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Horn formulas

I satisfiability in propositional logic is computationally hard

I satisfiability in Horn logic is computationally easy

I Horn logic is the framework for many applications, it is
natural for human reasoning

I equivalent frameworks: closures, lattices, directed
hypergraphs, functional dependencies, formal concepts,
implicational systems

I Poole - Mackworth: Artificial Intelligence: Foundations of
Computational Agents, 2010:

I ‘uses rational computational agents and Horn clause logic as
unifying threads in this vast field’
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Horn formulas, entailment

I Horn clause: at most one unnegated variable, e.g.
C = a ∨ b ∨ c, written as a, b → c , Body(C ) = {a, b},
Head(C ) = c

I definite clause: exactly one unnegated variable

I (definite) formula: conjunction of (definite) Horn clauses

I Horn function: representable by a Horn formula

I entailment: (a, b → c) ∧ (c → d) |= (a, b → d)

I implicate: K |= C

I prime implicate: no subclause is an implicate

I forward chaining - efficient
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Horn minimization

I given a Horn formula ϕ and a number k, is there a Horn
formula with at most k clauses equivalent to ϕ?

I xi → yj , y1, . . . , yn → xi n2 + n clauses

I xi → xi+1, xn → yi , y1, . . . , yn → x1 2n clauses



Previous work: minimization

I Umans (2000): CNF minimization is Σp
2-complete

I Ausiello, D’Atri, Saccà (1986): Horn minimization is
NP-complete

I Hammer, Kogan (1993): NP-complete if the number of
literals is to be minimized; in P for quasi-acyclic formulas

I Maier (1983), Ausiello, D’Atri, Saccà (1986), Guigues,
Duquenne (1986), Angluin, Frazier, Pitt (1992): minimization
of the number of bodies can be done efficiently

I Boros, Čepek, Kogan (1997): iterative decomposition
algorithm



Approximate minimization
I Hammer, Kogan (1993): Horn minimization (number of

clauses) has an (n − 1)-approximation algorithm (n: number
of different variables) o(n)?

Theorem
Bhattacharya, DasGupta, Mubayi, T. (2010): if
NP 6⊆ DTIME (npolylog(n)) then for every 0 < δ < 1 Horn
minimization is not efficiently

2(log size(ϕ))
1−δ

approximable.

Theorem
Boros, Gruber (2011): if P 6= NP then 3-Horn minimization is not
efficiently

2(log size(ϕ))
1−o(1)

approximable.
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Introducing new variables

I Flögel, Kleine Büning, Lettmann (1993)

I x1/y1, . . . , xn/yn → u 2n clauses

I xi → zi , yi → zi , z1, . . . , zn → u 2n + 1 clauses

I same set of consequences over the original variables

I ϕ ∼R ψ, where R is a set of variables: same set of
consequences over R

I co −NP-complete even in rather restricted cases, so extension
is too powerful



Steiner extension

I introduce new variables in a restricted way

I xi → yj , i = 1, . . . , n, j = 1, . . . ,m nm clauses

I xi → z , z → yj , i = 1, . . . , n, j = 1, . . . ,m n + m clauses

I new variables can be heads, or singleton bodies with old heads

I ϕ ∼R ψ, where variables new are introduced by Steiner
extension: can be decided efficiently

I minimization is MAX-SNP-hard



A o(n) approximation algorithm

Theorem
There is an efficient

O

(
n

log log n

(log n)1/4

)
O

(
n

log n

)
approximation algorithm for Steiner definite Horn minimization .

I
√

log n Horn minimization can be done efficiently

I find an equivalent Horn formula with the minimal number of
bodies

I find a decomposition of the bipartite graph between heads and
bodies
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Efficient decomposition

Theorem
There is an efficient algorithm for finding

I a decomposition of (a, b)-bipartite graphs (a ≥ b) into
complete bipartite graphs with

O

(
ab

log a
+ a log b

)
+ a

vertices altogether.
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Reachability or forward chaining

I H = (V ,F ) directed hypergraph

I forward chaining from vertex set S

I mark vertices in S

I while there is a hyperedge a, b → c such that a, b is marked
and c is unmarked, mark c

I closure clH(S) is the set of marked vertices

I vertex v is reachable from S if v ∈ clH(S)



Reachability or forward chaining

I H = (V ,F ) directed hypergraph

I forward chaining from vertex set S

I mark vertices in S

I while there is a hyperedge a, b → c such that a, b is marked
and c is unmarked, mark c

I closure clH(S) is the set of marked vertices

I vertex v is reachable from S if v ∈ clH(S)



Reachability or forward chaining

I H = (V ,F ) directed hypergraph

I forward chaining from vertex set S

I mark vertices in S

I while there is a hyperedge a, b → c such that a, b is marked
and c is unmarked, mark c

I closure clH(S) is the set of marked vertices

I vertex v is reachable from S if v ∈ clH(S)



Reachability or forward chaining

I H = (V ,F ) directed hypergraph

I forward chaining from vertex set S

I mark vertices in S

I while there is a hyperedge a, b → c such that a, b is marked
and c is unmarked, mark c

I closure clH(S) is the set of marked vertices

I vertex v is reachable from S if v ∈ clH(S)



Reachability or forward chaining

I H = (V ,F ) directed hypergraph

I forward chaining from vertex set S

I mark vertices in S

I while there is a hyperedge a, b → c such that a, b is marked
and c is unmarked, mark c

I closure clH(S) is the set of marked vertices

I vertex v is reachable from S if v ∈ clH(S)



Reachability or forward chaining

I H = (V ,F ) directed hypergraph

I forward chaining from vertex set S

I mark vertices in S

I while there is a hyperedge a, b → c such that a, b is marked
and c is unmarked, mark c

I closure clH(S) is the set of marked vertices

I vertex v is reachable from S if v ∈ clH(S)



Reachability or forward chaining

I H = (V ,F ) directed hypergraph

I forward chaining from vertex set S

I mark vertices in S

I while there is a hyperedge a, b → c such that a, b is marked
and c is unmarked, mark c

I closure clH(S) is the set of marked vertices

I vertex v is reachable from S if v ∈ clH(S)



Hydra number

I directed hypergraph H = (V ,F ) represents undirected graph
G = (V ,E ):

I (u, v) ∈ E implies clH(u, v) = V

I (u, v) 6∈ E implies clH(u, v) = {u, v}

I hydra number h(G ) of undirected graph G = (V ,E ):

min{|F | : H = (V ,F ) representsG}.

I Boros, Čepek (1994): related Horn formula class
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Basic properties of the hydra number

I |E | ≤ h(G ) ≤ 2|E |, both are sharp for some graphs

I hamiltonian graphs are single-headed

I graphs with hamiltonian line graphs are single-headed

I if G has a single-headed connected spanning subgraph then it
is single-headed

I if G has a connected spanning subgraph with a hamiltonian
line graph then it is single-headed

I if G has a cut edge between with both halves having at least
two vertices then G is not single-headed



Basic properties of the hydra number

I |E | ≤ h(G ) ≤ 2|E |, both are sharp for some graphs

I hamiltonian graphs are single-headed

I graphs with hamiltonian line graphs are single-headed

I if G has a single-headed connected spanning subgraph then it
is single-headed

I if G has a connected spanning subgraph with a hamiltonian
line graph then it is single-headed

I if G has a cut edge between with both halves having at least
two vertices then G is not single-headed



Basic properties of the hydra number

I |E | ≤ h(G ) ≤ 2|E |, both are sharp for some graphs

I hamiltonian graphs are single-headed

I graphs with hamiltonian line graphs are single-headed

I if G has a single-headed connected spanning subgraph then it
is single-headed

I if G has a connected spanning subgraph with a hamiltonian
line graph then it is single-headed

I if G has a cut edge between with both halves having at least
two vertices then G is not single-headed



Basic properties of the hydra number

I |E | ≤ h(G ) ≤ 2|E |, both are sharp for some graphs

I hamiltonian graphs are single-headed

I graphs with hamiltonian line graphs are single-headed

I if G has a single-headed connected spanning subgraph then it
is single-headed

I if G has a connected spanning subgraph with a hamiltonian
line graph then it is single-headed

I if G has a cut edge between with both halves having at least
two vertices then G is not single-headed



Basic properties of the hydra number

I |E | ≤ h(G ) ≤ 2|E |, both are sharp for some graphs

I hamiltonian graphs are single-headed

I graphs with hamiltonian line graphs are single-headed

I if G has a single-headed connected spanning subgraph then it
is single-headed

I if G has a connected spanning subgraph with a hamiltonian
line graph then it is single-headed

I if G has a cut edge between with both halves having at least
two vertices then G is not single-headed



Basic properties of the hydra number

I |E | ≤ h(G ) ≤ 2|E |, both are sharp for some graphs

I hamiltonian graphs are single-headed

I graphs with hamiltonian line graphs are single-headed

I if G has a single-headed connected spanning subgraph then it
is single-headed

I if G has a connected spanning subgraph with a hamiltonian
line graph then it is single-headed

I if G has a cut edge between with both halves having at least
two vertices then G is not single-headed



Basic properties of the hydra number

I |E | ≤ h(G ) ≤ 2|E |, both are sharp for some graphs

I hamiltonian graphs are single-headed

I graphs with hamiltonian line graphs are single-headed

I if G has a single-headed connected spanning subgraph then it
is single-headed

I if G has a connected spanning subgraph with a hamiltonian
line graph then it is single-headed

I if G has a cut edge between with both halves having at least
two vertices then G is not single-headed



Path covers of the line graph

I path cover number p(G ): minimal number of paths needed to
cover all vertices

I if G ′ is a connected spanning subgraph of G then

h(G ) ≤ |E (G )|+ p(L(G ′))

Theorem
There are single-headed graphs Gk with Θ(k) edges such that
p(L(G ′)) = Θ(k) for every connected spanning subgraph G ′
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Theorem

I a tree is single-headed iff it is a star

I h(T ) = |E (T )|+ 1 iff T is a caterpillar.

Theorem
For the complete binary tree of depth d

13

12
|E (Bd)| ≤ h(Bd) ≤ 8

7
|E (Bd)|.
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Open problems

I o(n) approximation algorithm for Horn formulas; subclasses?

I characterization of trees with given hydra number;
Raychaudhuri (1995): polynomial algorithm to compute
p(L(T )), Kratzke, West (199?): related results

I which n-vertex trees have the largest hydra number?

I characterization of single-headed graphs

I related result: Bigoš, Čepek, Kučera (2009), Z. Király (2011,
email)

I how hard is it to compute hydra numbers?
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email)

I how hard is it to compute hydra numbers?



Open problems

I o(n) approximation algorithm for Horn formulas; subclasses?

I characterization of trees with given hydra number;
Raychaudhuri (1995): polynomial algorithm to compute
p(L(T )), Kratzke, West (199?): related results

I which n-vertex trees have the largest hydra number?

I characterization of single-headed graphs
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