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Lattice-valued functions

Let S be a nonempty set and L a complete lattice. Every mapping
p: S — Lis called a lattice-valued (L-valued) function on S.
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Cut set (p-cut)

Let p € L. A cut set of an L-valued function i : S — L (a p-cut) is a
subset p1p C S defined by:

x € pp if and only if p(x) > p. (1)
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Cut set (p-cut)

Let p € L. A cut set of an L-valued function i : S — L (a p-cut) is a
subset p1p C S defined by:

x € pp if and only if p(x) > p. (1)

In other words, a p-cut of ;i : S — L is the inverse image of the
principal filter Tp, generated by p € L:

po = 1~ (1p). (2)
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Cut set (p-cut)

Let p € L. A cut set of an L-valued function i : S — L (a p-cut) is a
subset p1p C S defined by:

x € pp if and only if p(x) > p. (1)

In other words, a p-cut of ;i : S — L is the inverse image of the
principal filter Tp, generated by p € L:

po = 1~ (1p). (2)

It is obvious that for every p,q € L, p < q implies j1q C pip. J
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Cut set (p-cut)

Let p € L. A cut set of an L-valued function i : S — L (a p-cut) is a
subset p1p C S defined by:

x € pp if and only if p(x) > p. (1)

In other words, a p-cut of ;i : S — L is the inverse image of the
principal filter Tp, generated by p € L:

pp = (1P). (2)

It is obvious that for every p,q € L, p < q implies j1q C pip. J

The collection iy = {f C S| f = pp, for some p € L} of all cuts of
1S — L is usually ordered by set-inclusion. J
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Cuts and closure systems

If w: S — Lis an L-valued function on S, then the collection y; of all
cuts of u is a closure system on S under the set-inclusion.
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Cuts and closure systems

If w: S — Lis an L-valued function on S, then the collection y; of all
cuts of u is a closure system on S under the set-inclusion.

Let F be a closure system on a set S. Then there is a lattice L and an
L-valued function p : S — L, such that the collection p; of cuts of u is F.
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Cuts and closure systems

If w: S — Lis an L-valued function on S, then the collection y; of all
cuts of u is a closure system on S under the set-inclusion.

Let F be a closure system on a set S. Then there is a lattice L and an
L-valued function p : S — L, such that the collection p; of cuts of u is F.

A required lattice L is the collection F ordered by the
reversed-inclusion, and that p : S — L can be defined as follows:

px)=({feF|xef} (3)
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The relation ~ on L

Given an L-valued function p : S — L, we define the relation ~ on L: for

p,g€eL
p~ q if and only if up, = pg. (4)
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The relation ~ on L

Given an L-valued function p : S — L, we define the relation ~ on L: for

p,g€eL
p~ q if and only if up, = pg. (4)

The relation & is an equivalence on L, and

p~q if and only if Tp N u(S) = Tq N u(S), (5)

where u(S) ={re L|r = p(x) for some x € S}.
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The relation ~ on L

Given an L-valued function p : S — L, we define the relation ~ on L: for

p,g€eL
p~ q if and only if up, = pg. (4)

The relation & is an equivalence on L, and

p~q if and only if Tp N u(S) = Tq N u(S), (5)

where u(S) ={re L|r = p(x) for some x € S}.

We denote by L/~ the collection of equivalence classes under ~. J
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The collection of cuts

Let (1, <) be the poset with pu; = {up | p € L} (the collection of cuts of
) and the order < being the inverse of the set-inclusion: for yup, pg € i1,

pp < g if and only if pg C pp.
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The collection of cuts

Let (1, <) be the poset with pu; = {up | p € L} (the collection of cuts of
) and the order < being the inverse of the set-inclusion: for yup, pg € i1,

pp < g if and only if pg C pp.

(11, <) is a complete lattice and for every collection {yu, | p € L1}, L1 C L
of cuts of u, we have

ﬂ{:up | p e Ll} = Kv(p|peLy)- (6)

v
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The quotient L/~

Each ~-class contains its supremum:

VIpl~ € [pl=- (7)
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The quotient L/~

Each ~-class contains its supremum:

VIpl~ € [pl=- (7)

The mapping p — \/[p]~ is a closure operator on L. ]
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The quotient L/~

Each ~-class contains its supremum:

Vo)~ € [pl~- (7)

The mapping p — \/[p]~ is a closure operator on L. )

The quotient L/~ can be ordered by the relation <|/~ defined as follows:
[Pl~ <1/~ lal~ if and only if Tq N u(S) S TN u(S).

The order </, of classes in L/~ corresponds to the order of suprema of
classes in L (we denote the order in L by <;):
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The quotient L/~

Each ~-class contains its supremum:

Vo)~ € [pl~- (7)

The mapping p — \/[p]~ is a closure operator on L. )

The quotient L/~ can be ordered by the relation <1/~ defined as follows:

[Pl~ <1/~ [ql~ if and only if tq N u(S) C tp N u(S).

The order </, of classes in L/~ corresponds to the order of suprema of
classes in L (we denote the order in L by <;):

The poset (L/~, <, /~) is a complete lattice fulfilling:

(1) [pls <t/~ [ql~ if and only if V[pl~ <; V[~
(i) The mapping [p]~ — \/[p]~ is an injection of L/~ into L.
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The poset (L/~, <;/~)

The poset (L/~,<,/~) is a complete lattice fulfilling:
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The poset (L/~, <;/~)

The poset (L/~,<,/~) is a complete lattice fulfilling:

(1) [Pl~ <1/~ lal~ if and only if \/[pl~ <1 V[a]~- J
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The poset (L/~, <;/~)

The poset (L/~,<,/~) is a complete lattice fulfilling:

(1) [plx <1/~ lal~ if and only if \[pl~ <1 V4]~
(ii) The mapping [p]~ — \/[pl~ is an injection of L/~ into L.
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The poset (L/~, <;/~)

The poset (L/~,<,/~) is a complete lattice fulfilling:

(1) [plx <1/~ lal~ if and only if \[pl~ <1 V4]~
(ii) The mapping [p]~ — \/[pl~ is an injection of L/~ into L.

The sub-poset (\/[p]~, <1) of L is isomorphic to the lattice (L/~, <, x~)
under \/[p]~ — [p]~.
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The poset (L/~,<;/~)

The poset (L/~,<,/~) is a complete lattice fulfilling:

(1) [plx <1/~ lal~ if and only if \[pl~ <1 V4]~
(ii) The mapping [p]~ — \/[pl~ is an injection of L/~ into L.

The sub-poset (\/[p]~, <1) of L is isomorphic to the lattice (L/~, <, x~)
under \/[p]~ — [p]~- )

Let i : S — L be an L-valued function on S. The lattice (1, <) of cuts of
p is isomorphic with the lattice (L/~, <, /~) of ~-classes in L under the

mapping fip = [pl~. )
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Canonical representation of lattice-valued functions

We take the lattice (F, <), where F = p; C P(S) is the collection of
cuts of u, and the order < is the dual of the set inclusion.
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Canonical representation of lattice-valued functions

We take the lattice (F, <), where F = p; C P(S) is the collection of
cuts of u, and the order < is the dual of the set inclusion.

Let i : S — F, where

fi(x) = (mp € pe | x € pp}- (8)
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Canonical representation of lattice-valued functions

We take the lattice (F, <), where F = p; C P(S) is the collection of
cuts of u, and the order < is the dual of the set inclusion.

Let i : S — F, where

fi(x) == m{ﬂp € pL | x € pp}- (8)

Properties:
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Canonical representation of lattice-valued functions

We take the lattice (F, <), where F = p; C P(S) is the collection of
cuts of u, and the order < is the dual of the set inclusion.

Let i : S — F, where

fi(x) == m{ﬂp € pL | x € pp}- (8)

Properties:

1t has the same cuts as .
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Canonical representation of lattice-valued functions

We take the lattice (F, <), where F = p; C P(S) is the collection of
cuts of u, and the order < is the dual of the set inclusion.

Let i : S — F, where

fi(x) == m{ﬂp € pL | x € pp}- (8)

Properties:
1t has the same cuts as .

1t has one-element classes of the equivalence relation ~ .
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Canonical representation of lattice-valued functions

We take the lattice (F, <), where F = p; C P(S) is the collection of
cuts of u, and the order < is the dual of the set inclusion.

Let i : S — F, where

fi(x) == m{ﬂp € pL | x € pp}- (8)

Properties:
1t has the same cuts as .
1t has one-element classes of the equivalence relation ~ .

Every f € F is equal to the corresponding cut of 7.
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Canonical representation of 1 : S — L

By the definition, every element of the codomain lattice of 1 is a cut of u.
Therefore, if f € F, then f = p,, for some p € L, and for the cut fir of 1,
by the definition of a cut and by (8), we have

~

pe = {xeS|n(x) =i ={xeS|ux)C up}
= {Xeslﬂ{ﬂq|X€Mq}g,up}:,up:f.

Therefore, the collection of cuts of 1 is

pr={Y CS|Y =y, forsome p, € pu}.

The lattices of cuts of a lattice-valued function i and of its canonical
representation [i coincide.
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Lattice-valued Boolean functions

A Boolean function is a mapping f : {0,1}" — {0,1}, n€ N.
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Lattice-valued Boolean functions

A Boolean function is a mapping f : {0,1}" — {0,1}, n€ N.
A lattice-valued Boolean function is a mapping

F:{0,1}" > L,

where L is a complete lattice.
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Lattice-valued Boolean functions

A Boolean function is a mapping f : {0,1}" — {0,1}, n€ N.
A lattice-valued Boolean function is a mapping

F:{0,1}" > L,

where L is a complete lattice.
We also deal with lattice-valued n-variable functions on a finite
domain {0,1,...,k—1}:

f:{0,1,... k—1}" =L,

where L is a complete lattice.
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Lattice-valued Boolean functions

A Boolean function is a mapping f : {0,1}" — {0,1}, n€ N.
A lattice-valued Boolean function is a mapping

F:{0,1}" > L,

where L is a complete lattice.
We also deal with lattice-valued n-variable functions on a finite
domain {0,1,...,k—1}:

f:{0,1,... k—1}" =L,

where L is a complete lattice.
We use also p-cuts of lattice-valued functions as characteristic
functions: for f : {0,1,...,k—1}" — L and p € L, we have

f,:{0,1,..., k—1}" — {0,1},
such that fp(x1,...,Xx,) =1 if and only if f(xq,...,x5) > p.
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Lattice-valued Boolean functions

A Boolean function is a mapping f : {0,1}" — {0,1}, n€ N.
A lattice-valued Boolean function is a mapping

F:{0,1}" > L,

where L is a complete lattice.
We also deal with lattice-valued n-variable functions on a finite
domain {0,1,...,k—1}:

f:{0,1,... k—1}" =L,

where L is a complete lattice.
We use also p-cuts of lattice-valued functions as characteristic
functions: for f : {0,1,...,k—1}" — L and p € L, we have

f,:{0,1,..., k—1}" — {0,1},
such that fp(x1,...,Xx,) =1 if and only if f(xq,...,x5) > p.

Clearly, a cut of a lattice-valued Boolean function is (as a
characteristic function) a Boolean function.
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Invariance group

As usual, by S, we denote the symmetric group of all permutations
over an n-element set. If f is an n-variable function on a finite
domain X and o € S,, then f is invariant under o, symbolically

o b f,if for all (x1,...,x,) € X"

f(X17 200 7Xn) = f(XO'(l)7 200 7X0(n))'
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Invariance group

As usual, by S, we denote the symmetric group of all permutations
over an n-element set. If f is an n-variable function on a finite
domain X and o € S,, then f is invariant under o, symbolically

o b f,if for all (x1,...,x,) € X"

f(X17 200 7Xn) = f(XO'(l)7 200 7X0(n))'

If f is invariant under all permutations in G < S,, and not invariant
under any permutation from S, \ G, then G is called the invariance
group of f, and it is denoted by G(f).
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Representability

A group G < S, is said to be (k, m)-representable if there is a
function f : {0,1,..., k—1}" — {1,..., m} whose invariance group
is G.
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Representability

A group G < S, is said to be (k, m)-representable if there is a

function f : {0,1,..., k—1}" — {1,..., m} whose invariance group
is G.

If G is the invariance group of a function f : {0,1,...,k—1}" — N,
then it is called (k, co)-representable.
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Representability

A group G < S, is said to be (k, m)-representable if there is a
function f: {0,1,...,k —1}" — {1,..., m} whose invariance group
is G.

If G is the invariance group of a function f : {0,1,...,k—1}" — N,
then it is called (k, co)-representable.

G < S, is called m-representable if it is the invariance group of a
function £ : {0,1}" — {1,..., m};
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Representability

A group G < S, is said to be (k, m)-representable if there is a
function f: {0,1,...,k —1}" — {1,..., m} whose invariance group
is G.

If G is the invariance group of a function f : {0,1,...,k—1}" — N,
then it is called (k, co)-representable.

G < S, is called m-representable if it is the invariance group of a
function £ : {0,1}" — {1,..., m};

it is called representable if it is m-representable for some m € N.

Eszter K. Horvath, Szeged Lattice-valued functions Dresden, 2016, Jan 22 . 14 / 31



Representability

A group G < S, is said to be (k, m)-representable if there is a
function f: {0,1,...,k —1}" — {1,..., m} whose invariance group
is G.

If G is the invariance group of a function f : {0,1,...,k—1}" — N,
then it is called (k, co)-representable.

G < S, is called m-representable if it is the invariance group of a
function £ : {0,1}" — {1,..., m};

it is called representable if it is m-representable for some m € N.

By the above, representability is equivalent with
(2, 00)-representability.
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Representability by lattice-valued functions

We say that a permutation group G < S, is (k, L)-representable, if
there is a lattice-valued function f : {0,1,..., k —1}" — L, such that
ok fifandonly if o € G.
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Representability by lattice-valued functions

We say that a permutation group G < S, is (k, L)-representable, if
there is a lattice-valued function f : {0,1,..., k —1}" — L, such that
ot fifand only if 0 € G.

In particular, a (2, L)-representable group is the invariance group of a
lattice-valued Boolean function £ : {0,1}" — L.

Eszter K. Horvath, Szeged

Lattice-valued functions Dresden, 2016, Jan 22 . 15 / 31



Representability by lattice-valued functions

We say that a permutation group G < S, is (k, L)-representable, if
there is a lattice-valued function f : {0,1,..., k —1}" — L, such that
ot fifand only if 0 € G.

In particular, a (2, L)-representable group is the invariance group of a
lattice-valued Boolean function £ : {0,1}" — L.

The notion of (2, L)-representability is more general than

(2, 2)-representability. An example is the Klein 4-group:

{id, (12)(34), (13)(24), (14)(23)}, which is (2, L) representable (for L
being a three element chain), but not (2, 2)-representable.
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Representability by lattice-valued functions

We say that a permutation group G < S, is (k, L)-representable, if
there is a lattice-valued function f : {0,1,..., k —1}" — L, such that
ot fifand only if 0 € G.

In particular, a (2, L)-representable group is the invariance group of a
lattice-valued Boolean function £ : {0,1}" — L.

The notion of (2, L)-representability is more general than

(2, 2)-representability. An example is the Klein 4-group:

{id, (12)(34), (13)(24), (14)(23)}, which is (2, L) representable (for L
being a three element chain), but not (2, 2)-representable.

One can easily check that a permutation group G C S, is
L-representable if and only if it is Galois closed over 2.
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Representability by lattice-valued functions

We say that a permutation group G < S, is (k, L)-representable, if
there is a lattice-valued function f : {0,1,..., k —1}" — L, such that
ot fifand only if 0 € G.

In particular, a (2, L)-representable group is the invariance group of a
lattice-valued Boolean function £ : {0,1}" — L.

The notion of (2, L)-representability is more general than

(2, 2)-representability. An example is the Klein 4-group:

{id, (12)(34), (13)(24), (14)(23)}, which is (2, L) representable (for L
being a three element chain), but not (2, 2)-representable.

One can easily check that a permutation group G C S, is
L-representable if and only if it is Galois closed over 2.

Similarly, it is easy to show that a permutation group is
(k, L)-representable if and only if it is Galois closed over the
k-element domain.
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A Galois connection for invariance groups

Let O,((”) = {f | f: k" — k} denote the set of all n-ary operations on
k, and for F C O,((") and G C S, let

Fro={oeS,|¥feF:arf}, FX.=(F),
Gr={feO0"|VoeG:arf, G¥:=(Gc").
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A Galois connection for invariance groups

Let O,((”) = {f | f: k" — k} denote the set of all n-ary operations on
k, and for F C O,((") and G C S, let

Fro={oeS,|¥feF:arf}, FX.=(F),
Gr={feO0"|VoeG:arf, G¥:=(Gc").
The assignment G — E(k)
to see that G
G is not a group). For G < S, we call G
over k, and we say that G is Galois closed over k if E(k) = G.

is a closure operator on S, and it is easy

is a subgroup of S, for every subset G C S, (even if

) the Galois closure of G
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Galois closed groups

A group G < S, is Galois closed over k if and only if G is
(k, 00)-representable. J
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Galois closed groups

A group G < S, is Galois closed over k if and only if G is
(k, 00)-representable.

For every G < S,,, we have

G = N (Sw).- 6.

ack”
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Galois closed groups

A group G < S, is Galois closed over k if and only if G is
(k, 00)-representable.

For every G < S,,, we have

G = N (Sw).- 6.

ack”

For arbitrary k, n > 2, characterize those subgroups of S, that are Galois
closed over k.
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Galois closed groups

A group G < S, is Galois closed over k if and only if G is
(k, 00)-representable.

For every G < S,,, we have

G = N (Sw).- 6.

ack”

For arbitrary k, n > 2, characterize those subgroups of S, that are Galois
closed over k.

v

Let n > max (29, d% 4+ d) and G < S,. Then G is not Galois closed over k
if and only if G = Ag x L or G <44 Sg X L, where B C n is such that

D :=n)\ B has less than d elements, and L is an arbitrary permutation
group on D.
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Cuts of composition of functions

Theorem Let L be a complete lattice, let A # () be a set and let
c: A=A pu:A— L :L— L Then, for every p € L,

(copotp)p=0opop.
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Cuts of composition of functions

Theorem Let L be a complete lattice, let A # () be a set and let
c: A=A pu:A— L :L— L Then, for every p € L,

(copotp)p=0opop.

Corollary Let L be a complete lattice, let A # () and let pu: A — L.
Then the following holds.
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Cuts of composition of functions

Theorem Let L be a complete lattice, let A # () be a set and let
c: A=A pu:A— L :L— L Then, for every p € L,

(copotp)p=0opop.

Corollary Let L be a complete lattice, let A # () and let pu: A — L.
Then the following holds.

(i) pp = po (Zp)p, where Z; is the identity mapping Z : L — L.
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Corollary Let L be a complete lattice, let A # () and let pu: A — L.
Then the following holds.

(i) pp = po (Zp)p, where Z; is the identity mapping Z : L — L.
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Cuts of composition of functions

Theorem Let L be a complete lattice, let A # () be a set and let
c: A=A pu:A— L :L— L Then, for every p € L,

(copotp)p=0opop.

Corollary Let L be a complete lattice, let A # () and let pu: A — L.
Then the following holds.

(i) pp = po (Zp)p, where Z; is the identity mapping Z : L — L.
(if) (cop)p =00 pp, foro: A—= A.
(i) (Lo v)p = pop, where ¢ is a map ¢ : L — L.
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Invariance groups of lattice-valued functions via cuts

Proposition Let f : {0,...,k—1}" — L and 0 € S,. Then

o f if and only if for every pc L, o f,.
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Invariance groups of lattice-valued functions via cuts

Proposition Let f : {0,...,k—1}" — L and 0 € S,. Then

o f if and only if for every pc L, o f,.

The invariance group of a lattice-valued function f depends only on the
canonical representation of f.
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Invariance groups of lattice-valued functions via cuts

Proposition Let f : {0,...,k—1}" — L and 0 € S,. Then

o f if and only if for every pc L, o f,.

The invariance group of a lattice-valued function f depends only on the
canonical representation of f.

If 1:{0,....,k—1}"—=Lyand f:{0,...,k—1}" — L, are two
n-variable lattice-valued functions on the same domain, then fi = £
implies G(f1) = G(f).
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Representation theorem

For every n € N, there is a lattice L and a lattice valued Boolean
function F : {0,1}" — L satisfying the following: If G < S, and

G = G(f) for a Boolean function f, then G = G(Fp), for a cut F,, of
F.
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Representation theorem on the k-element set

Every subgroups of S, is an invariance group of a function
{0,...,k—1}"—{0,...,k—1} if and only if kK > n.
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Representation theorem on the k-element set

Every subgroups of S, is an invariance group of a function
{0,...,k—1}"—{0,...,k—1} if and only if kK > n.

If k > n, then for every subgroup G of S, there exists a function
f:{0,...,k—1}" — {0,1} such that the invariance group of f is
exactly G.
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Representation theorem on the k-element set

Every subgroups of S, is an invariance group of a function
{0,...,k—1}"—{0,...,k—1} if and only if kK > n.

If k > n, then for every subgroup G of S, there exists a function
f:{0,...,k—1}" — {0,1} such that the invariance group of f is
exactly G.

For k,n € N and k > n, there is a lattice L and a lattice valued
function F : {0,...,k — 1}" — L such that the following holds: If
G < S,, then G = G(Fp) for a cut F, of of F.
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Linear combination

A lattice-valued Boolean function is a map p: {0,1}" — L where L is
a bounded lattice and n € (1,2,3,...).
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Linear combination

A lattice-valued Boolean function is a map p: {0,1}" — L where L is
a bounded lattice and n € (1,2,3,...).

We say that p can be given by a linear combination (in L) if there are
Wi, ..., W, € L such that, for all x = {x1,...,x,} € {0,1}",

n

pu(x) = \/ wixj, thatis, pu(x)= \/(W,- A X;). 9)

i=1 i=1
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Cuts and closure systems

For p € L, the set

pp = {x € {0,1}": u(x) > p} (10)

is called a cut of pu.
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Cuts and closure systems

For p € L, the set

pp = {x € {0,1}": u(x) > p} (10)

is called a cut of pu.

A closure system F over B, is a N-subsemilattice of the powerset
lattice P(B,) = (P(Bn); U,N) such that B, € F. By finiteness, F is
necessarily a complete N-semilattice.
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Cuts and closure systems

For p € L, the set
pp = {x € {0,1}" : p(x) > p} (10)

is called a cut of pu.

A closure system F over B, is a N-subsemilattice of the powerset
lattice P(B,) = (P(Bn); U,N) such that B, € F. By finiteness, F is
necessarily a complete N-semilattice.

A closure system JF determines a closure operator in the standard
way. We only need the closures of singleton sets, that is,

for x € B, we have X := ﬂ{f eF:xef}. (11)
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{V, 0}-homomorphism

If u: By — L such that 1(0) = 0 and, for all x,y € B,,
pu(x Vy) = pu(x) Vv u(y), then w is called a {\,0}-homomorphism.
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{V, 0}-homomorphism

If u: By — L such that 1(0) = 0 and, for all x,y € B,,
pu(x Vy) = pu(x) Vv u(y), then w is called a {\,0}-homomorphism.

A lattice-valued function B, — L can be given by a linear
combination in L iff it is a {V, 0}-homomorphism.
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{V, 0}-homomorphism

If u: By — L such that 1(0) = 0 and, for all x,y € B,,
p(x Vy) = pu(x)V u(y), then p is called a {V, 0}-homomorphism.

A lattice-valued function B, — L can be given by a linear
combination in L iff it is a {V, 0}-homomorphism.

p(x Vy)=\V,;wilx;i Vyi) = V(wixi V wiy;) = V; wix; VV; wiy; =
1(x) V pu(y)-
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{V, 0}-homomorphism

If u: By — L such that 1(0) = 0 and, for all x,y € B,,
p(x Vy) = pu(x)V u(y), then p is called a {V, 0}-homomorphism.

A lattice-valued function B, — L can be given by a linear
combination in L iff it is a {V, 0}-homomorphism.

p(x Vy)=\V,;wilx;i Vyi) = V(wixi V wiy;) = V; wix; VV; wiy; =
1(x) V pu(y)-

Let e() =(0,...,0,1,0,...,0) € B, where 1 stands in the i-th place.

Define w; := ,u,( (1)), Observe that (e - 1) = w; = w; - 1 and
(el - 0) =0=w; -0, that is, ,u( (). x;,) = w; - x;. Therefore, for

x € By, we obtain u(x) = u(V; ex;) =V, u(ex;) = \V/; w; - x;.
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If @ # X C B, such that (Vx € X)(Yy € Bp)(x <y then ye€ X),
then X is an up-set of B,,.
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If @ # X C B, such that (Vx € X)(Yy € Bp)(x <y then ye€ X),
then X is an up-set of B,,.

The lattice-valued function p: B, — L is isotone iff all the cuts of u
are up-sets.
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Closure systems of up-sets, linear combinations

Let F a set consisting of some up-sets of B,. Then, the following
three conditions are equivalent.
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Closure systems of up-sets, linear combinations

Let F a set consisting of some up-sets of B,. Then, the following
three conditions are equivalent.

(i) F be a closure system over B,, and for all x,y € B,, XxCy
impliesb x Vy = Xx.
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Closure systems of up-sets, linear combinations

Let F a set consisting of some up-sets of B,. Then, the following
three conditions are equivalent.

(i) F be a closure system over B,, and for all x,y € B,, XxCy
impliesb x Vy = Xx.

(ii) F be a closure system over By, and for all x,y € B,,

xVy=xNYy.
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Closure systems of up-sets, linear combinations

Let F a set consisting of some up-sets of B,. Then, the following
three conditions are equivalent.

(i) F be a closure system over B,, and for all x,y € B,, XxCy
impliesb x Vy = Xx.

(ii) F be a closure system over By, and for all x,y € B,,

xVy=xNYy.

(iii) There exist a bounded lattice L and a lattice-valued function
w: By, — L given by a linear combination such that F is the family of
cuts of u.
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Proving (ii) from (i)

Let x,y € B,. Since the closure induced by F is clearly
order-reversing in the sense that
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Proving (ii) from (i)

Let x,y € B,. Since the closure induced by F is clearly
order-reversing in the sense that

x <y implies X Dy,

we have x Vy Cxand xVy Cy. Hence, xVy CxNYy.
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Proving (ii) from (i)

Let x,y € B,. Since the closure induced by F is clearly
order-reversing in the sense that

x <y implies X Dy,

we have x Vy Cxand xVy Cy. Hence, xVy CxNYy.

To show the converse inclusion, let z € X N'y. By well-known
properties of closure operators, z C x and Z Cy. Using (i), z=2zV x
and Z =2z Vy. Using (i) again for the inclusion zV x C zV'y, which
is actually an equality, and applying the reverse inclusion thereafter,
we obtain z€z=zVx=zVxVzVyCxVy. Hence,
XVy=xNy.

Eszter K. Horvath, Szeged Lattice-valued functions Dresden, 2016, Jan 22 . 27 /31



Proving (iii) from (ii)

Since F is a finite N-closed family of subsets of B, and B, € F, (F;C) is
a lattice. Let L be the dual (F; D) of this lattice and define : B, — L by
x — X. We claim that the cuts of u are exactly the members of F. First,

let f € F. Then

f={x€eBy:xef}={xeB,:XCfy={xeBy:ulx)>"f}=upr

is a cut of u. Second, every cut of y is of the form uf for some f € F,
and pf = f, which is in F. This proves that F is the family of cuts of u.
Since F consists of up-sets of B, the only member of F containing 0 is
B,. Hence 11(0) =0 = B, = 0,. Finally, since N is the meet in (F, C), it
is the join in L. Thus, p is a {V,0}-homomorphism, p can be given by a
linear combination.
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Proving (i) from (iii)

We show first that whenever F is the collection of cuts of an isotone
lattice-valued function p: B, — L and x € B,, then
F is a closure system and

X ={z€By:z2) > p(x)} = pi(x);

where X. Note that B, = {x € B, : u(x) > 0} = po € F. For any two
members of F, say, jp, g € F, we have pp Npg ={x € By : x >

pand x> q} ={x€ B,:x>pVq} = pipyg € F. Hence, F is a closure
system over B,,. Next, let x € B, and denote u(x) by g; we have to show
that X equals {z € B, : pi(z) > q}, which is p14. Since x € pug € F is clear,
we have to verify that for all p € L, x € ppimpliesjig C pp. So consider an
element p € L such that x € pp, thatis, p(x) > p. For any z € pgq, we
have u(z) > g = p(x), and u(z) > p follows by transitivity. That is,

z € pp, implying the required inclusion fig C fip.
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Proving (i) from (iii)

Since p is a {V, 0}-homomorphism, the standard trick

x <y implies u(y) = pu(x V y) = p(x) Vv u(y) implies z1(x) < u(y)
shows that p is isotone.
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Proving (i) from (iii)

Since p is a {V, 0}-homomorphism, the standard trick

x <y implies pu(y) = p(x V y) = u(x) V pu(y) implies p1(x) < u(y)
shows that p is isotone.

Let x,y € B, such that x Cy.
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Proving (i) from (iii)

Since p is a {V, 0}-homomorphism, the standard trick

x <y implies pu(y) = p(x V y) = u(x) V pu(y) implies p1(x) < u(y)
shows that p is isotone.

Let x,y € B, such that x Cy.

Since we have x V y C X, it suffices to deal with the converse
inclusion.
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Proving (i) from (iii)

Since p is a {V, 0}-homomorphism, the standard trick

x <y implies pu(y) = p(x V y) = u(x) V pu(y) implies p1(x) < u(y)
shows that p is isotone.

Let x,y € B, such that x Cy.
Since we have x V y C X, it suffices to deal with the converse
inclusion.

So let z € X. We have, u(z) > u(x). We also have p(z) > p(y) by
the same reason and since z € X C .
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Proving (i) from (iii)

Since p is a {V, 0}-homomorphism, the standard trick

x <y implies pu(y) = p(x V y) = u(x) V pu(y) implies p1(x) < u(y)
shows that p is isotone.

Let x,y € B, such that x Cy.

Since we have x V y C X, it suffices to deal with the converse
inclusion.

So let z € X. We have, u(z) > u(x). We also have p(z) > p(y) by
the same reason and since z € X C .

Hence, pu(z) > pu(x) V u(y) = p(x V y) and finally we have z € x Vy.
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Thank you for your attention!

Thank you for your attention!
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