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1. Closure spaces, closure systems, matroids, and
convex geometries

Let E be a non-empty finite set.

Def. Closure operator
102" —>2°
Ac ,LI(A) (extensive)
AcC Bjﬂ(A)gﬂ(B)(monOtone)

w(u(A))=pu(A)  (idempotent)

Def. (y, E) is called a closure space.



Def. Closure system Def. Closure operator

K — 2F 02" —>2°
-EeK, *Ac (A
X, YeK= XY eK * AcB=1(A) c 1(B)

* H((A) = (A

A member of a closure system
is called a closed set.

L(A) = ﬂ Xe—s KS{ACE: (A=A}

XeK,AcX
onhe-to-one CorreSpondence




Ex. Aclosure system is a lattice under inclusion relation.
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Closure spaces (closure systems)

Def. For each element g ¢ E suppose X c E ¢

and X is minimal with respect to the property e € (X)
Then we say (X,€) is a rooted circuit of a closure operator £,
(or more generally a monotone extensive operator ).

X is called the stem, and € is called the root.

We denote the collection of the rooted circuits of 1 by C(u).

Rooted circuits
= Xy} (.2}, %)

IS (1x.z},

L
Y4

¢




Closure spaces (closure systems)

Conversely, the rooted-circuit system C ()

determines the closure operator .

u(A)=AU{ecE-A:3(X,e)eC(u), X <A} (AcE).

1 (A)contains an element

e ¢ E-A here is a minimat

X c A such that e 1 (X)
with  (X.e) € C. \e




Closure spaces (closure systems)

Def. Rooted cocircuit

ForeckE and Y —E—¢, If Y iIs minimal with respect
to the property egu(E—(YUe)), (Y,e) is said to be
a rooted cocircuit. We denote the collection of the

rooted cocircuits by D(u).

EX.
== {x,y.z} Rooted Cocircuits

{X‘/{y}\{Z} (y} x) ({z} x)
\ / {zhy) ({x}y)

y (.2 (v} 2)
a¢ u(E-1y,x})=pz})=1}




EXx. Affine-point configuration

E={abce}cR’
1(A) = conv.hull (A) N E

Rooted Circuits
: ({a,b,c},e)

Rooted Cocircuits

({a},e), ({b}e), ({c}e).




Closure spaces (closure systems)

EXx. Affine-point configuration
E={ab,cd,elcR’

1(A) = conv.hull (A) [ E Rooted Circuits

({a,b,c},e),
({c,d},e),
a ({a,b},d).

Rooted Cocircuits

b C ({C}/e)/ ({a)d}/e);
({b,d},e).
(ta},d), ({b},d)




Closure spaces (closure systems)

Def. y(A)={ecA:e¢(A-e)} (AcE)

Is the extreme-point operator of a closure operator 4 .

EXx. Affine-point configuration

E={ab,cd,ecR"

a ry({a,b,c,d,e})={a,b,c}
d y({a,c,d,e})={a,c,d}
b C Z({a; b1 e}) :{a1 b’ e}




Matroid

Def. A closure space (4, E)
is a matroid if

ac u(AUb) =be u(AUa)

(Exchange Property)

Abstraction of
linear dependency

12



Matroid

ac u(Aub)=beu(ALa)
(Exchange Property)

EX. A graphic matroid

H(A) =1X Y, Z,U,W}

13



Ex. A graphic matroid M(G) of a graph G
E=E(QG)

Rooted circuits with the root z

({a, b, x, u}, z),
({x, w, u}, 2),
({w, v}, 2),

({a, b, v}, 2).

/Proposition

In a matroid M, for any circuit C and any element € €C,

(C—e, &) is a rooted circuit, and vice versa.

-

~
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Convex geometry

Def. A closure space (y,E)isaconvex geometry if the
corresponding closure operator u satisfies the anti-exchange
property.

a=b, a,be u(A), be u(Ava)=ag u(AUb)

Ex. Affine-point configuration E < R”. (Anti-exchange Property)

#(A) = conv.hull (A)N E

Abstraction of convexity
(Jamison 1982)

— |
GRS ,U(AUb) —be ,U(AUa) (Excange Property)



Convex geometry

ﬁeorem ( Edelman and Jamison 1985) \

Let (4, E) be aclosure space, g be the closure system

associated with it, and y be the extreme-point operator.
Then the following are equivalent.
(1) # is aclosure operator with the anti-exchange property.

(2) For any closed set X € K with X = E, there exists ee E—X
such that X U e e K.

B) x(u(A)=x(A)  for AcE.

w u( y (A) = u(A) for AcCE. [Krein-Milman propeW




Convex Geometries and Antimatroids

Def. Convex geometry
Kc 2"

- E K,

*X,YeK= XY eK

-XeK X#E=

JeeE-X: XUJeeK

Def. Antimatroid
F={E-X:X eK}

Def. Antimatroid

Fc2F

- gel,

ABeF=AUBeF

‘AeF, A=
deceA:A-eeF

An element of K is called a
convex set, and an element
of FIs a feasible set.



convex geometry

?

antimatroid

18



{a,b.c,b} {a,b,c,d}

/
{b,cﬁ >a,c,d} {a.b,d}
{C‘,d} {;“Q{
{c} {a b}
| K J/
& ¢
A convex An antimatroid

geometry

19



classes of convex geometries

- Affine convex geometry

* poset convex geometry

 double shelling of a poset

- simplicial shelling of a chordal graph
* tree node-shelling convex geometry

" graph search convex geometry

generalized affine convex geometries = all the convex

geometries



Principle of shelling process of antimatroids

Once an element Is removable, it remains

removable until it Is deleted.

7(A) is the set of removable elements in A.

A =E;
while( ¥(A) is non-empty) do
delete any elementin ¥(A) from A

end

21



Ex. Poset double shelling antimatroid — Repeating the

deletion of a minimal or maximal element.

C
)\d\ {a,b,c,d}
| {a,b,c,d}
b {a,c,d}

{al,lc} {a,b\,f} {a,b,c} {a,c,d} {b,c,d}

- |
)d\ @) TS Ta
] . Z <>~

a

b {a}| {b}

{C}

A poset double shelling antimatroid

22



Ex. poset convex geometries

C {a,b,c,d} {a,b.c,b}
)\{ {a,b,d} {b,c,é} /a,c,d}
a b e

Hasse diagram

(@.b) |
of a poset P {aob} {C‘}
¢

Deleting a minimal antimatroid convex geometry
element 2> of P of P
antimatroid



Def. Monophonically convex sets of a chordal graph
G :agraph, V(G): the vertexset of G

X cV(G) is monophonically convex if it holds that

a,be X and c eV is on a chordless path
betweenaand b = ce X

\
Theorem (Edelman and Jamison 1985)
The collection of monophonically convex sets is a
convex geometry if and only if G is a chordal graph.
\ _/




Ex. Monophonically convex sets of a chordal graph

> {12345}

RN

3 4 {245} \245} {135}

A chordal graph G //\/‘\ /\\

{24} {25} {45} {34} {35} {15} {13}

X X

{5}

Removable elements \ ‘ /
=Simplicial vertex

A convex geometry of
the chordal graph G

25



Antimatroids and rooted cocircuits

Def. Let ecE. Inan antimatroid F, suppose that an

element H € F contains € and is minimal with respect to

this property. Then we say that (Y,e) IS a rooted
cocircuit whereY —H —p e iscalled therootand Y is

the costem.

[Remark] H is necessarily a join-irreducible element in
the lattice F .



Ex. Poset double shelling antimatroid — Repeating the
deletion of a minimal or maximal element.

C

A,

d

Element: minimal feasible set

a {a}
b {b}
C {c}
d {a, b, d}, {c, d},

{alblcld}

/l\
abdj| fabc} {acd} [b,cd}

{a,b} {aic} {b,c} {cd}

[><7><1_—
@] [{gy] [{c}

~

antimatroid

Rooted cocircuits

(¢,a),

(4, b),

(9, c)

({a, b}, d), ({c}, d)

27



clutter

Def. A clutter Is a collection of sets in which no

member contains another properly.

Def. Foraclutter | on g asubsetof g Isa transversal
of LIif it intersects every member of L. The collection of the
minimal transversals called the blocker of L and denoted
by b(L).

[Note] If a set intersects every member of a clutter L, then it

contains a member of the blocker p(L).



clutter

Ex. clutters and their blockers

L={a,c}{b,c}}, b (L) =1{ck1a b}, b(b(l))=L

L=1{a,b},{b,c}1c.a}}, b (L) ={{ab}.{b,c}1ca}}
b(b(L)) =L

[Proposition For any clutter L, b (b (L)) = L holds. }




Rooted circuits: root | stems costems
({alc}l d)) ({blc}l d) 3 — ¢
Rooted cocircuits: Iz : Z
(¢,a), (¢,b), (2,c)

(ab) ). (ic). d) d [{ac}, {b,c} |{ab},{c}

L={{a, c}, {b, c}}, b(L)={{c}, {a, b} }

/ Proposition (Korte, Lovasz and Schrader)
For a convex geometry (K,E), let C be the collection of

~

the rooted circuits, and D be the collection of the rooted

cocircuits. Then for each ecE,
C(e)={X:(X,e)eC}and D(e)={Y :(Y,e) e D }are the blocker
\ of each other.

/




Def. Meet-distributive lattice:
A finite lattice is meet-distributive if forany Xxel,
the interval [X, X, AX, A---AX ] is @ Boolean lattice

where X, X,, ..., X, are the elements covered by X

/Theorem (Edelman 1986) \

A finite lattice Is meet-distributive

If and only If it is iIsomorphic to the

lattice of a convex geometry.

/




meorem (Dilworth, Boulay, Edelman, et al.) \

Let L be a finite lattice. Then the following are

equivalent.

(1) Every element of L has a unique irredundant join
decomposition to join-irreducible elements.

(2) L is lower semimodular, and every modular
sublattice is distributive.

(3) L is meet distributive.

(4) L is lower semimodular and join-semidistributive.

(5) L isisomorphic to a closure lattice of a convex/

\ geometry.




2. Supersolvable antimatroids
Def. F c2F isan antimatroid if and only if

K={E—A:AcF} is a convex geometry.

Def. F <2 is an antimatroid Def. F < 2Fis an antimatroid
if if

(1) gpeF, (1) g€F,

(2) ABeF=AuBeF,

(3) If AcF and A=g, (2A) If ABeF and AdB
then de e A such that then 3beB\ Asuch that
A—-eeclF . AUbeF .

[strong axioms of antimatroids]



Def. A lattice is supersolvable if there is a maximal chain D
(called an M-chain) such that a sublattice generated by D

and any other chain is necessarily distributive.
Def. An antimatroid is supersolvable if it is

supersolvable as a lattice.

EX. Supersolvable and not supersolvable lattices

M-chalin
A supersolvable lattice A non-supersolvable lattice

34



Def. For a convex geometry, we define a digraph, called
the circuit-graph, with the vertex set being the underlying
set and the edge set {(f,e):(X,e)eC, f e X} where

C is the family of the rooted circuits.

Circuit-graph

b
Rooted circuits a/ \ c

({a, c}, b) Acyclic digraph




Ex. An affine point configuration

3
4 Circuit graph 5
Rooted circuits 2 4 1 2\3
({1;2;3}) 5) ’ ({1)4}1 5) . .
acyclic — partial order)
(2,3}, 4) (acy
EX. The circuit graph is not
a b C d . :
® ° o o acyclic in this case.
b
Rooted circuits
({a. c}, b), ({a, d}, b) a d
({a, d}, c), ({b, d}, ) =



ﬁheorem \

For an antimatroid F =25 the following are equivalent.
(1) FE issupersolvable.
(2) There exists a total ordering 4 on E such that
for ABeF with A¢B and bemin (B\A) ,
AubeF. (Armstrong 2009) (cf. (2A))

(3) The rooted-circuit digraph of the convex geometry

&(:FC ={E—-A:AcF}Is acyclic. /

Suppose that the circuit digraph of K=F“={E—-A:AcF}
is acyclic. Then it determines a partial order Pon E. Then

Corollary
Any linear extension @ of P satisfies (2) above.




3. Lattice-embedding of convex geometries to convex
geometries

s B

Let K,, K, be convex geometrieson E, and z4, 4, be their

closure operators. Then the following are equivalent.
(1) K, cK..
(2) (A (A for AcCE.

(3) For any rooted circuit (X,,a) of K,, there is a rooted

Kcircuit (X,a) of K, suchthat X, cX,. /




Gheorem

Let K., K, =2° be convex geometries on E such that K, =K.
Then the maximum size of stems of K, is at most the maximum
size of stems of K, .

N

~

/

/Con]ecture Let (K,E), (K,,E,) be convex geometries. A
Suppose there exists a lattice-embedding f:K —>K,.
Then the maximum size of stems of K is at most the
maximum size of stems of K,.

/




KA result from the conjecture A
Let (K,,E,), (K,,E,) be convex geometries. If the maximum
size of stems of K, is larger than that of K, then there
exists no lattice-embedding f:K, —»>K,. y

Theorem (Adaricheva et al. (2003))

A finite join-semidistributive lattice cannot be necessarily

embedded into a finite biatomic atomistic convex geometry.



Def. A lattice with zero is biatomic if
- every element is above an atom (atomic),
- for every atom P of L and all element abel,

if p<avb, then there are atoms g<aand r<b
such that p<qvr.

We misunderstood that the size of a stem of a biatomic
convex geometry is at most two.

EX. 7 points configuration in an affine space below.
Deleting a rooted circuit ( {a,b}, e), then the other
rooted circuits defines a convex geometry which is

biatomic and has a stem of size 3. q




5. Extensive and intensive operators

Def. Anoperatorisamap f:2°—2°
Def. An operator f isextensiveif Ac f(A).

Def. An operator f is intensiveif f(A)cCA
extensive f ——f (A ={acA:a¢ f(A-a)} intensive
intensive f ——f (A)=AU{bcE—-A:be f(AUb)} extensive

Ex.
closure 4 F—— u(A)=x(A) extreme-point

operator ={ac A:a¢ u(A-a)} operator



Def. Ext(E) : the collection of all the extensive operators.

Def. Int(E) : the collection of all the intensive operators.

Theorem (Danilov and Koshevoy 2009)

Ext(E) «<— Int(E) is a bijection.

Def. An extensive operator is monotone if

B A= u(B) = 1(A)



Def. An intensive operator X is hereditary if
BcA=(ABc x(B)

Ex. Selection of representatives / World \
#(A) is the national football 4 -~ R
team of A (Hungary) 4 g@ (A
¥(B) is the representative —T B A

N /
team of football of B (Szeged) KK - /

44

"hereditary’ is a nice property as a choice function.



Def. Mon(E) :the collection of all the monotone extensive
operatorson E

Def. Her(E) : the collection of all the hereditary intensive
operatorson E

Ext(E) «<——> Int(E)

U U

Mon(E) <L>Her(E)

Theorem (Danilov and Koshevoy 2009)

Mon(E) «—X— Her(E) is a bijection.




[ Ext(E) J

{ Mon(E) J

/\

Anti-exchange idempotent = Exchange
property Closure operator property

Anti-exchange Exchange
closure operator Closure operator
] 1

Convex geometry Matroid




Extensive operators

Monotone extensive
operator

Closure operator

Convex
geometry



Def. An intensive operator y is path-independent if

2 (AUB) =x(x(AU x(B)) forany A BcE.

i A

2(AUBU:--UD) =y (AU x(B)U---Ux(D)) West -
JAPAN

/Theorem (Koshevoy 1999) \

An intensive operator (choice function) is path-independent

if and only if it is an extreme-point operator of a convex

geometry.

N /

48




Def. A rooted set on E is a pair (X,e) suchthateeEk, X cE-e.

Def. A rooted clutter C on E is a family of rooted sets such

that for each eeE, C(e)={X:(X,e)eC} is a clutter.

Def. A pair (C,D) of rooted clutters is a rooted circuit-cocircuit

system if for each ecE, C(e) ={X :(X,e)eC }and D()={Y:(Y,e)eD}
are the blocker of each other. We say that C and D are point-

wise blocker of each other.

Conversely, a monotone extensive operator determines a

rooted circuit-cocircuit system.

49



Def. For a rooted circuit-cocircuit system (C,D), let
#A)=Inc_(A=AU{ecE-A:I(X,e)eC, XAt  (AcE),
=Tran_(A)=AU{ecE-A:V(Y,e)eD,YnA=gd} (AcE).

point-wise
blocker

C > D

Inc Tran \€)

Zz e Mon (E)

ecu(X) for (X,e)eC

{ Theorem The diagram is commutative. }




and

2(A)=tran_(A)={ecA:V(X,e)eC, X[NA=4}
=inc_(A)={ecA:3(Y,e)eD, Y C A}

point-wise

blocker

‘>

Ce

tran
C

INC
D

y €Her (E)

-

Theorem

This diagram is

~

commutative.
N /




Proposition For a rooted circuit-cocircuit system,

nc_=Tran =ueMon(E), tran_=inc_=yeHer(E),

H=yx and y=u

- J
pointwise pointwise
blocker ,
C < blocker > D Circ(E) < > Cocir(E)
Inc Tra tran j inc Inc Tra tran inc
H < * > ¥ Mon(E)<— > Her(E)
4 A
Theorem
The diagram is commutative, and every arrow is
a bijection.
- Y,




Monotone extensive operator

Closure operator

Exchange
property

Anti-exchange
property

53



Anti-exchange monotone extensive operator

ﬁheorem Let (C, D) be a circuit-cocircuit system, and \

U= IncC =TranD e Mon(E).

Then the following are equivalent.

(AEx) . satisfies the anti-exchange property.

(CA) If (X,x)eC and (y,y)eC, then either (X',x)eC for
some X' < (XUY)-y or (Y',y)eC forsomeY' < (XUY)-x.

(DA) If (X,x)eD and (v,y)eD, then either (X' ,x)eD for

\some X' < (XUY)-yor (V',y)eD for some Y' ¢ (XUY>—x/

Note: Switching C and D gives nothing changed.




Closure operator

/Theorem Let (C,D)be a circuit-cocircuit system, and \

p=Inc_=Tran_ eMon(E).

Then the following are equivalent.

(Clo) u isidempotent, i.e. uis a closure operator.

(CO) If (X,x)eC, (Y,y)eC and y¢&X, then there exists
(W,y) eC such that W (XUY)—x

(DO) If (X,X)eC and f eX, then there exists (Y,f)eD

\ such that Yc(X-f)Ux /




Exchange monotone extensive operator

ﬁweorem Let (C,D) be a circuit-cocircuit system, and \

p=Inc_=Tran_eMon(E).

Then the following are equivalent.
(Ex) L satisfies the exchange property.
(CE) If (X,x)eC and f X, then there exists (Y, f)eC

such thaty - (X - f)Ux
(DE) If (X,x)eD, (Y,y)eD and ygX, then there exists

\(\N, y)eD such that w < (X UY)-x. /




For a circuit-cocircuit system (C,D), we shall call
(D,C) the dual system. Under taking the dual, the
anti-exchange property is invariant.

Taking the dual switches the exchange property and
the idempotent (closure operator).

Hence the concept of matroid is invariant under

taking the dual. When (C,D) gives rise to a matroid,

the dual system (D,C) gives the dual matroid in the

ordinary sense.



Exchange property + closure = matroid

Exchange Property

(CE) If (X,x)eC and feX, then there exists (v, f)eC
such thaty' (X —f)Ue
(DE) If (X,x)eD,(Y,y)eD and ygX, thenthere exists

(W, y) e D such that W< (XUY)-x.
Closure

(CO) If (X,x)eC, (Y,y)eC and yg X, then there exists
W,y)eC such that W (XUY)-x.
(DO) If (X,x)eC and f X, then thereexists (v f)eD

such that y: c(X-f)Ue



New self-dual axioms of Matroids

Axioms of Matroid

(CE) If (X,x)eC and f eX, then there exists (Y',f)eC
such thatY'c(X-f)Ux

(DO) If (Y,y)eDand f €Y, then there exists (Y',y)eD
such that Y'c(Y-f)U x

Axioms of Matroid

(CO) If (X,x)eC, (Y,y)eC and yg¢ X, then there exists
W,y)eC such that w < (xUy)-x

(DE) If (X,x)eD, (Y,y)eD and ygx, thenthere exists
(W,y)eD suchthat wc(XUY)-x

59



6. Related areas of convex geometries

Closure lattices (Lattice theory)
= closure systems

Greedoid
Meet-distributive (Combinatorial
Geometric lattices lattices optimization)
1 ﬁ
Ef(fst;(()il(sj:ets Convex geometries == Anti- Matroid:
(Abstraction of convexity) matroid independent

I sets

Path-independent choice function
n (Choice function theory)

Choice functions

60



4. Rooted circuits and implicational systems

Def. An implicational system

S={(A.B):1el} (A,BcE)
We write A—>BeS instead of (A B)€S.

Def. X c E fulfills if AcX =BcX.

4 N

Lemma

K(S)={X c E: X fulfillseveryA—>BeS}

IS a closure system.

- /




Def. For a closure system K if K=K(S) then
S is a generating system. If K(S)=K(S'),
then we say that S and S' are equivalent.

A minimal generating system is called a basis.

Def. Abasis S of K is minimum if |S|<|S]|

for any basis S' of K.

Def. Abasis S of K is optimal if
(| A+|B))< Y (Al+|B) for any basis S' of K.

A—BeS A'—>B'eS'

62



Def. Let C be the collection of rooted circuits of K
We put Stem(K)={ X : (X,e)eC}

/Lemma

Let K be a closure system, and C be the collection
of rooted circuits. Then S(C)={X —>e :(X,e)eC }

IS a generating system of K.

\_

~

/




Def. quasiclosed set: ForAcE,

A=AUU{u(X) : XA u(X)cu(N},
A=A UATUATU -

AcE is quasiclosed if A=A and A=y (A).

Def. pseudoclosed set:

PcE is a pseudoclosed set if P is a minimal

guasiclosed set among those quasiclosed sets Q

satistying u(P)= (Q).

64



ﬂeorem (Guigues and Duquenne 1986, Wild 1994) \

Let (4, E) be a closure system.

(1) The basis S,={P —(x(P)—P):P Is pseudoclosed }
is a minimum basis of (u, E)

(1) An optimal basis is always a minimum basis.

(2) For each pseudoclosed set P, every optimal basis

includes an implication X, =Y, with X,cP.

The cardinality of X, is uniquely determined as

\|xp =min{] X | : X <P, #(X) = u(P)} /




Def. Forastem X, weput Int(X)={f : (X,f)eC},
bd (X) =x(X)—(XUint(X)).
If bd (X)=¢, then X is called a prime stem.

Ex. Affine point configuration.

a Stems

{a,b,c} not prime

{a,c,d} prime
a,d rime
b ; " {ad) p



/ Theorem \

Suppose that the sizes of stems of a closure space are

all the same. Then X isastem ifand only if itis a

pseudoclosed set.

N /

/

Theorem

Under the same condition as above. Then

S={X > (u(X)—X): X Is astem} is a minimum basis.

\_ /




Theorem

For an affine convex geometry (4 E),
S={X > (u(X)—X):X is a prime stem}

IS a minimum basis.

~

/

/Theorem
For an affine convex geometry (i, E),
S={X—>e X IS a prime stem}

IS an optimal basis.

N

~

/




Thank you.

Koeszenem szepen.



What is study?

The Master said,

‘Is it not a pleasure to learn and practice what is learned?
Is it not a joy to have friends come together from far?
Is it not gentlemanly not to take offence though men may take

no note of him?’ --- The Analects of Confucius



