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Reminder

We remind you of two descriptions of positive semidefinite (thus
symmetric) matrices:

(1) Their eigenvalues are non-negative,

(2) they are Gram matrices of a set of vectors.

• Last time, using the eigenvalue interpretation, we formulated
several problems related to multiple eigenvalues as SDP problems.

• Now, we use the Gram matrix description to answer
combinatorial optimization questions.
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A fundamental question

Claude Shannon (1916—2001), one of the founding figures of
information theory, asked the following question:

• Given an alphabet in which certain letters are confusable.

• This relation extends to `-length words: Two (same-length)
words are confusable if the same letter or confusable letter pair
appears in every position.

• Equivalently, two words are not confusable if in some position,
two different, non-confusable letter pairs appear. These concepts
can also be formulated in the language of graph theory.

• The characters of the alphabet form the set V . This
confusability relation is described by a graph G .
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Graph Products

Definition

The product of graphs G and H, denoted G � H, is the graph
whose vertex set is V (G )× V (H), and (v ,w) is connected to
(v ′,w ′) if and only if one of the following holds:

(i) v = v ′ and ww ′ ∈ E (H),

(ii) vv ′ ∈ E (H) and w = w ′,

(iii) vv ′ ∈ E (G ) and ww ′ ∈ E (H).

• The product of two edges results in a complete graph with four
vertices. Hence the notation.

Péter Hajnal Semidefinite programming and vectors, SzTE, 2024



Graph Theoretical Reformulation

Observation

It’s easy to see that if G is the confusability graph of an alphabet,
then G�k := G � G � . . .� G where k times product has vertices
as k-length words and adjacency describes the confusability
relation.

• Shannon’s question was: How many pairwise non-confusable
words can we select from `-length words?

• For ` = 1, this is obviously α(G ).

• Generally, the answer is α(G�`).
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Graph Shannon Capacity

It’s easy to see that the order of magnitude of the answer to the
counting question (as ` increases) is exponential. Without proof,
we state the following mathematical assertion.

Fekete/Subadditivity Lemma

Let G be a simple graph. Then
(√̀

α(G�`)
)∞
`=1

is a convergent
sequence.

Definition

Sh(G ) = lim
`→∞

√̀
α(G�`),

the Shannon theta function or Shannon capacity of G .

The relatively simple concept hides a very difficult mathematical
problem.
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The Basic Sandwich

Observation

α(G ) ≤ Sh(G ) ≤ χ(G ).

What is χ(G )?

Definitions

χ(G ) = χ(G )

The clique covering number of G : How few cliques can cover
V (G )?

α(G ) ≤ χ(G ) is obvious.
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Making the Basic Sandwich

• Let F be an α(G )-sized independent set in G . Then F ` is an

independent set in G�`.

• Take a clique covering of G with χ(G ) classes. It’s easy to see
that this classification yields a χ`(G ) classification of G�` where
each class is a clique.

• Hence
α`(G ) ≤ α(G�`) ≤ χ(G�`) ≤ χ`(G ).

• Hence
α(G ) ≤ Sh(G ) ≤ χ(G ).
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Graphs We Already Know Everything About

Consequence

If G is such that α(G ) = χ(G ), then

Sh(G ) = α(G ).

• The condition stated in the theorem is not so rare.

• For example, every perfect (e.g., bipartite) graph satisfies it.

• Actually, we get equality for complements of nice graphs.

• The smallest graph for which the five-cycle (C5) fails to satisfy
it: α(C5) = 2 < 3 = χ(G ).
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The first problem

Determining Sh(C5) is a serious mathematical problem.

• After posing the question, it took more than a decade to solve.
László Lovász’s proof became a central tool in optimization.

• Based on initial thoughts, 2 ≤ Sh(C5) ≤ 3.

• Improving the lower bound is simpler.

Lemma
√

5 ≤ Sh(C5).

The lemma is easily verifiable.
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Lower bound for Sh(C5)

For even k

α
(
C�k

5

)
= α

(
(C5 � C5)�k/2

)
≥ 5k/2 =

√
5
k
,

Consequence
√

5 ≤ Sh(C5).

Strengthening the upper bound is the essence of Lovász’s solution.
It revolutionizes the concept of clique covers.
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Revisiting clique covers

First, let’s define the clique cover of a graph G with k cliques.

Clique cover

A function c : V (G )→ {e1, e2, . . . , ek} is a clique cover if for
every uv 6∈ E (G ) edge, c(u) = ei , c(v) = ej implies i 6= j .

• We think of the ei ’s as colors.

• In a clique cover, images/colors of non-adjacent vertices are
distinct.
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Orthonormal representation of graphs

László Lovász replaces colors with vectors, and distinctness with
orthogonality.

Definition

Let G be a simple graph.

ρ : V (G )→ Rd i.e., (ρv )v∈V ∈ RV (G)

is an orthonormal representation (ONR) of G if the ρv vectors
(v ∈ V ) are unit vectors (ρ : V (G )→ Sd−1 ⊂ Rd) and ρu ⊥ ρv for
every uv 6∈ E .
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Vector clique cover

The ONR can be viewed as a vector clique cover.

• The usual clique cover becomes a vector clique cover if we think
of the ei ’s as pairwise orthogonal unit vectors (instead of the
original color interpretation). That is, {ei} can be the standard
basis of Rk (where k is the number of cliques).

• What will be the new concept, the color demand of a vector
clique cover? To answer this, let’s take a detour.
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Detour: Pythagoras’ theorem

• Let e1, e2, . . . , ek be pairwise orthogonal unit vectors and h be
any unit vector.

• If (ei ) were a basis of our space,

1 = |h|2 = hTh =
k∑

i=1

(eT
i h)2.

This is a higher-dimensional form of Pythagoras’ theorem. In
general, we can state the following lemma.

Lemma

Let e1, e2, . . . , ek be pairwise orthogonal unit vectors and h be any
unit vector. Then

1 = |h|2 = hTh ≥
k∑

i=1

(eT
i h)2.
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The classic clique cover as vector clique cover

• From the lemma, it follows that

min
i=1,2,...,k

(eT
i h)2 ≤ 1

k
.

• Alternatively,

max
i=1,2,...,k

1

(eT
i h)2

≥ k .

• If h = 1/
√
k(e1 + e2 + . . .+ ek) (unit vector):

max
i=1,2,...,k

1

(eT
i h)2

= k .

• Based on the above, if we ”color” in the ONR, then

min
h

max
i=1,2,...,k

1

(eT
i h)2

= k,

the classic clique cover’s color demand.
Péter Hajnal Semidefinite programming and vectors, SzTE, 2024



The Lovász parameter

Definition

For an ONR ((ρv )v∈V , h) and a unit vector h (henceforth referred
to as the handle), we assign a value:

Lov(((ρv )v∈V , h)) = max
v :v∈V

1

(hTρv )2
.

Definition

Lov(G ) = inf{Lov(((ρv )v∈V , h)) : (ρv )v∈V is an ONR, h is a handle}.

Interpreting the classic clique cover as a vector clique cover
provides a challenger in the definition of Lov(G ). Thus,

Consequence

Lov(G ) ≤ χ(G ).
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EXAMPLE: Umbrella construction

• Let G = C5, suppose its vertex set is {1, 2, 3, 4, 5}
(neighborhood in ”modulo 5 arithmetic 1 apart”).

• Let h = ρ1 = ρ2 = ρ3 = ρ4 = ρ5, six unit vectors glued together
at one endpoint (obviously not an ONR).

• Think of h as the handle of a collapsed umbrella, and
ρ1 = ρ2 = ρ3 = ρ4 = ρ5 as its ribs. Let’s start opening the
umbrella.

• The handle points stably downwards, the ribs open symmetrically.

• At every moment, their endpoints lie in a plane, forming the
vertices of a regular pentagon.

• In a suitable position, the handle and the five ribs provide an
ONR of C5. This is the umbrella representation of C5.

• A simple high school geometry calculation yields that the
representation, along with the handle, has a value of

√
5.
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Consequences, connections

For C5, we have 3 as the value of χ. Interpreting the classic clique
cover as a vector clique cover provides a challenger in the
definition of Lov(C5). Distributing three pairwise orthogonal unit
vectors among five vertices in an asymmetric way. Based on the
umbrella construction, a better estimate for Lov(C5) can be given.

Consequence

The umbrella representation of C5 proves that Lov(C5) ≤
√

5.

There is a close relationship between the Lovász function and the
Shannon capacity:

Theorem

(i) α(G ) ≤ Lov(G ).

(ii) Sh(G ) ≤ Lov(G ) ≤ χ(G ).
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Proof of (i)

• Let G be an arbitrary graph with a maximal independent vertex
set F .

• Consider an arbitrary ONR of G with an arbitrary handle.

• Associate pairwise orthogonal unit vectors with the elements of
F .

• Thus
∑

f ∈F (hTρf )2 ≤ |h|2 = 1.

• This implies minf ∈F (hTρf )2 ≤ 1/|F |.

• Moreover,

Lov(ρ, h) ≥ max
f ∈F

1

(hTρf )2
≥ |F | = α(G ).
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Proof of (ii)

• Let (ρv )v∈V (G), h be an ONR of G with a handle, corresponding
to the parameter Lov(G ).

• From this, we can easily construct an ONR of G�` with a new
handle, whose value will be Lov`(G ).

• We assign an (v1, v2, . . . , v`) vertex of the product graph to the
vector ρv1 ⊗ ρv1 ⊗ . . .⊗ ρv` , while the handle becomes
h ⊗ h ⊗ . . .⊗ h.

Definition: tensor product of vectors

For vectors x ∈ Rd and y ∈ Re , x ⊗ y ∈ Rd ·e , where the (i , j)
component is xiyj . Alternatively, x ⊗ y ∈ Rd×e represents the
matrix xyT as a vector.
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Completing the proof of (ii)

• The details rely on the relationship

(x1 ⊗ x2 ⊗ . . .⊗ x`)
T(y1 ⊗ y2 ⊗ . . .⊗ y`) = (xT

1 y1)(xT
2 y2) . . . (xT

` y`)

.

• The verification of this relationship and the details are left to the
interested reader.

• Then, it immediately follows that

α(G�`) ≤ Lov(G�`) ≤ Lov`(G ).

• From this, the assertion of (ii) can be easily derived.
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Summary

Assembling our knowledge so far about C5:

√
5 ≤ Sh(C5) ≤ Lov(C5) ≤

√
5.

Lovász László’s theorem

Sh(C5) = Lov(C5) =
√

5.

Lovász László’s theorem

α(G ) ≤ Sh(G ) ≤ Lov(G ) ≤ χ(G ).

We mention that for C7 the value of Lovász’s theta function can
be determined without much trouble (the extension of the umbrella
construction gives the optimal representation). The Shannon
capacity of C7 is still unknown to this day.
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α, χ, Sh are hard. And Lov?

• Finally, we mention that determining Lov(G ) can also be
formulated as an SDP problem. This is not surprising. We need to
find an optimal vector system.

• This is determined up to isomorphism by the Gram matrix. So,
we are actually looking for a special Gram matrix/positive
semidefinite matrix.

• We can see that the optimization problem:

Minimize λmax(M)-t

subject to Muu = 1 for every u ∈ V

Muv = 1 for every uv 6∈ E

M ∈ Sn.

has an optimal value of Lov(G ).
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Break
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The Goal-Theorem: Lov(G ) as an SDP

• That is, the Lovász theta-function, studied last week, coincides
with the Lovász function introduced now.

Theorem

Lov(G ) = ϑ(G ).

• The theorem implies two-way inequality between the two optimal
values.

• However, our proof will be stronger. For both optimization
problems, we will construct a possible solution of one from
another, so that the value of the (appropriate) objective function
does not increase.
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From SDP solution to ONR-handle

Minimize λmax(M)-t

subject to Muu = 1 for every u ∈ V

Muv = 1 for every uv 6∈ E

M ∈ Sn.

• First, let M be a matrix that is a possible solution to the above
problem.

• Consider λmax(M)I −M.

• This is a positive semidefinite matrix (in fact, we know that its
minimum eigenvalue is 0, specifically, it is not full rank).

• Thus, it is the Gram matrix of a vector system (πv )v∈V ,
(without exceeding the necessary vector space dimension, we don’t
need to go beyond |V |), and we can work even in R|V |−1 because
of the lack of full rank.

Péter Hajnal Semidefinite programming and vectors, SzTE, 2024



From SDP solution to ONR-handle (continued)

• We know that

πT
u πv =

{
λmax − 1, if u = v

−1, if uv 6∈ E (G )

• Let

ρv =

(
1
πv

)
∈ R|V | (v ∈ V ), h =

(
1
0

)
∈ R|V |,

where 1 ∈ R, πv , 0 ∈ R|V |−1.
• Then we know that

ρT
u ρv =

{
λmax, if u = v

0, if uv 6∈ E (G )

• That is, ρv are identical (non-zero length) vectors, which are
orthogonal if uv 6∈ E , and h is a unit vector.
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From SDP solution to ONR-handle (completion)

• Let ρ0
v = 1

|ρv |ρv , the normalized ρv vectors (v ∈ V ).

• The first coordinates of ρ0
v vectors (i.e., the hTρ0

v values) are all
1
|ρv | .

• Thus, all 1
(hTρ0

v )2 values are λmax.

• So, (ρ0
v )v∈V is an ONR. Moreover, with the h handle, the Lovász

parameter is λmax(M).
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From ONR-handle pair to SDP solution

• To achieve the reverse, start from an ONR (ρv )v∈V and a handle
h.

• Scale the ρ’s so that they point into the plane perpendicular to h.

• Take the vectors from h to each vertex. This gives us the vector
system (

h − 1

hTρu
ρu

)
u∈V

.

• Examine the Gram matrix of this system.

• The element in position uv is

Muv = −1 +
ρT
u ρv

(hTρu)(hTρv )
.

• So, non-edge positions are −1, and the main diagonal is
−1 + 1/(hTρv )2.
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From ONR-handle pair to SDP solution (continued)

• Form the matrix M̃ as follows: take M and round down its main
diagonal elements to −1 (the rounding value is −1/(hTρv )2), then
take the negative of our matrix.

• M̃ is a possible solution to our optimization problem (the
symmetry of our matrix is obvious).

• We show that the value of the objective function (λmax(M̃))
cannot be greater than the Lovász parameter of the ONR-handle
pair (Lov({ρv}v∈V , h)).

• To do this, consider the matrix Lov({ρv}v∈V , h)I − M̃.

• We show that this is positive semidefinite, which proves our goal.

Péter Hajnal Semidefinite programming and vectors, SzTE, 2024



From ONR-handle pair to SDP solution (completion)

• The modification of M (the Gram matrix) on the main diagonal
is done. The modification consists of adding the original diagonal
matrix (Lov({ρv}v∈V , h)I ) and the result of rounding down, i.e.,
we add to the value on the diagonal of M
Lov({ρv}v∈V , h)− 1/(hTρv )2. This is adding a nonnegative
number.

• So our matrix is M + ∆. Where ∆ is a diagonal matrix with
nonnegative elements, specifically positive semidefinite.
Furthermore, M is a Gram matrix, specifically positive semidefinite.

• Therefore, our matrix is the sum of two positive semidefinite
matrices, and thus, it is also one.
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Lov(G ) complexity

Theorem

The Lovász parameter of a given G can be computed in polynomial
time.

• We have seen that computing Lov(G) can be formulated as an
SDP problem. Thus, it is a manageable task.
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Break
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Maximum Cut

• Given a weighted graph w : E (G )→ R+. Find a cut (S ,T ) in V
such that

w(V) = w(E (V)) =
∑

e∈E(V)

w(e)

is maximized.

• Where

E (V) = {e = xy ∈ E (G ) : x ∈ S , y ∈ T or x ∈ T , y ∈ S}.

• It is known that the problem is NP-hard, and finding an efficient
solution seems hopeless.

• Two trivial approximate algorithms are mentioned. Both are
associated with Erdős Pál.
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Greedy algorithm

• Choose e = xy of maximum weight, put x into S and y into T .

• Examine the remaining vertices v3, v4, . . . , vn sequentially:

vi → S?/T? : assign vi to the set where it achieves the greater increase.

Note

The cut V = (S ,T ) formed by the greedy algorithm satisfies:

w(V) ≥ 1

2

∑
w(e) ≥ 1

2
w(E (G )).

• Indeed. Assigning each vertex to one of the partitions modifies
the sums w(V) and w(E (G )− E (V)). The greedy algorithm
ensures that w(V) > w(E (G )− E (V)) holds initially and remains
true.
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Randomized algorithm

• For each vertex x ∈ V , assign it to S with probability 1
2 , and to

T with probability 1
2 (decisions are independent for different

vertices). Let V be the resulting cut (a random variable).

• Let

ξe =

{
1, if e has endpoints in different sets,

0, otherwise.

• Then
w(V) =

∑
ξewe ,

and

E(w(V)) =
∑
e∈E

weEξe =
1

2

∑
e∈E

we .
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Hastad’s theorem

The other side of the coin is the following negative result:

Håstad

If there is a polynomial-time algorithm that computes a cut
((G ,w) 7→ V), such that w(V) ≥ 16

17w(Vopt), then P = NP.

After this, any improvement of the obvious (Erdős-type)
algorithms represents significant progress:
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Goemans—Williamson Theorem and Basic Idea

(Goemans—Williamson, 1994)

There exists a randomized algorithm ((G ,w)→ V), such that

E(w(V)) ≥ 0.8789w(Vopt).

Goemans—Williamson Algorithm, Version 0

(1) Select a vector representation ρ : V (G )→ Sn−1 ⊂ Rn for the
vertices (where n = |V (G )|, Sn−1 = {x ∈ Rn : xTx = 1}).

(2) Choose a random vector ν ∈ Sn−1.

(3) Output: S = {v : νTρ(v) < 0}, T = {v : νTρ(v) > 0}.
// V (G ) = S∪̇T with probability 1.
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Questions

• The implementation of step (2) is a stochastic problem. Its
solution is well known: generate ν’s n components independently,
each as a normally distributed random variable with mean 0 and
standard deviation 1, and normalize to unit vectors.

• How do we choose ρ in step (1)? We highlight three possibilities.

◦ If we knew the optimal (S ,T ) cut, then ρ|S : x 7→ e,
ρ|T : x 7→ −e would lead to a non-computable vector
representation for the optimal cut.

◦ If ρ is random, then we recover Erdős’s random algorithm.

◦ Use a computable algorithm to determine a clever vector
representation.

It is obvious that the third way is the feasible one. Its realization is
the essence of the Goemans—Williamson algorithm.
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What Do We Expect from Our Procedure’s Output?

Let e = xy ∈ E

ξe =

{
1, if x and y fall into different classes,

0, otherwise,

and let α be the angle between the vectors ρx and ρy .

Then

Eξe = P(ξe = 1) =
2α

2π
=
α

π
=

arccos ρT
x ρy

π
.

Consequence

Ew(V) =
∑

e=xy∈E
we

arccos ρT
x ρy

π
.

If our goal was to determine a ρ where this expected value is
maximized, then we would face a too difficult problem.
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Elementary Analysis

Lemma

1

π
arccos x ≥ 0.87856 · 1

2
(1− x).

The lemma is a simple calculus exercise. We leave its verification,
calculation to the interested student.

Consequence

E(w(V)) ≥ 0.87856
∑

e=xy∈E
w(e)

1

2
(1− ρT

x ρy ).

Now we can designate our goal: Let’s take a ρ where the sum
appearing in the lower bound above is maximized.
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Our Goal as an SDP Problem

• The sought-after ρ vectors can be expressed based on the inner
product matrix M or Gram matrix.

• This is a positive semidefinite matrix. The desired optimization
problem is a semidefinite optimization problem, manageable:

Maximize 1
2〈W , (1−M)〉-t

subject to Mvv = 1, for all v ∈ V

M � 0,

where W is the matrix describing the weights, i.e., replacing the
1’s in the adjacency matrix with the corresponding edge weights.

• The solution to this optimization problem yields a Gram matrix
M.

• From this, we can calculate a system of unit vectors {ρv}v∈V
corresponding to this, i.e., a vector representation for the vertices
of our graph.

• This provides the ρ function appearing in step (1) of the
Goemans—Williamson algorithm.
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Analysis of the GW Algorithm

With this, the description of the algorithm is complete. The
analysis based on our previous observations can be easily put
together:

Theorem

Let VGW be the cut computed by the algorithm. Then

E(w(VGW )) ≥ 0.87856 · w(Vopt).

Proof:

E(w(VGW )) =
∑
e∈E

we
arccos ρT

x ρy
π

≥ 0.87856
∑

w(e)
1

2
(1− ρT

x ρy )

=0.87856 · p∗ ≥ 0.87856w(Vopt),
where VGW is the Goemans—Williamson choice, and Vopt is the
(unknown) optimal cut, but one possible solution to the
optimization problem we are considering.
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Coloring Problems

• Given a graph G . Can it be colored with 2 colors? If yes, then
color it properly with 2 colors.

• This problem is easily solvable based on a BSc Combinatorics
course.

• Given a graph G , can it be colored with 3 colors?

• This problem is NP-complete. According to current scientific
knowledge, it’s considered to be hopelessly difficult.
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The Basic Question

The Basic Question

Let’s consider a relaxed problem: Given a graph G , we know that
χ(G ) = 3, i.e., it’s guaranteed to be 3-colorable. Color it with as
few colors as possible.

The relaxed problem proves to be difficult as well. It still remains
at the forefront of research.
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The Initial Algorithm

Let’s look at the basic algorithm from which everything starts.

Wigderson’s Algorithm

1. case: If for every x vertex d(x) ≤ τ =
√
n, then color it

greedily.

// Each degree is at most
√
n, so the color requirement is at

most
√
n + 1.

2. case: If there exists a vertex x such that d(x) > τ =
√
n,

then

// Let N be the set of neighbors of x .

// G |N is bipartite, since G is 3-colorable.

• G |N can be properly colored with 2 colors.

• G ← G − N

// “Bite off” N.

• Return to the beginning of the algorithm.
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Analysis of Wigderson’s Algorithm

The analysis of the algorithm is straightforward:

Lemma

The color requirement of Wigderson’s Algorithm is at most
3
√
n + 1.

• Indeed, each bite reduces the number of vertices by at least
√
n.

• So there can be at most
√
n bites, each using two new colors.

• After the bites, everything can be colored with at most
√
n + 1

colors.
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Direction of Improvement

• It’s easy to see that the distinguishing parameter τ between the
two significantly different cases can be chosen more cleverly, but
the order of magnitude of the color requirement

√
n does not

improve.

• Our later algorithm uses a similar structure. For the greedy
coloring, it employs a smarter method.

• Thus, with a better τ distinguishing parameter, we work with a
better (expected) color requirement for our algorithm.
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The Structure of Improvement

• The parameters of the coloring algorithm that replaces the
greedy algorithm are summarized by the following theorem.

• In fact, this describes a step towards the creation of a complete
coloring.

• It calculates a partial coloring, where at least half of the vertices
receive a color (in a proper way), but there is also the possibility to
leave one vertex uncolored (no more than half of the vertices).

• To achieve a good coloring, this process must be iterated on the
remaining uncolored vertices. After log n iterations, we obtain a
well-colored graph with a color requirement that is log n times the
color requirement stated in the theorem.

Péter Hajnal Semidefinite programming and vectors, SzTE, 2024



Karger—Motwani—Sudan Theorem

Karger—Motwani—Sudan Theorem

There exists a randomized algorithm that knows: If given a
3-colorable graph G with no degree greater than τ , then the
algorithm computes a good partial coloring, with a color
requirement of O(τ0.632). The expected running time of the
algorithm is polynomial.

The proof is an algorithm. Once again, instead of assigning colors
to vertices, vectors are assigned to them.
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Karger—Motwani—Sudan Algorithm

Karger—Motwani—Sudan Partial Coloring Algorithm

(1) Choose a smart vector representation ρ : V → Sn−1.

(2) Choose independently ν1, ν2, . . . , νe ∈ Sn−1 as random
independent unit vectors/directions.

(2a) Let v 7→ (sign(νT
i ρ(v)))`i=1, where

sign(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0.

// The probability of the 0 component is 0, there are 2`

possible outcomes/colors.
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Karger—Motwani—Sudan Algorithm (continued)

Karger—Motwani—Sudan Partial Coloring Algorithm

(2b) Select the improperly colored edges and remove the color from
one endpoint. This yields a good partial coloring.

(2c) If at least half of the vertices are colored, then STOP. If fewer
than half of the vertices remain colored, return to step (2).
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The Basic Idea Behind the Choice

• The essential question again is the choice of ρ in point (1), the
good/smart vector representation.

• Let

ξe =

{
1, if edge xy is improperly colored,

0, otherwise.

• What is its expected value?

Eξe = P(xy is improperly colored) =

(
1− arccos ρT

x ρy
π

)`
.
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The Goal of the Choice

• The goal: Choose ρ such that for every edge xy ,

Eξe = P(xy is improperly colored) =

(
1− arccos ρT

x ρy
π

)`
.

is small.

• That is, choose ρ such that for every edge xy ,

arccos ρT
y ρy

π

is large.

• That is, choose ρ such that for every edge xy ,

ρT
x ρy

is small.
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The Precise Choice

• Refinement of point (1) of the algorithm: Choose ρ as the
optimal solution vector system derived from the following SDP
problem from an optimal matrix G ∈ RV×V :

Minimize µ-t

subject to G � 0,

Guu = 1 for every vertex u,

Guv ≤ µ for every edge uv ∈ E .

• Solving this provides an optimal value p∗ and an optimal location
G (optimal Gram matrix). From this, unit vectors (Guu = 1)
corresponding to the vertices of our graph can be derived,
providing a vector representation for the vertices of the graph.

• This is the precise description of step (1) of the
Karger—Motwani—Sudan partial coloring algorithm.
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Analysis of the Algorithm

• The analysis of the algorithm is straightforward:

• First, let’s estimate the value of p∗.

• To do this, let’s take an optimization problem solution as follows:
for a good c : V (G )→ {1, 2, 3}-coloring of G , let ρv = ec(v),
where e1, e2, e3 are three unit vectors pointing to the vertices of a
regular triangle in the plane.

• Then the value of the objective function is 2π/3, so p∗ ≤ −1/2,
meaning that arccos p∗ ≥ arccos(−1/2) = 2π/3.

• From this, we can refine our estimate of the expected value of
the degree of improper coloring:

P(ξe) =

(
1− 1

π
arccos(ρT

u ρv )

)`
≤
(

1

3

)`
=

1

9τ
,

if we choose ` so that (1/3)` = 1/9τ .
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Analysis (continued)

• Let Eimproper be the number of edges improperly colored by the
first random coloring.

• Then

E(Eimproper) ≤
1

9τ
|E | ≤ 1

9τ

|V |τ
2

=
|V |
18
.

• So, by the Markov inequality, the probability is small that one
coloring does not find the output.

• The expected value of the number of repetitions of colorings can
be easily estimated.

• With the choice of `, the color requirement of 2` is O(τ0.632),
which yields the theorem.
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Putting the Details Together

• The rest is only outlined:

• The iteration of the partial coloring algorithm provides a good
coloring algorithm, whose dependence on τ is better than that of
the greedy algorithm.

• Thus, by working with this instead of the greedy algorithm in the
Wigderson scheme, we get a better procedure.

• Only the final result is stated.

Karger—Motwani—Sudan Coloring Algorithm

The Las Vegas algorithm described above properly colors a
3-colorable graph with n vertices using O(n0.39 · log n) colors.

• There are further refinements, but this is all we have time for.
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This is the End!

Thank you for your attention!
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