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CD-independent subsets in distributive lattices
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Any two CD-bases of a finite distributive lattice have the same number of
elements.

If all finite lattices in a lattice variety have this property, then the variety
must coincide with the variety of distributive lattices.
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Eszter K. Horváth, Szeged Co-author: Sándor Radeleczki ()CD-independent subsets Dresden, 2018, Jan 17 . 2 / 52



CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets
in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2
(2009).

Any two CD-bases of a finite distributive lattice have the same number of
elements.

If all finite lattices in a lattice variety have this property, then the variety
must coincide with the variety of distributive lattices.
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CD-independent subsets in posets

Let P = (P,≤) be a partially ordered set, and let a, b ∈ P. The elements
a and b are called disjoint and we write a ⊥ b if

either P has least element 0 ∈ P and inf{a, b} = 0,
or P is without 0 and the elements a and b have no common lowerbound.

A nonempty set X ⊆ P is called CD-independent if for any x , y ∈ X ,
x ≤ y or y ≤ x , or x ⊥ y holds. Maximal CD-independent sets (with
respect to ⊆) are called CD-bases in P.
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Sets of pairwise disjoint elements

Definition

A nonempty set D of nonzero elements of P is called a set of pairwise
disjoint element in P if x ⊥ y holds for all x , y ∈ D, x 6= y ; if P has
0-element, then {0} is considered to be a set of pairwise disjont
elements, too.

Remark

D is a set of pairwise disjoint elements if and only if it is a
CD-independent antichain in P.
.
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Order ideals

Let X ⊆ P.
The order ideal {y ∈ P | y ≤ x for some x ∈ X} is denoted by ↓X .
The order-ideals of any poset form a (distributive) lattice with respect to
⊆.
So, the antichains of a poset can be ordered as follows:

Definition

If A1,A2 are antichains in P, then we say that A1 is dominated by
A2, and we denote it by A1 6 A2 if ↓A1 ⊆ ↓A2.

Remarks

6 is a partial order

A1 6 A2 is satisfied if and only if

for each x ∈ A1 there exists an y ∈ A2, with x ≤ y . (A)
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D(P)

Let D(P) denote the set of all sets of pairwise disjont elements of P.

As sets of pairwise disjont elements of P are also antichains, restricting 6
to D(P), we obtain a poset (D(P),6).

The connection between CD-bases of a poset P and the poset (D(P),6) is
shown by the next theorem:
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Theorem

Let B be a CD-base of a finite poset (P,≤), and let |B| = n.

Then there exists a maximal chain {Di}1≤i≤n in D(P) such that

B =
n⋃

i=1
Di .

Moreover, for any maximal chain {Di}1≤i≤m in D(P) the set D =
m⋃
i=1

Di

is a CD-base in (P,≤) with |D| = m.
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P and D(P)
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Eszter K. Horváth, Szeged Co-author: Sándor Radeleczki ()CD-independent subsets Dresden, 2018, Jan 17 . 15 / 52



Proof of Theorem

Proposition (Step 1)
If B is a CD-base and D ⊆ B is a set of pairwise disjoint elements in the
poset (P,≤), then ↓D ∩ B is also a CD-base in the subposet (↓D,≤).

Lemma 1 (Step 2)
...coming on a following page...

Lemma 2 (Step 2
...coming on a following page...
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Lemma 1

If D1 ≺ D2 in D(P), then D2 = {a} ∪
{

y ∈ D1 \ {0} | y ⊥ a
}

for some
minimal element a of the set

S =
{

s ∈ P \ (D1 ∪ {0}) | y ⊥ s or y < s for all y ∈ D1

}
.

Moreover, D1 ≺ {a} ∪
{

y ∈ D1 \ {0} | y ⊥ a
}

holds for any minimal
element a of the set S .
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Illustration for Lemma 1
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Illustration for Lemma 1
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Lemma 2

Assume that B is a CD-base with at least two elements in a finite poset
P = (P,≤), M = max(B), and m ∈ M. Then M and N := max(B \ {m})
are disjoint sets.

Moreover M is a maximal element in D(P), and N ≺ M holds in D(P).
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Illustration for Lemma 2
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Illustration for Lemma 2
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Illustration for Lemma 2
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Illustration for Lemma 2
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Corollary

Let P =(P,≤) be a finite poset.

The CD-bases of P have the same number of elements if and only if the
poset D(P) is graded.

Let B ⊆ P be a CD-base of P , and (B,≤) the poset under the restricted
ordering. Then any maximal chain C = {Di}1≤i≤m in D(B) is also a
maximal chain in D(P).

If D is a disjoint set in P and the CD-bases of P have the same number of
elements, then the CD-bases of the subposet (I (D),≤) also have the same
number of elements.
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Graded posets

The poset P is called graded, if all its maximal chains have the same
cardinality.

Let P = (P,≤) be a finite poset with 0. Then the following conditions are
equivalent:

(i) The CD-bases of P have the same number of elements,

(ii) D(P) is graded.

A set of pairwise disjoint elements D of a poset (P,≤) is called complete,
if there is no p ∈ P \ D such that D ∪ {p} is also a set of pairwise disjoint
elements.

(iii) DC(P) is graded.
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Weakly 0-modular lattices

Now, we will see that under some weak conditions, the condition that
D(P) graded implies that P itself is graded.
A poset with least element 0 and greatest element 1 is called bounded. A
lattice L = (L,≤) with 0 is called 0-modular if for all a, b, c ∈ L

a ≤ b and b ∧ c = 0 imply b ∧ (a ∨ c) = a (M0,)

where (and everywhere later) we use the usual notation x ∨ y = sup{a, b}
and x ∧ y = inf{a, b}. Equivalently, L has no pentagon sublattice N5 that
contains 0 = 0L.
We know that that the tolerance lattices of algebras belonging to
congruence distributive varieties are 0-modular (but not necessarily
modular).
If (M0) is satisfied under the assumptions that a is an atom and c ≺ b ∨ c ,
then L is called weakly 0-modular.
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Weakly 0-modular lattices

L is lower-semimodular if for all a, b, c ∈ L, b ≺ c implies a ∧ b � a ∧ c .

It belongs to the folklore that join-semidistributivity and lower
semimodularity characterize the closure lattices of finite convex geometries.

It is easy to see that any lower-semimodular lattice and any 0-modular
lattice is weakly 0-modular.

We say that a poset P with 0 is weakly 0-modular if the above weak form
of (M0) holds whenever sup{a, c} and sup{b, c} exist in P.
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If P is a finite bounded poset

Let P be a finite bounded poset.

If all the principal ideals ↓a of P are weakly 0-modular, then A(P) ∪ C is a
CD-base for every maximal chain C in P.

If each principal ideal of P is weakly 0-modular and D(P) is graded, then P
is also graded, and any CD-base of P contains |A(P)|+ l(P) elements.
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CD-bases in semilattices and lattices / 1

Lemma
We will see that if P is a ∧-semilattice, B is a CD-base of it, and
B = (B,≤) is the poset under the restricted ordering, then for
appropriately chosen elements of D(B) and D(P) a special kind of
distributivity holds. The next Lemma shows a property of D(P) for
any poset P with 0.

Let P be a poset with 0. Assume that K 6= ∅ is an index set and, for
each k ∈ K , Dk is a set of pairwise disjoint elements in P. If for every
choice function f ∈

∏
k∈K Dk the meet

∧
k∈K f (k) exists in P, then∧

k∈K
Dk exists in D(P). In particular, for K = {1, 2} and

D1 = {ai | i ∈ I}, D2 = {bj | j ∈ J} ∈ D(P) such that all the ai ∧ bj

exists, we have

D1 ∧ D2 ={
M := {ai ∧ bj | i ∈ I , j ∈ J, ai ∧ bj 6= 0} if M 6= ∅;
{0} otherwise.
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CD-bases in semilattices and lattices / 2

Let P = (P,∧) be a semilattice with 0. Now, for all a, b ∈ P, the relation
a ⊥ b means that a ∧ b = 0. Hence, a set {ai | i ∈ I} of nonzero elements
is a set of pairwise disjoint elements if and only if ai ∧ aj = 0 for all
i , j ∈ I , i 6= j . A pair a, b ∈ P with least upperbound a ∨ b in P is called a
distributive pair if (c ∧ a) ∨ (c ∧ b) exists in P for all c ∈ P, and
c ∧ (a ∨ b) = (c ∧ a) ∨ (c ∧ b). We say that (P,∧) is dp-distributive
(distributive with respect to disjoint pairs) if any pair a, b ∈ P with
a ∧ b = 0 is a distributive pair.
Theorem

(i) If P = (P,∧) is a semilattice with 0, then D(P) is a dp-distributive
semilattice. Furthermore, for all D1,D2 ∈ D(P), if D1 ∪ D2 is a
CD-independent set, then D1,D2 is a distributive pair in D(P).

(ii) If P is a complete lattice, then D(P) is a dp-distributive complete
lattice.
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CD-bases in semilattices and lattices / 3

Let (P,≤) be a poset and A ⊆ P. (A,≤) is called a sublattice of (P,≤),
if (A,≤) is a lattice such that for any a, b ∈ A the infimum and the
supremum of {a, b} is the same in the subposet (A,≤) and in (P,≤). If
the relation x ≺ y in (A,≤) for some x , y ∈ A implies x ≺ y in the poset
(P,≤), then we say that (A,≤) is a cover-preserving subposet of (P,≤).

Theorem

Let P = (P,≤) be a poset with 0 and B a CD-base of it. Then
(D(B),6) is a distributive cover-preserving sublattice of the poset
(D(P),6). If P is a ∧-semilattice, then for any D ∈ D(P) and
D1,D2 ∈ D(B) we have (D1 ∨ D2) ∧ D = (D1 ∧ D) ∨ (D2 ∧ D) in
(D(P),6).
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CD-bases in particular lattice classes

We investigate CD-bases in two particular classes of lattices. The
properties of the first class generalize the properties of tolerance lattices of
majority algebras. It was proved that the tolerance lattice of arbitrary
majority algebra is a pseudocomplemented, 0-modular and dp-distributive
lattice. These properties are not independent, since, for instance, it can be
shown that dp-distributivity implies 0-modularity.
Let L = (L,≤) a lattice. A lattice L with 0 is called pseudocomplemented
if for each x ∈ L there exists an element x∗ ∈ L such that, for all y ∈ L,
y ∧ x = 0⇔ y ≤ x∗. It is known that an algebraic lattice L is
pseudocomplemented if and only if it is 0-distributive, that is, for all
a, b, x ∈ L, x ∧ a = 0 and x ∧ b = 0 imply x ∧ (a ∨ b) = 0. We say that L
is weakly 0-distributive if this implication holds under the condition
a ∧ b = 0. Clearly, any 0-distributive lattice is weakly 0-distributive. If D is
a set of pairwise disjoint elements in a weakly 0-distributive lattice and
|D| ≥ 2, then it is easy to see that replacing two different elements
d1, d2 ∈ D by their join d1 ∨ d2, we obtain again a disjoint set.
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CD-bases in particular lattice classes

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom of the
poset D(L). Then either D = {d} for some d ∈ L with d ≺ 1, or D
consist of two different elements d1, d2 ∈ L with d1 ∨ d2 = 1.

Let L be a graded lattice, and a ∈ L. Then the height of a is the length
of the interval [0, a], denoted by l(a). (In the literature, it is also
denoted by h(a).) A graded lattice always has 0 and 1.

A graded lattice L is 0-modular, whenever l(a) + l(b) = l(a ∨ b) holds
for all a, b ∈ L with a ∧ b = 0.
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CD-bases in particular lattice classes

Theorem

Let L be a finite, weakly 0-distributive lattice. Then the following are
equivalent:

(i) L is graded, and l(a) + l(b) = l(a ∨ b) holds for all a, b ∈ L with
a ∧ b = 0.

(ii) L is 0-modular, and the CD-bases of L have the same number
of elements.
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Modular pair

We say that two elements a, b ∈ L form a modular pair in the lattice L and
we write (a, b)M if for all x ∈ L, x ≤ b implies x ∨ (a ∧ b) = (x ∨ a) ∧ b.

Also, a and b form a dual-modular pair if for all x ∈ L, x ≥ b implies
x ∧ (a ∨ b) = (x ∧ a) ∨ b. This is denoted by (a, b)M∗.

Clearly, if a and b form a distributive pair, then (a, b)M∗ is satisfied.

By means of modular pairs, the 0-modularity condition can be
reformulated as follows): For all a, b ∈ L,

Lemma (M. Stern) In a graded lattice of finite length, (a, b)M implies
l(a) + l(b) ≤ l(a ∧ b) + l(a ∨ b).
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CD-bases

With the help of Lemma of M. Stern above, using an N5 sublattice
containing 0 as well as the dual lattice, we obtain

Proposition If L is a lattice with 0 such that (a, b)M∗ holds for all
a, b ∈ L with a ∧ b = 0, then L is 0-modular. If in addition L is a
graded lattice of finite length, then l(a ∨ b) = l(a) + l(b) holds for all
a, b ∈ L with a ∧ b = 0.

Corollary (i) Let L be a finite, weakly 0-distributive lattice such that
for each a, b ∈ L with a ∧ b = 0, condition (a, b)M∗ holds. Then the
CD-bases of L have the same number of elements if and only if L is
graded.
(ii) If L is a finite pseudocomplemented modular lattice, then the
CD-bases of L have the same number of elements.
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dp-distributive lattices

As any dp-distributive lattice L is weakly 0-distributive, and (a, b)M∗ holds
for all a, b ∈ L with a ∧ b = 0 since (a, b) is a distributive pair, we obtain

Corollary
(i) Any dp-distributive lattice is 0-modular. If L is a dp-distributive
graded lattice with finite length, then l(a ∨ b) = l(a) + l(b) holds for all
a, b ∈ L with a ∧ b = 0.
(ii) The CD-bases in a finite dp-distributive lattice L have the same
number of elements if and only if L is graded.
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Interval system

An interval system (V , I) is an algebraic closure system satisfying the
axioms:

(I0) {x} ∈ I for all x ∈ V , and ∅ ∈ I;

(I1) A,B ∈ I and A ∩ B 6= ∅ imply A ∪ B ∈ I;

(I2) For any A,B ∈ I the relations A ∩ B 6= ∅, A " B and B " A imply
A \ B ∈ I (and B \ A ∈ I).

The modules (X -sets, or autonomous sets) of an undirected graph
G = (V ,E ), the intervals of an n-ary relation R j V n on the set V for
n ≥ 2 – in particular, the usual intervals of a linearly ordered set (V ,≤) –
form interval systems.
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Generalizing interval systems

Let us consider now the condition:

(II) If a ∧ b 6= 0, then (x ≤ a ∨ b and x ∧ a = 0)⇒ x ≤ b for all
a, b, x ∈ L.

Lattices with 0 satisfying condition (II) and with the property that ↑a is
a modular lattice for all a ∈ L, a 6= 0, can be considered as a
generalization of the lattice (I,⊆) of an interval system (V , I). To study
their CD-bases, first we proved:
Lemma Let L be an atomic lattice satisfying condition (II). Assume
D ∈ D(L) and define SD =

{
s ∈ L \ (D ∪ {0}) | d ∧ s = 0 or d < s, for

all d ∈ D
}
. Then for all b, c ∈ SD with b ∧ c 6= 0 and all d ∈ D,

d ∧ (b ∨ c) 6= 0 if and only if 0 < d < b or 0 < d < c holds.
Remark Let L be a finite lattice and D = {dj | j ∈ J} ∈ DC(L). If
D ≺ D ′ for some D ′ ∈ D(L); then, in view of Lemma ??, there is a
minimal element a ∈ SD such that
D ′ = {a} ∪ {dj ∈ D \ {0} | dj ∧ a = 0}. In this case there exists a set
K ⊆ J such that
K = {j ∈ J | dj < a} 6= ∅ and D ′ = {a} ∪ {dj | j ∈ J \ K}. (14)

Eszter K. Horváth, Szeged Co-author: Sándor Radeleczki ()CD-independent subsets Dresden, 2018, Jan 17 . 42 / 52



Birkhoff’s condition

It is well-known that a finite lattice L is semimodular if and only if it
satisfies Birkhoff’s condition, namely, for all a, b ∈ L

(Bi) a ∧ b ≺ a, b implies a, b ≺ a ∨ b.

We also say that a pair a, b ∈ L satisfies Birkhoff’s condition if the above
implication (Bi) is valid for a, b. It is known that any distributive pair
a, b ∈ L satisfies Birkhoff’s condition.

Theorem Let L be a finite lattice satisfying condition (II) such that
any principal filter ↑a with a ∈ L \ {0} is a modular lattice. Then
DC(L) is a semimodular lattice.
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Thank you for your attention!

Thank you for your attention!
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CD-bases

Corollary (i) If L is a finite distributive lattice, then DC(L) is a
semimodular lattice.
(ii) If L is a finite lattice that satisfies the conditions in Theorem ??,
then its CD-bases have the same number of elements.

By applying this to interval systems we obtain:

Corollary

If (V , I) is a finite interval system, then the CD-bases of the lattice (I,⊆)
contain the same number of elements.
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Island domain

U ∈ C ⊆ K ⊆ P (U)

Let h : U → R be a height function and let S ∈ C be a nonempty set.

We say that S is an pre-island with respect to the triple (C,K, h), if every
K ∈ K with S ≺ K satisfies

min h (K ) < min h (S) .

We say that S is a island with respect to the triple (C,K, h), if every
K ∈ K with S ≺ K satisfies

h (u) < min h (S) for all u ∈ K \ S .

Eszter K. Horváth, Szeged Co-author: Sándor Radeleczki ()CD-independent subsets Dresden, 2018, Jan 17 . 46 / 52



Island domain

U ∈ C ⊆ K ⊆ P (U)

Let h : U → R be a height function and let S ∈ C be a nonempty set.

We say that S is an pre-island with respect to the triple (C,K, h), if every
K ∈ K with S ≺ K satisfies

min h (K ) < min h (S) .

We say that S is a island with respect to the triple (C,K, h), if every
K ∈ K with S ≺ K satisfies

h (u) < min h (S) for all u ∈ K \ S .

Eszter K. Horváth, Szeged Co-author: Sándor Radeleczki ()CD-independent subsets Dresden, 2018, Jan 17 . 46 / 52



Connective island domains

Definition

A pair (C,K) is an connective island domain if

∀A,B ∈ C : (A ∩ B 6= ∅ and B * A) =⇒ ∃K ∈ K : A ⊂ K ⊆ A ∪ B.
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CDW-independence

Definition A family H ⊆ P (U) is weakly independent if

H ⊆
⋃
i∈I

Hi =⇒ ∃i ∈ I : H ⊆ Hi (1)

holds for all H ∈ H,Hi ∈ H (i ∈ I ). If H is both CD-independent and
weakly independent, then we say that H is CDW-independent.

Lemma
If (C,K) is a connective island domain, then every admissible subfamily
of C is CDW-independent. [[But not conversely.]]
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Connective island domains

Theorem

The following three conditions are equivalent for any pair (C,K):

(i) (C,K) is a connective island domain.

(ii) Every system of pre-islands corresponding to (C,K) is
CD-independent.

(iii) Every system of pre-islands corresponding to (C,K) is
CDW-independent.
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Island domains

Theorem
If (C,K) is a connective island domain, then a subfamily of C is a
system of pre-islands if and only if it is admissible.
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Connective island domains

Theorem
If (C,K) is a connective island domain and S is a system of pre-islands
corresponding to (C,K), then |S | ≤ |U|.

Proof.
Let (C,K) be a connective island domain and let S ⊆ C \ {∅} be a
system of pre-islands corresponding to (C,K). S is CDW-independent,
and hence S ∪ {∅} is also CDW-independent. From the results of G.
Czédli and E. T. Schmidt it follows that every maximal
CDW-independent subset of P (U) has |U|+ 1 elements. Thus we have
|S|+ 1 ≤ |U|+ 1.
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