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Co-authors: János Barát, Péter Hajnal, Branimir Šešelja, Andreja
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Islands? Alcatraz, berüchtigt
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Lakes? (Aral sea, satellit photo)
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Lakes?
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Definition

We call a rectangle/triangle a rectangular/triangular island, if for the cell
t, if we denote its height by at , then for each cell t̂ neighbouring with a
cell of the rectange/triangle T, the inequality at̂ < min{at : t ∈ T}
holds.
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Definition

Grid, neighbourhood
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The number of rectangular islands

We put heights into the cells.
How many rectangular islands do we have?
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The number of rectangular islands

Water level: 0,5
Number of rectangular islands: 1
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The number of rectangular islands

Water level: 1,5
Number of rectangular islands: 2
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The number of rectangular islands

Water level: 2,5
Number of rectangular islands: 2
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The number of rectangular islands

Altogether: 1 + 2 + 2 = 5 rectangular islands.

Could we put more rectangular islands onto this grid? (With other
heights?)
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The number of rectangular islands

Yes, we could put more rectangular islands, here we have
1 + 2 + 4 + 2 = 9 rectangular islands.

HOWEWER, WE CANNOT PUT MORE RECTANGULAR ISLANDS!!!
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The maximum number of rectangular islands on the m × n
size grid (Gábor Czédli , Szeged, 2007. june 17.)

f cz(m, n) =

[
mn + m + n − 1

2

]
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History/1

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of
Combinatorics, Information and System Sci., 31 (2006), 317-326.
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History/2

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive
lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a m × n rectangular board
on square grid:

f cz(m, n) =

[
mn + m + n − 1

2

]
.
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History/3

Rectangular islands in higher dimensions

G. Pluhár: The number of brick islands by means of distributive
lattices, Acta Sci. Math. (Szeged) 75 (2009), 3-11.
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Proving f (m, n) =
[

mn+m+n−1
2

]
THERE EXISTS:

By induction on the number of the cells: f (m, n) ≥
[
mn+m+n−1

2

]
.

If m = 1, then
[
n+1+n−1

2

]
= n, we put the numbers 1, 2, 3, . . . , n in the

cells and we will have exactly n islands.

If n = 1, then
[
m+m+1−1

2

]
= m.

If m = n = 2 :
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Proving f (m, n) =
[

mn+m+n−1
2

]
THERE EXISTS:

Let m, n > 2.

f (m, n) ≥ f (m−2, n)+f (1, n)+1 ≥
[ (m−2)n+(m−2)+n−1

2

]
+
[
n+1+n−1

2

]
+1 =

=
[ (m−2)n+(m−2)+n−1+2n

2

]
+ 1 =

[
mn+m+n−1

2

]
.
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Proving methods/1

LATTICE METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent
subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number
of elements.
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Eszter K. Horváth, Szeged Co-authors: János Barát, Péter Hajnal, Branimir Šešelja, Andreja Tepavčević, Sándor Radeleczki ()Some enumerative and lattice theoretic aspects of islands (and lakes) and related investigationsDresden, 2015, Jan 16 . 22 / 64



Proving methods/1

LATTICE METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent
subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number
of elements.
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Proving methods/2

TREE-GRAPH METHOD
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Proving methods/2

TREE-GRAPH METHOD

Lemma 2 (folklore)

Let T be a rooted tree such that any non-leaf node has at least
2 sons. Let ` be the number of leaves in T . Then |V | ≤ 2`− 1.

We have 4s + 2d ≤ (n + 1)(m + 1).
The number of leaves of T (I) is ` = s + d . Hence by Lemma 2 the
number of islands is

|V | − d ≤ (2`− 1)− d = 2s + d − 1 ≤ 1

2
(n + 1)(m + 1)− 1.

.
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Proving methods/3

ELEMENTARY METHOD

We define
µ(R) = µ(u, v) := (u + 1)(v + 1).

Now

f (m, n) = 1 +
∑

R∈maxI
f (R) = 1 +

∑
R∈maxI

([(u + 1)(v + 1)

2

]
− 1
)

= 1 +
∑

R∈maxI

([µ(u, v)

2

]
− 1
)
≤ 1− |maxI|+

[µ(C)

2

]
.

If |maxI| ≥ 2, then the proof is ready. Case |maxI| = 1 is an easy
exercise.
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Triangular islands

For the maximum number of triangular islands in an equilateral triangle of
side length n, n2+3n

5 ≤ f (n) ≤ 3n2+9n+2
14 holds.

E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular
islands on a triangular grid, Periodica Mathematica Hungarica, 58
(2009), 25–34.

Eszter K. Horváth, Szeged Co-authors: János Barát, Péter Hajnal, Branimir Šešelja, Andreja Tepavčević, Sándor Radeleczki ()Some enumerative and lattice theoretic aspects of islands (and lakes) and related investigationsDresden, 2015, Jan 16 . 27 / 64



Triangular islands

For the maximum number of triangular islands in an equilateral triangle of
side length n, n2+3n

5 ≤ f (n) ≤ 3n2+9n+2
14 holds.
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Square islands (also in higher dimensions)

1

3
(rs − 2r − 2s) ≤ f (r , s) ≤ 1

3
(rs − 1)

E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of
square islands on a rectangular sea, Acta Sci. Math.(Szeged) 76
(2010) 35-48.
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Exact results

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If n ≥ 2, then h1(m, n) = [ (m+1)n
2 ].

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K.
Horváth):

If n ≥ 2, then h2(m, n) = [ (m+1)n
2 ] + [ (m−1)2 ].

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If m, n ≥ 2, then t(m, n) = [mn

2 ].

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
p(m, n) = f (m, n) = [(mn + m + n − 1)/2].
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Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If n ≥ 2, then h1(m, n) = [ (m+1)n
2 ].

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K.
Horváth):

If n ≥ 2, then h2(m, n) = [ (m+1)n
2 ] + [ (m−1)2 ].

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If m, n ≥ 2, then t(m, n) = [mn

2 ].

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
p(m, n) = f (m, n) = [(mn + m + n − 1)/2].
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Maximal systems of rectangular islands

Further results on rectangular islands

Zs. Lengvárszky: The minimum cardinality of maximal systems of
rectangular islands, European Journal of Combinatorics, 30 (2009),
216-219.
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Islands in Boolean algebras, i.e. in hypercubes

The board consists of all vertices of a hypercube, i.e. the elements of a
Boolean algebra BA = {0, 1}n.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in BA = {0, 1}n by b(n).

Island formula for Boolean algebras (J. Barát, P. Hajnal, E.K. Horváth)
b(n) = 1 + 2n−1.
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High school competition exercise

Determine the maximum number of islands on n consecutive cells, if the
possible heights on the grid are the following: 0, 1, 2, . . . , h; where h ≥ 1.

The solution:

I (n, h) = n −
[
n
2h

]
.
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Rectangular height functions/1

Joint work with Branimir Šešelja and Andreja Tepavčević

A height function h is a mapping from {1, 2, ...,m} × {1, 2, ..., n} to N,
h : {1, 2, ...,m} × {1, 2, ..., n} → N.

The co-domain of the height function is the lattice (N,≤), where N is the
set of natural numbers under the usual ordering ≤ and suprema and
infima are max and min, respectively.

For every p ∈ N, the cut of the height function, i.e. the p-cut of h is an
ordinary relation hp on {1, 2, ...,m} × {1, 2, ..., n} defined by

(x , y) ∈ hp if and only if h(x , y) ≥ p.
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Rectangular height functions/2

We say that two rectangles {α, ..., β} × {γ, ..., δ} and
{α1, ..., β1} × {γ1, ..., δ1} are distant if they are disjoint and for every two
cells, namely (a, b) from the first rectangle and (c , d) from the second, we
have (a− c)2 + (b − d)2 ≥ 4.

The height function h is called rectangular if for every p ∈ N, every
nonempty p-cut of h is a union of distant rectangles.
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Rectangular height functions/3

5 5 3 5 5

4 4 2 4 4

2 2 1 2 2

Γ1 = {1, 2, 3, 4, 5} × {1, 2, 3},
Γ2 = {1, 2, 3, 4, 5} × {1, 2, 3} \ {(3, 1)},
Γ3 = {(1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (4, 2), (4, 3), (5, 2), (5, 3)},
Γ4 = {(1, 2), (1, 3), (2, 2), (2, 3), (4, 2), (4, 3), (5, 2), (5, 3)} and
Γ5 = {(1, 3), (2, 3), (4, 3), (5, 3)}
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Rectangular height functions/4
CHARACTERIZATION THEOREM

Theorem 1
A height function hN : {1, 2, ...,m} × {1, 2, ..., n} → N is rectangular if
and only if for all (α, γ), (β, δ) ∈ {1, 2, ...,m} × {1, 2, ..., n} either

these are not neighboring cells and there is a cell (µ, ν) between
(α, γ) and (β, δ) such that hN(µ, ν) < min{hN(α, γ), hN(β, δ)}, or

for all (µ, ν) ∈ [min{α, β},max{α, β}]× [min{γ, δ},max{γ, δ}],

hN(µ, ν) ≥ min{hN(α, γ), hN(β, δ)}.
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Rectangular height functions/5

Theorem 2

For every height function h : {1, 2, ..., n} × {1, 2, ...,m} → N, there is a
rectangular height function h∗ : {1, 2, ..., n} × {1, 2, ...,m} → N, such
that Irect(h) = Irect(h∗).
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Rectangular height functions/6
CONSTRUCTING ALGORITHM

1. FOR i = t TO 0
2. FOR y = 1 TO n
3. FOR x = 1 TO m
4. IF h(x , y) = ai THEN
5. j:= i
6. WHILE there is no island of h which is a subset of haj that contains
(x , y) DO j:=j-1
7. ENDWHILE
8. Let h∗(x , y) := aj .
9. ENDIF
10. NEXT x
11. NEXT y
12. NEXT i
13. END.
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Rectangular height functions/7
LATTICE-VALUED REPRESENTATION

Theorem 3
Let h : {1, 2, ...,m} × {1, 2, ..., n} → N be a rectangular height function.
Then there is a lattice L and an L-valued mapping Φ, such that the
cuts of Φ are precisely all islands of h.
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Rectangular height functions/8

Let h : {1, 2, 3, 4, 5} × {1, 2, 3, 4} → N be a height function.

4 9 8 7 1 5
3 8 8 7 1 4
2 7 7 7 1 5
1 2 2 2 1 6

1 2 3 4 5
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Rectangular height functions/9

h is a rectangular height function. Its islands are:

I1 = {(1, 4)},
I2 = {(1, 3), (1, 4), (2, 3), (2, 4)},
I3 = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)},
I4 = {(5, 1)},
I5 = {(5, 1), (5, 2)},
I6 = {(5, 4)},
I7 = {(5, 1), (5, 2), (5, 3), (5, 4)},
I8 = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3),
(2, 4), (3, 2), (3, 3), (3, 4), (1, 1), (2, 1), (3, 1)},
I9 = {1, 2, 3, 4, 5} × {1, 2, 3, 4}.
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Rectangular height functions/10

Its cut relations are:

h10 = ∅
h9 = I1 (one-element island)
h8 = I2 (four-element square island)
h7 = I3 (nine-element square island)
h6 = I3 ∪ I4 (this cut is a disjoint union of two islands)
h5 = I3 ∪ I5 ∪ I6 (union of three islands)
h4 = I3 ∪ I7 (union of two islands)
h2 = I7 ∪ I8 (union of two islands)
h1 = {1, 2, 3, 4, 5} × {1, 2, 3, 4} = I9 (the whole domain)
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Rectangular height functions/11
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Rectangular height functions/12

Theorem 4
For every rectangular height function

h∗ : {1, 2, ..., n} × {1, 2, ...,m} → N,

there is a rectangular height function

h∗∗ : {1, 2, ..., n} × {1, 2, ...,m} → N,

such that Irect(h∗) = Irect(h∗∗) and in h∗∗ every island appears exactly
in one cut.

If a rectangular height function h∗∗ has the property that each island
appears exactly in one cut, then we call it standard rectangular height
function.
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Rectangular height functions/13

We denote by Λmax(m, n) the maximum number of different nonempty
p-cuts of a standard rectangular height function on the rectangular table
of size m × n.

Theorem 5 Λmax(m, n) = m + n − 1.
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Rectangular height functions/14

The maximum number of different nonempty p-cuts of a standard
rectangular height function is equal to the minimum cardinality of maximal
systems of islands.
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Rectangular height functions/15

Lemma 1
If m ≥ 3 and n ≥ 3 and a height function
h : {1, 2, ...,m} × {1, 2, ..., n} → N has f cz(m, n) many rectangular
islands (that is, maximally many), then it has exactly two maximal
rectangular islands.

Lemma 2
If m ≥ 3 or n ≥ 3, then for any odd number t = 2k + 1 with
1 ≤ t ≤ max{m − 2, n − 2}, there is a standard rectangular height
function h : {1, 2, ...,m} × {1, 2, ..., n} → N having the maximum
number of islands f(m,n), such that one of the side-lengths of one of the
maximal islands is equal to t.
(Remark: The statement is not true for even side-lengths, one can
construct counterexample easily!)
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Rectangular height functions/16

We denote by Λcz
h (m, n) the number of different nonempty cuts of a

standard rectangular height function h in the case h has maximally many
islands, i.e., when the number of islands is

f cz(m, n) =

⌊
mn + m + n − 1

2

⌋
.

Theorem 6
Let h : {1, 2, ...,m} × {1, 2, ..., n} → N be a standard rectangular height
function having maximally many islands f cz(m, n). Then,

Λcz
h (m, n) ≥ dlog2(m + 1)e+ dlog2(n + 1)e − 1.

Furthermore, there exists a standard rectangular height function with
maximally many rectangular islands such that number of different
nonempty cuts is exactly dlog2(m + 1)e+ dlog2(n + 1)e − 1.
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Rectangular height functions/17

Proposition

If m, n ≥ 2, then Λcz
h (m, n) ≤

⌊
(m+n+3)

2

⌋
. Furthermore, for m, n ≥ 3 this

bound is sharp.

Remark
If n = 1, then Λcz

h (m, n) ≤ m (similarly for m = 1).
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CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets
in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2
(2009).

Any two CD-bases of a finite distributive lattice have the same number of
elements.

If all finite lattices in a lattice variety have this property, then the variety
must coincide with the variety of distributive lattices.
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CD-independent subsets in posets

Let P = (P,≤) be a partially ordered set, and let a, b ∈ P. The elements
a and b are called disjoint and we write a ⊥ b if

either P has least element 0 ∈ P and inf{a, b} = 0,
or P is without 0 and the elements a and b have no common lowerbound.

A nonempty set X ⊆ P is called CD-independent if for any x , y ∈ X ,
x ≤ y or y ≤ x , or x ⊥ y holds. Maximal CD-independent sets (with
respect to ⊆) are called CD-bases in P.
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Sets of pairwise disjoint elements

Definition

A nonempty set D of nonzero elements of P is called a set of pairwise
disjoint element in P if x ⊥ y holds for all x , y ∈ D, x 6= y ; if P has
0-element, then {0} is considered to be a set of pairwise disjont
elements, too.

Remark

D is a set of pairwise disjoint elements if and only if it is a
CD-independent antichain in P.
.
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Order ideals

Any antichain A = {ai | i ∈ I} of a poset P determines a unique
order-ideal I (A) of P:

I (A) =
⋃
i∈I

(ai ] = {x ∈ P | x ≤ ai , for some i ∈ I},

where (a] stands for the principal ideal of an element a ∈ P.
Definition

If A1,A2 are antichains in P, then we say that A1 is dominated by
A2, and we denote it by A1 6 A2 if

I (A1) ⊆ I (A2).

Remarks

6 is a partial order

A1 6 A2 is satisfied if and only if

for each x ∈ A1 there exists an y ∈ A2, with x ≤ y . (A)
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D(P)

Let D(P) denote the set of all sets of pairwise disjont elements of P.
As sets of pairwise disjont elements of P are also antichains, restricting 6
to D(P), we obtain a poset (D(P),6).
The connection between CD-bases of a poset P and the poset (D(P),6) is
shown by the next theorem:
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Theorem

Let B be a CD-base of a finite poset (P,≤), and let |B| = n.

Then there exists a maximal chain {Di}1≤i≤n in D(P) such that

B =
n⋃

i=1
Di .

Moreover, for any maximal chain {Di}1≤i≤m in D(P) the set D =
m⋃
i=1

Di

is a CD-base in (P,≤) with |D| = m.
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Eszter K. Horváth, Szeged Co-authors: János Barát, Péter Hajnal, Branimir Šešelja, Andreja Tepavčević, Sándor Radeleczki ()Some enumerative and lattice theoretic aspects of islands (and lakes) and related investigationsDresden, 2015, Jan 16 . 55 / 64



Graded posets

The poset P is called graded, if all its maximal chains have the same
cardinality.

Let P = (P,≤) be a finite poset with 0. Then the following conditions are
equivalent:

(i) The CD-bases of P have the same number of elements,

(ii) D(P) is graded.

A set of pairwise disjoint elements D of a poset (P,≤) is called complete,
if there is no p ∈ P \ D such that D ∪ {p} is also a set of pairwise disjoint
elements.

(iii) DC(P) is graded.
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If P is a finite bounded poset

If all the principal ideals (a] of P are weakly 0-modular, then A(P) ∪ C is
a CD-base for every maximal chain C in P.

If P has weakly 0-modular principal ideals and D(P) is graded, then P is
also graded, and any CD-base of P contains |A(P)|+ l(P) elements.
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Weakly 0-modular lattices

A poset with least element 0 and greatest element 1 is called bounded.

A lattice L with 0 is called 0-modular if for any a, b, c ∈ L

a ≤ b and b ∧ c = 0 imply b ∧ (a ∨ c) = a (M0)

Equivalently, L has no pentagon sublattice N5 that contains 0 = 0L.

If (M0) is satisfied under the assumptions that a is an atom and c ≺ b ∨ c ,
then L is called weakly 0 -modular.

The lattice L is lower-semimodular if for any a, b, c ∈ L, b ≺ c implies
a ∧ b � a ∧ c .

It is easy to see that any lower-semimodular lattice and any 0-modular
lattice is weakly 0-modular.

We say that a poset P with 0 is weakly 0-modular if the above weak form
of (M0) holds whenever sup{a, c} and sup{b, c} exist in P.
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CD-bases in semilattices and lattices / 1

Lemma

Let P be a poset with 0 and Dk , k ∈ K (K 6= ∅) disjoint sets in P. If the
meet

∧
k∈K

a(k) of any system of elements a(k) ∈ Dk , k ∈ K exist in P,

then
∧

k∈K
Dk also exists in D(P).
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CD-bases in semilattices and lattices / 2

A pair a, b ∈ P with least upperbound a ∨ b in P is called a distributive
pair, if (c ∧ a) ∨ (c ∧ b) exists in P for any c ∈ P, and
c ∧ (a ∨ b) = (c ∧ a) ∨ (c ∧ b).
We say that (P,∧) is dp-distributive, if any a, b ∈ P with a ∧ b = 0 is a
distributive pair.
Theorem

(i) If P = (P,∧) is a semilattice with 0, then D(P) is a dp-distributive
semilattice; if D1 ∪ D2 is a CD-independent set for some
D1,D2 ∈ D(P), then D1,D2 is a distributive pair in D(P).

(ii) If P is a complete lattice, then D(P) is a dp-distributive complete
lattice.
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CD-bases in semilattices and lattices / 3

Let (P,≤) be a poset and A ⊆ P. (A,≤) is called a sublattice of (P,≤),
if (A,≤) is a lattice such that for any a, b ∈ A the infimum and the
supremum of {a, b} is the same in the subposet (A,≤) and in (P,≤). If
the relation x ≺ y in (A,≤) for some x , y ∈ A implies x ≺ y in the poset
(P,≤), then we say that (A,≤) is a cover-preserving subposet of (P,≤).
Theorem

Let P = (P,≤) be a poset with 0 and B a CD-base of it. Then
(D(B),6) is a distributive cover-preserving sublattice of the poset
(D(P),6). If P is a ∧-semilattice, then for any D ∈ D(P) and
D1,D2 ∈ D(B) we have (D1 ∨ D2) ∧ D = (D1 ∧ D) ∨ (D2 ∧ D) in
(D(P),6).
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CD-bases in particular lattice classes

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in
D(L). Then either D = {d}, for some d ∈ L with d ≺ 1, or D consist of
two different elements d1, d2 ∈ L and d1 ∨ d2 = 1.

Theorem

Let L be a finite, weakly 0-distributive lattice. Then the following are
equivalent:

(i) L is graded, and l(a) + l(b) = l(a ∨ b) holds for all a, b ∈ L with
a ∧ b = 0.

(ii) L is 0-modular, and the CD-bases of L have the same number
of elements.
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Interval system

An interval system (V , I) is an algebraic closure system satisfying the
axioms:

(I0) {x} ∈ I for all x ∈ V , and ∅ ∈ I;

(I1) A,B ∈ I and A ∩ B 6= ∅ imply A ∪ B ∈ I;

(I2) For any A,B ∈ I the relations A ∩ B 6= ∅, A " B and B " A imply
A \ B ∈ I (and B \ A ∈ I).
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Thank you for your attention!

Thank you for your attention!
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