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Exhaustive Search

• In combinatorial optimization problems, it is often possible to
formulate a part of our algorithm as a finite number of decisions.

• For this decision-making part, it is easy to formulate an
exhaustive search algorithm. Let’s consider all possible outcomes
of the decisions.

• However, these are usually exponential in the size of the input,
making them impractical even for relatively small inputs.

• Many problems are NP-complete, so this difficulty is to be
expected. However, it may be necessary to solve such problems in
practice.

• In such cases, we try to reduce the complete search of cases
using heuristics.
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The Branch-and-Bound Scheme

• The proliferation of cases is often described by the branching of
a tree with dual branches. Describing the complete tree is too
costly.

• During the growth in each direction, we estimate the value of the
objective function (bound).

• These estimates sometimes allow us to exclude the possibility
that the sought-after optimal location is below the current
location.

• Thus, we do not increase the tree in certain directions. We trim
large parts of it compared to the entire tree.

• Good heuristics can result in significant acceleration in special
cases.
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Unconditional Optimization

Our sample question is very simple:

Minimize c(x)-t

where c(x) : Rn → R.

• Our task is to determine or approximate the optimal value p∗

and the optimal location x∗.

• If we have no knowledge of c , then our situation is hopeless.

Definition: Rectangle

[a1, b1]× . . .× [an, bn] ⊂ Rn

shaped point sets — where n is the dimension and
−∞ < ai < bi <∞ i = 1, . . . , n — are called rectangles.
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Desirable Properties of Nice Functions

1) Given a T0 = [a1, b1]× . . .× [an, bn] rectangle where x∗ ∈ T0,
2) For every T rectangle, there are computable lower and upper

bounds aT , fT for minx∈T c(x). Additionally, these bounds
satisfy:
(A) If we divide a suitable side of T into two halves:

T = T1
◦
∪T2, i.e., for suitable i and v

T1 = [a1, b1]× . . .× [ai−1, bi−1]× [ai , v ]

× [ai+1, bi+1]× . . .× [an, bn],
T2 = [a1, b1]× . . .× [ai−1, bi−1]× [v , bi ]

× [ai+1, bi+1]× . . .× [an, bn],

then aT ≤ aT1 , aT2 and fT1 , fT2 ≤ fT hold.
(B) Furthermore, for every ε > 0, there exists δ > 0, such

that for any T rectangle, if ∀i : bi − ai ≤ δ, then
0 ≤ fT − aT ≤ ε, meaning if a rectangle’s size
approximates a point, then the upper and lower bounds
will be close.
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Naive Algorithm

• Goal: We want to minimize the nice function c(x). More
precisely, our goal is to find x such that c(x) ≤ p∗ + ε.

Naive Algorithm

(T) // Building the entire tree (BRANCH)
Take a rectangle T0 and divide it into small rectangles such
that the edges of the resulting small rectangles are smaller
than δ.

(M) // Examining each small rectangle
In this way, the lower and upper bounds corresponding to
them will differ by at most ε.

(Opt) // Optimization
Then calculate the lower bound for each small rectangle,

(Out) // Output
The smallest lower bound rectangle will have every point as a
good output.
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Philosophy of Improvement: Branch-and-Bound

• The naive algorithm (M) step optimizes for exponentially many
rectangles. Thus, its application may encounter difficulties in
practice.

• We will now present an improved version. Instead of slicing all
rectangles in parallel, thoughtlessly, we only slice those that are the
most promising.

• The BOUND step was missing from the above algorithm. The
sequence of cuts was complete, and analysis only occurred when
analyzing the final small cubes.

• In our new procedure, we will have a T system of rectangles such
that the interior points of its elements are disjoint, and ∪T = T0.

• We only slice one rectangle at a time.
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Branch-and-Bound Algorithm

Branch-and-Bound Algorithm

(0) Initially, let T = {T0}.
(1) Select a promising T ∈ T .

(2) Select a dimension i and an edge in the direction of T .

(3) Split T along this edge (T ′ and T ′′ are the two resulting
half-rectangles, T ← T − {T} ∪ {T ′,T ′′}).

(4) For the new T system of rectangles, calculate
aT := minT∈T aT and ∆ = fT − aT , where T is the rectangle
whose lower bound is aT .

WHILE ∆ > ε, DO repeat steps (1)-(4).

(STOP) If fT − aT ≤ ε.

(OUTPUT): aT , fT , where aT ≤ p∗ ≤ fT . Moreover, let
T : aT = aT and output x ∈ T .
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Refinement (1)

(1) Let T be the rectangle with the smallest aT .

• The advantage of this heuristic is summarized by the following
observation.

Observation

If T ′ ∈ T is any rectangle such that fT ≤ aT ′ (this is denoted as
[aT , fT ] ≤ [aT ′ , fT ′ ]), then T ′ will never be further subdivided.

• Indeed. There will always be a rectangle in our system that is a
part of T . Its lower bound will be such that it prevents the
selection of T ′.
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Refinement (2)

(2) Let i be the dimension of the longest side of T .

• To exploit this heuristic, we will need further definitions.

Definition

Let T = [a1b1]× . . .× [an, bn] be a rectangle.

(i) vol (T ) = Πn
i=1(bi − ai ), the volume of T .

(ii) |T | = maxi=1,...,n(bi − ai ), the size of T .

(iii) torz(T ) =
maxi−1,...,n(bi−ai )
mini=1,...,n(bi−ai ) is the distortion of T .

• Torz(T ) ≥ 1 and equality holds if and only if our n-dimensional
rectangle is a cube.

• The advantage of splitting the longest side is that we will never
have overly distorted rectangles during our procedure.
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Remark and Proof

Remark

For any T rectangle:

torz (T ) ≤ max{2, torz(T0)},

where T0 is the initial rectangle.

• Let’s take an arbitrary brick T that satisfies the observation.

• We split the longest side of the original brick.

• Claim: In this case, we obtain two bricks, each satisfying the
assertion in the observation.

• From the claim, the observation follows by induction.

• To prove the claim, consider the following two cases.
Péter Hajnal Heuristics, SzTE, 2024



Case Analysis

Case 1: For the initial T brick, torz (T ) > 2.

In this case, the original longest edge is halved, and the new brick’s
longest edge is at most the same size as the original longest edge.

The length of the original shortest edge remains the same in the
new brick.
Thus, the distortion of the new T is at most that of T .

Case 2: Suppose torz (T ) ≤ 2.

In this case, after halving, the original longest edge becomes the
new brick’s shortest edge, at half the size.

The length of the longest edge cannot increase, so the distortion of
the new T is at most 2, by the initial condition.
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Remark

Remark

For any rectangular prism T ,

|T | ≤ n

√
(torz T )n−1 · vol T .

vol T =
∏
i

(bi − ai ) ≥ max
i

(bi − ai )

(
min
i

(bi − ai )

)n−1

=

=
(maxi (bi − ai ))n(

maxi (bi−ai )
mini (bi−ai )

)n−1
=

|T |n

(torz T )n−1
.
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Summary

From the above, we get that:

Remark

The above algorithm terminates after a finite number of bisecting
steps if points (1) and (2) are carried out according to the
heuristic.

• Apply the algorithm until N bricks are formed.

• Let T be the brick with the smallest volume that the algorithm
has constructed (so vol T ≤ vol T0/N).

• Then, by utilizing our observations, we obtain that N can be
chosen such that |T | ≤ δ

2 .

• This can only happen if T was obtained by bisecting T− such
that |T−| ≤ δ.

• However, in this case, the algorithm should have stopped (see
condition (3) for the beauty of c).
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Break
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The Basic Question

Minimize c(x , d)-t

subject to fi (x , d) ≤ 0, if i = 1, 2, . . . , k

where x ∈ Rn, d ∈ {0, 1}ν , and c, fi are convex functions.
• If the condition d ∈ {0, 1}ν were absent, we would have an easily
manageable problem. p∗ =?
• However, the condition poses difficulty, as the naive solution:

Naive algorithm

(1) Fix d in all possible ways.

(2) Handle the 2ν resulting problems.

(3) The best obtained value is the optimum.

Even for small ν values, 2ν becomes too large for efficient handling.
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Estimations

• Lower and upper estimates can be provided for the optimal value
using relaxation methods.

• Relax the condition d ∈ {0, 1}ν to 0 � d � 1 (0, d , 1 ∈ Rν).

• The resulting continuous convex p∗R underestimates the optimal
value p∗.

• An upper estimate can be obtained by evaluating the c objective
function at a good feasible solution.

• A good feasible solution is obtained by rounding the [0, 1]-valued
components of the optimal position x∗R of the continuous problem
to integers (i.e., to {0, 1}).

• Using this, for the F problem, we can provide a lower aF and an
upper fF estimate for the optimal value.
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Branching

• Take the original problem. View it as a root of a tree containing
a set of problems with the root/one leaf ` node.

• Select a component i ∈ {1, . . . , k} that is free.

• With a decision of di = 0 or di = 1, we get a subproblem each.

• Consider the subproblem with di = 0, whose optimal value is p∗0 .
This has one discrete variable less than the original, unmanageable
problem. Nevertheless, the lower/upper estimate technique can be
applied to it.

• Consider the subproblem with di = 1, handle it similarly.

• The two new problems can be appended to the previous tree:
From ` with di = 0 and ` with di = 1, `0 and `1 descendants are
created.

• The original problems and the two subproblems can be
represented in a rooted tree.
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The Branch-and-Bound Algorithm

The Branch-and-Bound Algorithm

(0) Let T be a 1-node rooted tree, with its only node (and leaf)
representing the initial problem.
Calculate the lower/upper estimates a, f for this problem.

WHILE f − a > ε

(1) Select a leaf/problem ` from T .

(2) Choose one non-fixed component d from the selected
leaf/problem. Denote this component as i .
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The Branch-and-Bound Algorithm (Continued)

The Branch-and-Bound Algorithm (Continued)

(3a) Let `0 be the problem obtained from ` with di = 0 selection.

(3b0) Relax the remaining components and compute the a0, f0 lower
and upper estimates in the same manner as before.

(3b1) Let `1 be the problem obtained from ` with di = 1 selection.
Relax the remaining components and compute the a1, f1 lower
and upper estimates in the same manner as before.

(4) Let T be the tree obtained from ` by branching into the `0

and `1 leaves. Set a = min{a, a0, a1} and f = min{f , f0, f1}.
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Clarifying the Details

• In step (1), we choose the leaf with the smallest lower estimate.

• In step (2), for the relaxed problem of the leaf, based on the
optimal position, we choose the component closest to 1

2 .

• It is evident here as well that for some subproblems, there might
not be a need for further bisection.

• Our tree cannot grow beyond the full depth binary tree with ν
levels.
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A New Fundamental Question

Minimize |{i : xi 6= 0}|-t
subject to Ax � b,

where x ∈ Rn,A ∈ Rk×n, b ∈ Rk .

• In other words, we want to solve a linear inequality system,
where the solution has the fewest possible non-zero components.

• We reduce our task to a mixed convex-integer type problem.
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Auxiliary LP Problems

To achieve the reduction, first solve the following 2n LP problems
(i = 1, . . . , n)

Minimize xi -t

subject to Ax � b,

and

Maximize xi -t

subject to Ax � b.

Let the optimum of the first n LP problems be mi , and of the
second n be Mi .
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The New Fundamental Question as MIP

• From Ax � b, it follows that mi ≤ xi ≤ Mi .

• We add the constraints miyi ≤ xi ≤ Miyi to our conditions,
where yi ∈ {0, 1}, new Boolean variables.

• When yi = 1, the constraint is trivial, while when yi = 0, it
forces xi = 0.

• Thus, our aim is to maximize the number of yi = 0, i.e.,
minimize

∑n
i=1 yi .

• Therefore, the equivalent mixed IP problem is:

Minimize
∑n

i=1 yi -t

subject to Ax � b

miyi ≤ xi ≤ Miyi , i = 1, 2, . . . , k

where x ∈ Rn, y = (yi )
n
i=1 ∈ {0, 1}n, A ∈ Rk×n, b ∈ Rk .

• Our previous method can be applied.
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Break
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Fundamental Question: IP

• Reminder: What do we know about the logic of solving linear
systems of equations?
• We already learned in elementary school that

(i) Inequalities can be added (assuming we always arrange them
so that the smaller side is on the left).

(ii) Inequalities can be multiplied by non-negative numbers
(multiplying by 0 leads to — obviously true — 0 ≤ 0
inequality).

• The inequalities derived this way are consequences of the initial
conditions. Adding them to our system of conditions does not
change the set of possible solutions.
• If we obtain a new inequality in this manner, we say that we have
made an L-inference. (L≡ linear, real.)
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Integer Solutions

• The above logic can, of course, be applied while seeking integer
solutions to inequality systems.

• By taking non-negative linear combinations of our inequalities,
we obtain a consequence of our conditions.

• Specifically, we do not lose possible real solutions.

• However, if the possible solutions are integers, then we aim not
to lose integer solutions.

• We can also make new logical inferences.
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Extended Logic

Consider the following integer programming problem:

Minimize aT x-t

subject to Ax � b

x � 0, x ∈ Zn

A New Inference

Let α1x1 + α2x2 + . . .+ αnxn ≤ β be an inequality that is an
L-consequence of the conditions. That is, all possible real solutions
satisfy it.

Then
bα1cx1 + bα2cx2 + . . .+ bαncxn ≤ bβc

is also a consequence of the conditions. By adding it to our
conditions, we do not lose possible (integer) solutions.

Terminology

If we obtain a new inequality as described in the lemma, then we
say that we have made an I-inference.
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Proof

• Indeed: bαc ≤ α.

• Thus, for non-negative x , bαcx ≤ αx .

• Generally,

bα1cx1 + bα2cx2 + . . .+ bαncxn ≤ α1x1 + α2x2 + . . .+ αnxn ≤ β.

• Moreover, if the xi are integers, then the left side is also an
integer. Thus, the upper bound β can be improved to bβc.

• This proves the claim.
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Example (ALGEBRA)

• The simple argument above has a straightforward geometric
interpretation.

• Consider the following problem:

Minimize −2x − 5y -t

subject to 10x + 3y ≤ 45

4x + 20y ≤ 65

x , y ∈ N
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Example (GEOMETRY)

The diagram shows the possible solutions.

The green region is the polytope of LP relaxation. The dark green
discrete set is the finite set of possible solutions to the integer
problem. The LP problem’s optimum is the red point:(

15
4 ,

5
2

)
= (3,75, 2,5), which is not a feasible solution for the

integer problem.
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Example (LOGIC)

Let’s write down some L-inferences.

• Multiplying the first inequality by 1/10:

x + 0,3y ≤ 4,5.

• Multiplying the second inequality by 1/4.

x + 5y ≤ 16,25.

• Adding the first inequality twice to the second one, then dividing
by 24, we get that

x + 1
1

12
y ≤ 6

11

24
.

(GEOMETRY: All three inferences describe a half-plane whose
boundary passes through the red point (why?).)
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Example (LOGIC II)

• Apply both L- and I-inferences to the above.

• We obtain the following three inequalities:

x ≤ 4,

x + 5y ≤ 16,

x + y ≤ 6.

• None of these inequalities excludes integer-coordinate points
from the solution set.
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Example (GEOMETRY II)

The half-planes described by
the above I-inferences are marked in red. The solution set after
adding the consequences is shown in light blue.

The decrease in the described polytope is obvious. During the
decrease, the dark green points did not leave the solution set. The
polytope described by the LP relaxation approached the convex
hull of the dark green points.
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General Scheme

Following this, a possible scheme to solve the posed IP problem is
the following:

Algorithm

(R) // RELAXATION step
Solve the LP relaxation of the IP problem.

(L) // LUCK
If we obtain an integer-coordinate optimum, then we have
solved our problem.

(L) // LOGIC
Make L- and I-inferences to add new linear inequalities to our
problem. Return to the relaxation step.
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Gomory’s Algorithm

• The above-described procedure is just a scheme. The essential
part lies in the general step. How should we choose the inferences?
Many questions to clarify.

• Many attempts/solutions, many algorithms handling relatively
large special problems.

• Gomory provided a procedure where he realized that his
algorithm finds the integer optimum in a finite number of steps.

• He uses the simplex method to generate new inequalities.
There’s no time to describe the algorithm.

• As we saw with the Edmonds’ polyhedron theorem, for the LP
description of the IP problem, exponentially many inequalities may
be needed.

• The same situation occurs with the Gomory algorithm, it is
generally not polynomial-time.
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This is the End!

Thank you for your attention!
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