ideals (a] of \mathbb{P} are weakly 0-modular, then $A(P) \cup C$ is a CD-base for every maximal chain C in \mathbb{P} .

If \mathbb{P} has weakly 0-modular principal ideals and $\mathcal{D}(P)$ is graded, then \mathbb{P} is also graded, and any CD-base of \mathbb{P} contains |A(P)| + I(P) elements.

If all the principal ideals (a] of \mathbb{P} are weakly 0-modular, then $A(P) \cup C$ is a CD-base for every maximal chain C in \mathbb{P} .

If \mathbb{P} has weakly 0-modular principal ideals and $\mathcal{D}(P)$ is graded, then \mathbb{P} is also graded, and any CD-base of \mathbb{P} contains |A(P)| + l(P) elements.

Let \mathbb{P} be a poset with 0 and D_k , $k \in K$ ($K \neq \emptyset$) disjoint sets in \mathbb{P} . If the meet $\bigwedge_{k \in K} a^{(k)}$ of any system of elements $a^{(k)} \in D_k$, $k \in K$ exist in \mathbb{P} , then $\bigwedge_{k \in K} D_k$ also exists in $\mathcal{D}(P)$.

A pair $a, b \in P$ with least upperbound $a \lor b$ in \mathbb{P} is called a *distributive* pair, if $(c \land a) \lor (c \land b)$ exists in \mathbb{P} for any $c \in P$, and $c \land (a \lor b) = (c \land a) \lor (c \land b)$.

We say that (P, \wedge) is *dp-distributive*, if any $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem

(i) If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(P)$ is a dp-distributive semilattice; if $D_1 \cup D_2$ is a CD-independent set for some $D_1, D_2 \in \mathcal{D}(P)$, then D_1, D_2 is a distributive pair in $\mathcal{D}(P)$.

(ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(P)$ is a dp-distributive complete lattice.

A pair $a, b \in P$ with least upperbound $a \lor b$ in \mathbb{P} is called a *distributive* pair, if $(c \land a) \lor (c \land b)$ exists in \mathbb{P} for any $c \in P$, and $c \land (a \lor b) = (c \land a) \lor (c \land b)$.

We say that (P, \wedge) is *dp-distributive*, if any $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem

(i) If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(P)$ is a dp-distributive semilattice; if $D_1 \cup D_2$ is a CD-independent set for some $D_1, D_2 \in \mathcal{D}(P)$, then D_1, D_2 is a distributive pair in $\mathcal{D}(P)$.

(ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(\mathsf{P})$ is a dp-distributive complete lattice.

Let (P, \leq) be a poset and $A \subseteq P$. (A, \leq) is called a *sublattice* of (P, \leq) , if (A, \leq) is a lattice such that for any $a, b \in A$ the infimum and the supremum of $\{a, b\}$ is the same in the subposet (A, \leq) and in (P, \leq) . If the relation $x \prec y$ in (A, \leq) for some $x, y \in A$ implies $x \prec y$ in the poset (P, \leq) , then we say that (A, \leq) is a *cover-preserving subposet* of (P, \leq) . **Theorem**

Let $\mathbb{P} = (P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leq)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leq)$. If \mathbb{P} is a \wedge -semilattice, then for any $D \in \mathcal{D}(P)$ and $D_1, D_2 \in \mathcal{D}(B)$ we have $(D_1 \vee D_2) \wedge D = (D_1 \wedge D) \vee (D_2 \wedge D)$ in $(\mathcal{D}(P), \leq)$.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite, weakly 0-distributive lattice. Then the following are equivalent:

(i) L is graded, and l(a) + l(b) = l(a ∨ b) holds for all a, b ∈ L with a ∧ b = 0.
 (ii) L is 0-modular, and the CD-bases of L have the same number of elements.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite, weakly $\mathsf{O}\text{-}distributive$ lattice. Then the following are equivalent:

• (i) L is graded, and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

• (ii) L is 0-modular, and the CD-bases of L have the same number of elements.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite, weakly 0 -distributive lattice. Then the following are equivalent:

• (i) L is graded, and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

• (ii) L is 0-modular, and the CD-bases of L have the same number of elements.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite, weakly 0 -distributive lattice. Then the following are equivalent:

- (i) L is graded, and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.
- (ii) L is 0-modular, and the CD-bases of L have the same number of elements.