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The relational database model

a
Family
name

b
Given name

c
M or

F

d
Year

of
birth

e
Month

of
birth

f
Day
of

birth

g
Age
in

years

h
Age
in

months

i
Age
in

days

Rózsa Péter F 1905 02 17 107 1288 39204
Lászó Kalmár M 1905 03 27
Pál Turán M 1910 08 18
György Hajós M 1912 02 21
Pál Erdős M 1913 03 26
Béla Sz-Nagy M 1913 07 29
Alfréd Rényi M 1921 03 20
...

...
...

...
...

...
...

...
...

The types of data, the columns in the table are called attributes.

The set of attributes is Ω. Here Ω = {a, b, c, d, e, f, g, h, i, j}.

A row contains the data of a given individual.
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Observe

{d} −→ {g}
{d, e} −→ {h} (and {g})
{d, e, f} −→ {i} (and {g, h})

But
{a} 6−→ {b}
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In general

Database: an m× n matrix, |Ω| = n. Suppose that the rows are different.

Let A,B ⊆ Ω.

B functionally depends on A

if the data in the columns of A determine the data of B,

that is there are no two rows which agree in A but different in b.

In notation: A −→ B.

There are many other types of dependencies,

but we will consider only these. Useful for reducing storage size.

3



Attitudes of ”logicians” versus ”data mining”.

System of functional dependencies,

Armstrong axioms.

Our approach:

look at only the dependencies A −→ b where b ∈ Ω is only one column.
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Set function CM : 2Ω −→ 2Ω on the subsets of Ω:

C = CM(A) = {b : b ∈ Ω, A −→ b}.
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Set function CM : 2Ω −→ 2Ω on the subsets of Ω:

C = CM(A) = {b : b ∈ Ω, A −→ b}.

B=CM(A)

6



It has three properties:

A ⊆ C(A),

A ⊆ B =⇒ C(A) ⊆ C(B),

C(C(A)) = C(A).

A set function satisfying these properties is called a closure operation.

Theorem (Armstrong, Demetrovics)

For any closure C there exists a matrix M such that

CM = C.
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Forgetting about other rules, dependencies

and

the actual content of the database,

this closure operation (shortly closure)

can be considered as

the model of the database.
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Minimum matrix representation of a closure:

s(C) = min
M : CM=C

{number of rows in M}.
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Minimum matrix representation of a closure:

s(C) = min
M : CM=C

{number of rows in M}.

Too difficult in general! Special case:

Ckn(A) =

{
A if |A| < k
Ω otherwise.
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Lemma Demetrovics-K, 1981)(
s(Ckn)

2

)
≥
(

n

k − 1

)
.

Proof M represents Ckn and has s(Ckn) rows. |A| = |A′| = k − 1 distinct
subsets of Ω and they determine the same pair of rows

|A ∪A′| ≥ k, the two rows are equal here, but not everywhere,

a contradiction.
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Theorems

s(C1
n) = 2 (trivial) ( DK, 1981),

s(C2
n) =

⌈
1+
√

1+8n
2

⌉
(easy) (DK, 1981),

s(Cn−1
n ) = n (easy) (DK, 1981),

s(Cnn) = n+ 1 (easy) (DK, 1981),

s(C3
n) = n (difficult) (D-Füredi-K, 1985;

Bennett-Wu, 1990; Ganter-Gronau, 1991)

(Design theory is used.)

c1(k)n
k−1

2 < s(Ckn) < c2(k)n
k−1

2 (difficult) (D-Füredi-K, 1985)

Closely related to Shamir’s secret sharing in cryptology.
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Difficult results of Krisztián Tichler for the case when C ⊂
(

Ω
2

)
.
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A model of changing databases

Adding new rows, it might destroy functional dependencies.
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A model of changing databases

Adding new rows, it might destroy functional dependencies.

A −→ {b}

A b

0 1 0 1 1 . . . 0
0 1 0 1 1 . . . 0
0 1 1 0 1 . . . 1
0 1 1 0 1 . . . 1
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A model of changing databases

Adding new rows, it might destroy functional dependencies.

A 6−→ {b}

A b

0 1 0 1 1 . . . 0
0 1 0 1 1 . . . 0
0 1 1 0 1 . . . 1
0 1 1 0 1 . . . 1
0 1 1 0 1 . . . 0
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A model of changing databases

Adding new rows, it might destroy functional dependencies.

A 6−→ {b}

A b

0 1 0 1 1 . . . 0
0 1 0 1 1 . . . 0
0 1 1 0 1 . . . 1
0 1 1 0 1 . . . 1
0 1 1 0 1 . . . 0

Deleting rows, it might create new dependencies.
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A model of changing databases

Consider only closures satisfying C(∅) = ∅.

C1 is reacher than C2 if C1(A) ⊆ C2(A) holds for every A ⊆ Ω.
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A model of changing databases

Consider only closures satisfying C(∅) = ∅.

C1 is reacher than C2 if C1(A) ⊆ C2(A) holds for every A ⊆ Ω.

This is a partially ordered set P. (Transitive!)
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A model of changing databases

Consider only closures satisfying C(∅) = ∅.

C1 is reacher than C2 if C1(A) ⊆ C2(A) holds for every A ⊆ Ω.

This is a partially ordered set P. (Transitive!)

The richest one is in which C(A) = A holds for every A ⊆ Ω.

The least rich one satisfies C(A) = Ω for every A ⊆ Ω.
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A model of changing databases

A is closed if C(A) = A.

The family of closed sets is denoted by Z = Z(C).

It satisfies

(i) ∅ ∈ Z,

(ii) A,B ∈ Z implies A ∩B ∈ Z.
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A model of changing databases

A is closed if C(A) = A.

The family of closed sets is denoted by Z = Z(C).

It satisfies

(i) ∅ ∈ Z,

(ii) A,B ∈ Z implies A ∩B ∈ Z.

It is easy to see that for any such Z

there is a unique closure C with Z(C) = Z.
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A model of changing databases

A is closed if C(A) = A.

The family of closed sets is denoted by Z = Z(C).

It satisfies

(i) ∅ ∈ Z,

(ii) A,B ∈ Z implies A ∩B ∈ Z.

It is easy to see that for any such Z

there is a unique closure C with Z(C) = Z.

Lemma C1 is reacher than C2 iff Z(C1) ⊇ Z(C2)
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A model of changing databases

A is closed if C(A) = A.

The family of closed sets is denoted by Z = Z(C).

It satisfies

(i) ∅ ∈ Z,

(ii) A,B ∈ Z implies A ∩B ∈ Z.

It is easy to see that for any such Z

there is a unique closure C with Z(C) = Z.

Lemma C1 is reacher than C2 iff Z(C1) ⊇ Z(C2)

This gives an equivalent definition of the poset P.
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A model of changing databases

The rank function r of a poset associates

a non-negative integer with every element of the poset

with the following properties.

r(a) = 0 for some element.

If a < b in the poset and there is no c satisfying a < c < b then r(b) = r(a)+1.
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A model of changing databases

The rank function r of a poset associates

a non-negative integer with every element of the poset

with the following properties.

r(a) = 0 for some element.

If a < b in the poset and there is no c satisfying a < c < b then r(b) = r(a)+1.

The poset P of closures has a rank function:

r(C) = r(Z(C)) = |Z| − 2.

Minimum rank =0, maximum rank = 2n − 2.
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A model of changing databases
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A model of changing databases

Proposition

If some rows are added to the (database) matrix then the closure CM will
move up in the poset,

conversely, if rows are omitted then the closure will move down in the poset.

Therefore poset P can be considered as a model of a changing database.
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Theorem (Burosch-D-K-Kleitman-Sapozhenko, 1991)

The number α(n) of closures on an n-element set Ω is

2( n
bn/2c) < α(n) < 22

√
2( n
bn/2c)(1+o(1)).
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Theorem (Burosch-D-K-Kleitman-Sapozhenko, 1991)

The number α(n) of closures on an n-element set Ω is

2( n
bn/2c) < α(n) < 22

√
2( n
bn/2c)(1+o(1)).

Theorem (Alekseev, 1992)

α(n) = 2( n
bn/2c)(1+o(1)).
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α(n, k) is the number of closures on the kth level.
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Theorem (Burosch-D-K-Kleitman-Sapozhenko, 1993)

α(n, k) ∼ η(k)(k + 1)n,

α(n, 2n − k − 2) ∼ θ(k)nk.
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Open

Which is the largest level in P?

Determine it at least asymptotically.
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f1(n, k) = max{degup(C) : r(C) = k},

f2(n, k) = min{degup(C) : r(C) = k},

f3(n, k) = max{degdown(C) : r(C) = k},

f4(n, k) = min{degdown(C) : r(C) = k}.
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Theorem (Burosch-D-K, 1987)

f1(n, k) = 2n − k − 2,

f2(n, k) = 0 or 1 or 2, exact, but complicated conditions determined.

f4(n, k) is nearly exactly determined as log2(k + 1)

Open

Nothing is known about f3(n, k).
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Distance of two databases is defined as the shortest path in the Hasse
diagram in this partially ordered set P.
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K-Sali (2010) determined the maximum distance

between databases for given n.

Open What is the maximum distance between the kth and `th levels?

37



What is a random closure?

One possible definition:

choose the entries of the “generating matrix” randomly.
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Random databases

All entries in the matrix are chosen totally independently

with probabilities q1, q2, . . . , qd.

H2(q1, q2, . . . , qd) = − log(q2
1 + q2

2 + . . .+ q2
d) is the

Rényi entropy of second order.

What are the typical sizes for |A| for which

A −→ b holds with high probability?
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Theorem (D-K-Miklós-Seleznev-Thalheim, 1998)

Let M be a random m× n matrix.

If A is a set of columns and |A| is somewhat larger than

2 log2 n

H2(q1, q2, . . . , qd)

then A −→ b holds with high probability for every column b.

If it is somewhat smaller then the functional dependency does not hold.
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Theorem (D-K-Miklós-Seleznev-Thalheim, 1998)

Let M be a random m× n matrix.

If A is a set of columns and |A| is somewhat larger than

2 log2 n

H2(q1, q2, . . . , qd)

then A −→ b holds with high probability for every column b 6∈ A.

If it is somewhat smaller then the functional dependency does not hold.

Generalized (K, 2010) for the case when the columns

have different probability distributions.
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If q1 = q2 = 1
2 then H2 = 1.

b ∈ C(A)(b 6∈ A) holds with high probability iff |A| ≥ 2 log n.
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If q1 = q2 = 1
2 then H2 = 1.

b ∈ C(A)(b 6∈ A) holds with high probability iff |A| ≥ 2 log n.

More work is needed for

average size of C(A), given |A|,

average size of closed sets,

distribution of sizes of closed sets,

etc.
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Error-correcting keys

A key K in a database is a set of attributes (columns)

uniquely determining the individual (row).

In terms of the closure: C(K) = Ω.

It is a minimal key if no proper subset is a key,

that is, if K ′ ⊂ K,K ′ 6= K then C(K) 6= Ω.
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Error-correcting keys

There are wrong data.

Suppose there is at most one error in the data of one individual.

correct data 0 1 0 0 1 0
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Error-correcting keys

There are wrong data.

Suppose there is at most one error in the data of one individual.

correct data 0 1 0 0 1 0

erronous data 0 1 1 0 1 0
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Error-correcting keys

There are wrong data.

Suppose there is at most one error in the data of one individual.

correct data 0 1 0 0 1 0

erronous data 0 1 1 0 1 0

The key K might not determine the row.

But a larger set K ⊂ L might.

This is called a minimal 1-error correcting key.
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Error-correcting keys

How much larger can/must be C than K?

Theorem (D-K-Miklós, 2000)

If the sizes of the minimal keys are at most k

then the sizes of the minimal error correcting keys

cannot exceed c2(k)k3,

and there is an example

when one of them has size at least c1(k)k3.
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Closure C is given.

Functional dependency A −→ B holds iff B ⊂ C(A).
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Closure C is given.

Functional dependency A −→ B holds iff B ⊂ C(A).

A1 −→ B1, A2 −→ B2, . . . Am −→ Bm are called independent,

if non of them can be deduced from the other m− 1 ones.
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Closure C is given.

Functional dependency A −→ B holds iff B ⊂ C(A).

A1 −→ B1, A2 −→ B2, . . . Am −→ Bm are called independent,

if non of them can be deduced from the other m− 1 ones.

Problem Find the maximum number

of independent functional dependencies.

Have a guess!

51



Closure C is given.

Functional dependency A −→ B holds iff B ⊂ C(A).

A1 −→ B1, A2 −→ B2, . . . Am −→ Bm are called independent,

if non of them can be deduced from the other m− 1 ones.

Problem Find the maximum number

of independent functional dependencies.

Have a guess!

You will see the answer in the lecture of Dezső Miklós
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Thank you for

listening my talk

in this weather!
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