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Basics of Linear Programming

e There exist various normal forms. The one we most commonly
use is the following:

Minimize cTx-t

subject to Ax <X b

where c € R", x € R", A € Rk*" b € Rk,

e In this normal form, only linear inequalities are allowed among
the constraints.

e Another common normal form is:

Minimize c' x-t
subject to Ax = b,
x>0
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LP Duality

For any LP problem, exactly one of the following two conditions
holds:

(i) p* = d*, i.e., strong duality holds,
(i) d* = —o0 < 00 = p*.

e For example, if £ # () (where L is the feasible solutions set), and
¢ is bounded below (which is often the case in practical
applications), then p* = d* € R.

o If p* = —o0, weak duality guarantees strong duality.

e The only loophole for an LP problem to evade strong duality is
to have p* = 0o and d* = —oo. That is, both primal and dual
problems are infeasible. This possibility is not theoretical; it can
occur in concrete examples.
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Solution Set of a Linear Equation

LINEAR ALGEBRA

GEOMETRY

v € R" is a vector.

V is a point in R”, its position vec-
tor is v.

v €R"—{0}. v"x =0is a non-
trivial, homogeneous linear equa-
tion solution set.

v € R" — {0} is a normal vector.
vTx = 0 is the equation of vectors
perpendicular to v. It describes
a hyperplane passing through the

origin O.

veER"— {0}, beR. vix=bis
a nontrivial linear equation solution
set.
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v € R" — {0} is a normal vector.
v'x = b = vy is the equation
of vectors perpendicular to v and

passing through vg.
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Solution Set of Linear Inequalities

LINEAR ALGEBRA

GEOMETRY

v € R"” — {0}. The solution
set of the non-trivial linear ho-
mogeneous inequality vTx <
0/vTx > 0 is not trivial.

v € R" — {0} is a normal vec-
tor. The inequality vTx <
0/vTx > 0 defines a CLOSED
half-space bounded by a hyper-
plane passing through the ori-
gin and perpendicular to v.

v e R"— {0}, b € R. The so-
lution set of the non-trivial lin-
ear inequality v"x < b/vTx >
b is not trivial.
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v € R" — {0} is a nor-
mal vector.  The inequality
vVix < b = I/TVO/I/TX > b
defines a CLOSED half-space
bounded by a hyperplane pass-
ing through vy and perpendic-
ular to v.
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Formal Definitions

Definition

Let v € R” be a nonzero vector, 7 any real number. Then the set
{x € R": vTx = 7} is called a hyperplane in R”. The sets of the
form {x € R" : vTx < 7} are called (closed) half-spaces.

Every hyperplane defines two closed half-spaces, which share the
same boundary.

Half-spaces and hyperplanes are convex.
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Solution Sets of Inequality Systems

LINEAR ALGEBRA

GEOMETRY

A € Rk*n Solution set of the ho-
mogeneous linear equation system
Ax = 0.

Intersection of finitely many hyper-
planes passing through the origin
= linear subspace.

A € RF*n b e Rk, Solution set of
the linear equation system Ax = b.

Intersection of finitely many hyper-
planes = affine subspace.

A € R¥*"_ Solution set of the ho-
mogeneous linear inequality system
Ax < 0.

Intersection of finitely many closed
half-spaces passing through the
origin = polyhedral (closed, con-
vex) cone.

A € R b € Rk, Solution set of
the linear inequality system Ax <

b.
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Intersection of finitely many closed
half-spaces = (convex, closed)
polyhedron.
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Formal Definitions

Definition: Linear Combination of Vectors

Let vi,vo,..., vy € R” be vectors in a finite system and
A1, A2, ..., Ay € R be a system of real numbers. Then

A1vi 4+ dowvo + ...+ Anvy

is called the linear combination of the v; vectors.

Definition: Linear Subspace of R”

| A\

L C R" is a linear subspace if 0 € £ and closed under linear
combination.

Example: Finitely Generated Linear Subspace

<V1, Vg ooog VN>|in = {/\1v1 + Xovo+ ...+ Ayvy t A E R}
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Formal Definitions (continued)

Definition: Affine Combination of Vectors

Let vi,vo,..., vy € R” be vectors in a finite system and
A1, A2, ..., Ay € R be a system of real numbers such that
M+X+ ...+ Ay =1 Then

Avi+ Aovo + .+ Ayvy

is called the affine combination of the v; vectors.

Definition: Affine Subspace of R”
A C R" is an affine subspace if closed under affine combination.

Example: Finitely Generated Affine Subspace
<V1, Vo,..., VN>afﬁne — {)\1V1+)\2V2—|—. A Anvn s A ER, Z Ai=1F%L

1
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Formal Definitions (continued)

Definition: Cone Combination of Vectors

Let vi,vo,..., vy € R” be vectors in a finite system and
A1, A2, ..., Ay € Ry be nonnegative real numbers. Then

Avi+Xovo + ..o+ Ay

is called the cone combination of the v; vectors.

Definition: Cone in R”

C C R" is a (convex) cone if closed under cone combination.

Example: Finitely Generated Cone
<V1, Vo, ..., VN>cone = {)\1V1 + Xovo + ...+ Ayvy t A E R+}.
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Formal Definitions (continued)

Definition: Convex Combination of Vectors

Let vi,vo,..., vy € R” be vectors in a finite system and
A1, A2, ..., Ay € Ry be nonnegative real numbers such that
A1+Xo+...+ Ay =1. Then

Avi 4+ Xovo + ...+ Ay

is called the convex combination of the v; vectors.

Definition: Convex Set in R”

K C R" is a convex point set if closed under convex combination.

Example: Finitely Generated Convex Set
<V1, Vo, ..., VN>convex = {)\1V1 + Xovo + ...+ Ayvy t A E Ry, Z A= 1}.
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Theorems

Let 0 € £L C R". Then the following are equivalent:

(i) Closed under line joining.
(ii) Closed under linear combination.
(iii) Solution set of Ax = 0 for some A € RK*".

(iv) Finitely generated linear subspace.

Theorem

Let A C R". Then the following are equivalent:
(i) Closed under line joining.
(ii) Closed under affine combination.
(iii) Solution set of Ax = b for some A € RF*", p € R,

(iv) Finitely generated affine subspace.
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Theorems (continued)

Minkowski-Weyl Theorem
Let C C R". Then the following are equivalent:
(i) Solution set of Ax < 0 for some A € RF*",

(ii) Finitely generated cone.

Fundamental Theorem of Polytopes
Let 7 C R". Then the following are equivalent:
(i) Bounded polyhedron (= polytope).

(ii) Finitely generated convex set.

Minkowski-Weyl Theorem
Let P C R". Then the following are equivalent:
(i) Polyhedron, i.e., solution set of Ax < b for some A € Rk*" h e Rk,

(i) 7 + C, where T is a polytope/finitely generated convex set and C is a
polyhedral /finitely generated cone.
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Nice Polyhedrons

Definition

Let P be a polyhedron. P is called nice if it does not contain a line.

Lemma

Let P be a polyhedron in R”: P = {x: Ax =< b}. Then the
following are equivalent:

(i) Not nice. That is, there exists a nonzero vector v such that
for some p € P, the line in the direction of v through p is a
subset of P.

(ii) There exists a nonzero vector v such that for every p € P, the
line in the direction of v through p is a subset of P.

(iii) The row rank of A is less than n (number of
columns/dimension /number of variables).

(iv) extP = 0.
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Further Decomposition Theorems

e When decomposing a non-nice polyhedron according to the
above fundamental theorem, a component will be a line segment.

Definition: Pointed Cone

Among cones, those that do not contain a line are called pointed
cones.

e These are exactly those cones for which there exists a hyperplane
passing through the origin, such that all nonzero vectors of the
cone lie strictly on one side of it. (This needs to be proved!)

e Every cone is a sum of a linear subspace and a pointed cone.

Let P be an arbitrary polyhedron. Then

P=T+ Cpointed + £7
where T is polytope, Cpointed is @ pointed cone, and L is a linear
subspace.
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Vertices of Polyhedra

LINEAR ALGEBRA

GEOMETRY

If the polyhedron P : Ax < b is con-
tained in the half-space F : v"x < 3
and PNH #0, where H : v x =3
(that is, F is a closed half-space
border), then F is a half-space and
the hyperplane H is the supporting
face, or supporting hyperplane, of
the polyhedron P.

A solution m of a linear inequality
system Ax < b (assuming A has no
zero rows) is exactly an interior point
of m (and any neighborhood of m
contains only solutions) if every con-
dition is satisfied with strict inequali-
ties. That is, every condition is tight.
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The boundary points of a polyhedron
‘P are those points that have both P-
interior and P-exterior points in ev-
ery neighborhood. The set of bound-
ary points, or the boundary itself, is
denoted by dP. The polyhedron P
is closed, thus OP C P.
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Boundary Points Revisited

A polyhedron is a closed, convex set.

e If A has a zero row, then the resulting inequality can have either
all x € R" as solutions or none at all. In a special case

(A=0¢c RK" b =0 c RK), the entire space is a polyhedron.
The empty set is also a polyhedron.

e Even in two dimensions, it is easy to give a closed set and a
point on its boundary such that no supporting hyperplane can be
placed on it. This is not the case in the convex setting.

Let K C R” be a closed convex set. The following are equivalent:
(i) peOK,
(i) p € K and a supporting hyperplane can be placed on it.
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Faces of Polyhedra

Definition

Let K be a closed convex set. A face of K is a subset of its
boundary that can be intersected by an appropriate supporting
hyperplane.

e Of course, faces are also closed, convex sets, subsets of OK.

Definition

Let K be a convex set and F be a face. Let aff(F) be the affine
hull of the set F, i.e., the smallest affine subspace containing F.
The dimension of F is dim(aff(F)).
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Special Faces: Vertices

Let P : {x : Ax < b} C R" be a polyhedron, e € P. Then the
following are equivalent:

(i) There exists a supporting hyperplane that intersects P only at
e.

(i) There is no line segment in P that contains e as an interior
point.

(iii) Let / = {i:ale = b;}. Then [ is such that {a; : i € I} spans
R".
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General Faces

e The surfaces of polyhedra are formed by the faces. We've only
looked at the vertices in a bit more detail.

Definition
Let P be a polyhedron, p € 9P

Cp = {r € R"\{0} :3a € R such that
{x:v"x < a} D P and vp = a} U{0}.

Cp is a convex cone.
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Special Faces: Vertices (again)

e The cone associated with boundary points provides a new,
alternative description of the vertices.

Theorem

Let P be a polyhedron, P = {x: Ax < b}, p € 9'P. The following
are equivalent:

(i) p € ext(P),
(ii) Cp has an interior point (in R"),

(iii) there exist row vectors a}[, aZ, R a;: in A such that

(1) they are linearly independent,
(2) agp = b; for every j =1,2,...,n.

e That is, C, is full-dimensional if and only if p is a vertex.
Generally, the dimension of C, determines the dimension of the
interior point of the boundary p point.
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Refinement of Minkowski-Weyl Theorem

e Let P be a polyhedron, i.e., for some A € Rk*" b e R¥,
P={xeR": Ax < b}.

e If P is not nice, it's easy to recognize this based on linear
algebraic knowledge. Moreover, we can decompose it into the sum
of an affine space and a nice polyhedron. We can assume that our
polyhedron is nice.

Theorem

Let P = {x € R": Ax < b} be an arbitrary nice polyhedron.

Let C = {x € R": Ax < 0} be a polyhedral/cone.

Let 7 = (ext(P))conv be a finitely generated convex set/polytope.
Then

P=T+C.
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LP Geometrically

e The fundamental task of LP is to minimize a linear function,

cx, over a polyhedron.

e The level sets of c¢Tx are hyperplanes.

e A lower bound, A, on the objective function over a non-empty
polytope P means that the half-space {x : c"x > A} contains the
polyhedron P.

T

e The half-space ¢’ x = A lies on one side of P.

e The minimal objective value is attained when ) is increased
(pushing the hyperplane towards P) until the moving hyperplane
touches P.

e Then P supports the hyperplane. The supporting points are the
optimal points.
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Optimal Points and Vertices

Let P = {x : Ax < b} be a non-empty nice polyhedron. Consider
the

Minimize cTx-t

subject to Ax <X b,

LP problems (where c varies).
Then

(i) For every ¢ € R", either p* = —oco or there exists x € ext(P)
as an optimal point.

(ii) For every x € ext(P), there exists ¢ such that x is the unique
optimal point.
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Proof

(i) We know that P =T + C, where T is a polytope and C is a
cone.

e Assume p* # —o0.

e Let 0 be an optimal point: o€ P=T +C, i.e., 0o =t +k,
where t € T and k € C.

e Firstly, cTk > 0.

e Indeed. For & >0, ak € C, so t + ak € P. If c"k < 0, then the
objective function can take arbitrarily small values.

o If cTk >0, we can assume k = 0, i.e., o falls into the polytope
part of our polyhedron.
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Proof (continued)

e Then o is a convex combination of ext(7) points.

e Thus cTo is a convex combination of cTe values (e € ext(C)).
In particular,
cTo>min{cTe:ecext(T)}.

This proves the statement.

(ii) Consider a supporting hyperplane ({x : v"x > b}), where
{x:vTx=b}NP ={x}.

e Obviously, c = v is a good choice.

Péter Hajnal Geometry of LP, SzTE, 2024



Rational Optimal Points

For the

Minimize cTx-t

subject to Ax < b

LP problem, assume that A € Q%" b € Q. Moreover, assume
that {x : Ax < b} is a nice polyhedron.

If p* € R, then there exists x € Q" as an optimal point.
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Proof

e If p* € R, then we can choose e € ext(P) as an optimal point.

e Then the inequalities a;rx < b; satisfied by e are such that the
corresponding a; vectors span R”.

e Specifically, we can write a system of n equations, whose matrix
is a submatrix of A, constants are the components of b, and e is
the unique solution.

e By Cramer’s rule, the components of e are the ratio of the
determinants of two matrices containing rational numbers,
specifically rational.
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Farkas' Lemma: First Alternative Form

Farkas' Lemma, First Alternative Form

Let Ax =< b be a system of equations, where A € Rkxn
X1

X2
x=| |, and b € RK. Then exactly one of the following two

Xn
statements holds:

(i) The system of equations is solvable, i.e., there exists xp € R”
such that Axp < b.

(i) There exists 0 < A € R¥ such that \TA =0T and \Th = —1.
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Second Alternative Form

Farkas' Lemma, Second Alternative Form

Ax —
Consider the system of equations , where A € R,
x>0
X1
X2 _
x=| _ |, and b € R, Then exactly one of the following two
Xn

statements holds:

(i) The system of equations is solvable, i.e., there exists
0 < xp € R” such that Axg = b.

(i) There exists A € R’ such that A\TA > 0T and ATh = —1.
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Farkas' Lemma: Geometric Form

Let C C R" be a finitely generated cone. That is, there exists a
matrix G € R™k such that

C={GX:0=\eR.

The columns of G are the generators of the cone.

Gx = b,

e Alternatively, b € Cg if and only if {O is solvable.

<X

e The infeasibility of such a system of inequalities is precisely one
alternative of Farkas’' Lemma. What is the other alternative?
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Farkas' Lemma: Geometric Form (continued)

Gx=b
e According to Farkas’ Lemma, the infeasibility of O: T is
< x

equivalent to the existence of a vector A € R” such that

ATG=0and \Th=—1.

e In other words, the hyperplane H : ATx = 0 passing through the
origin separates the cone and the point b, where one side

FZ : ATx > 0 contains the cone C, while the other side

F<: ATx <0 contains b.

Farkas' Lemma: Geometric Form

Let C C R" be a finitely generated cone, b € C. Then there exists
a hyperplane H : ATx = 0 that separates the cone and b.
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Proof of Weyl's Theorem: If a cone is finitely generated,
then it's polyhedral

Let G = {G\: 0 < A} be a finitely generated cone.

Let R A
g={<y> :y:G)\,O-<)\}.

Clearly, Gis a polyhedron.

Obviously, G can be obtained from the projections of G.

The projection of a polyhedron is also a polyhedron.

We know that G is both a polyhedron and a cone.

We know that C is both a polyhedron and a cone. Then C is a
polyhedral cone.
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Minkowski's Lemma

Suppose that

{x 1 Ax <0} ={GA: 0= A}

Then
{x:G™x <0} ={ATA: 0= )\}.

e We can interpret the condition of the lemma as two containment
relations:
{x:Ax <0} D {GA: 0= A}

{x:Ax <0} C {GA: 0= A}
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Minkowski's Lemma: The First Condition

{x:Ax <0} D {GA: 0= A}

e The elements on the left side are cone combinations of the
columns of G. By containment, each of these vectors is contained
in the left-hand set.

e This is equivalent to saying that the columns of G are contained
in the left-hand set.

e This is equivalent to saying that

the elements of AG are all non-positive.
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Minkowski's Lemma: The Second Condition

{x:Ax 20} C {GA: 0= A}

e An element b from the left side is also in the right side. That is,

) G\=b
if Ab =0, then the system is solvable.
0=<A
e By Farkas' Lemma, this can be reformulated as: The system
Ab =0
uTG <0 has no solution.
uwb=1
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Minkowski's Lemma: The Conditions

e Based on the above, the conditions are

Ab =0
the elements of AG are all non-positive and u'G =<0  has no sol
u'b=1
o Alternatively,
G'u=o0
the elements of GT AT are all non-positive and bTAT <0  has no
bTu=1

e These are equivalent to the proposition to be proven.
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Polytopes

Definition
A polyhedron P C R” is called a polytope if it is bounded.

e Bounded polyhedra/polytopes play an important role in
understanding polyhedra.
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Fundamental Theorem of Convex Polytopes

Let P C RY. Then the following are equivalent:

(i) P is a bounded polyhedron.
(i) P is the convex hull of finitely many points in RY.
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Polyhedra: Coning, Homogenization

Let P be a polyhedron, i.e.,

P ={x:Ax < b} C R
Define

P = {(;‘) :xeRd,)\ER,ij)\b,OgA} C RIxR, c R,

P={(xy) :x<0,y <0} C R

P={(xy,\)T:x<0,y <0,A>0} cR?>x Ry C R
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Coning of Polyhedra: The Observation

Observation

(i) x € P if and only if <)1() eP.

(ii) P is a polyhedral cone.
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Fundamental Theorem of Convex Polytopes: Proof

(i)=(ii)

e Since P is bounded, the polyhedral cone P contains only 0 from
the hyperplane A = 0.

e By Weyl's theorem,

7/5 - <§1’§2""’§k>cone - <<g]-1> ’ <i2> yeeey <g]-k>>

e Thus,

if and only if
g€ <g1>g2’ s 7gk>convex

Péter Hajnal Geometry of LP, SzTE, 2024



Fundamental Theorem of Convex Polytopes: Proof

(ii)=(i)

Assume P = (81,82, - - -+ Bk)convex- Clearly, P is bounded.

= {(5).(5)(3)) .

a finitely generated polyhedral cone.

By Weyl's theorem, there exists a matrix (A| — b) such that
o X X
P-{0)-w-n(3) =}

P = {x: Ax < b},

Then

i.e., P is a polyhedron.
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Combining Geometric Sets

Definition

Let A,B C RY. Then
A+B={a+b:acAbec B}

is called the direct or Minkowski sum of sets A and B.
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Minkowski—Weyl Theorem

Minkowski—Weyl Theorem

(i) Let P be any polyhedron. Then there exist finitely generated
convex sets/polytopes 7 and C

P=T+C.

(ii) Let T be a finitely generated convex set/polytope and C be a
finitely generated cone. Then 7 + C is a polyhedron.
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Minkowski-Weyl Theorem: Proof: (i)

e For P, we defined a P polyhedral cone.
e By Weyl's theorem,

() (2) () (5)-(5) - (3).

e Then

P = <g17g27 cee 7gk>convex + <h17 h27 sy hf)conev
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Minkowski—Weyl Theorem: Proof: (ii)

Assume P = <g1,g2, .. 7gk>convex + <h1, h2, R hf>cone'
Let

=(£):(8) - (2).3) 3) ().

a finitely generated cone.

By Weyl's theorem, there exists a matrix (A| — b) such that
oy X X
P-{()-@-n(3) =}

P = {x: Ax < b},

Then

i.e., P is a polyhedron.
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Thank you for your attention! |




