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Basics of Linear Programming

• There exist various normal forms. The one we most commonly
use is the following:

Minimize cTx-t

subject to Ax � b

where c ∈ Rn, x ∈ Rn, A ∈ Rk×n, b ∈ Rk .

• In this normal form, only linear inequalities are allowed among
the constraints.

• Another common normal form is:

Minimize cTx-t

subject to Ax = b,

x � 0.
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LP Duality

LP Duality

For any LP problem, exactly one of the following two conditions
holds:

(i) p∗ = d∗, i.e., strong duality holds,

(ii) d∗ = −∞ <∞ = p∗.

• For example, if L 6= ∅ (where L is the feasible solutions set), and
c is bounded below (which is often the case in practical
applications), then p∗ = d∗ ∈ R.

• If p∗ = −∞, weak duality guarantees strong duality.

• The only loophole for an LP problem to evade strong duality is
to have p∗ =∞ and d∗ = −∞. That is, both primal and dual
problems are infeasible. This possibility is not theoretical; it can
occur in concrete examples.
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Solution Set of a Linear Equation

LINEAR ALGEBRA GEOMETRY

v ∈ Rn is a vector. V is a point in Rn, its position vec-
tor is v .

ν ∈ Rn − {0}. νTx = 0 is a non-
trivial, homogeneous linear equa-
tion solution set.

ν ∈ Rn − {0} is a normal vector.
νTx = 0 is the equation of vectors
perpendicular to ν. It describes
a hyperplane passing through the
origin O.

ν ∈ Rn − {0}, b ∈ R. νTx = b is
a nontrivial linear equation solution
set.

ν ∈ Rn − {0} is a normal vector.
νTx = b = νTv0 is the equation
of vectors perpendicular to ν and
passing through v0.
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Solution Set of Linear Inequalities

LINEAR ALGEBRA GEOMETRY

ν ∈ Rn − {0}. The solution
set of the non-trivial linear ho-
mogeneous inequality νTx ≤
0/νTx ≥ 0 is not trivial.

ν ∈ Rn − {0} is a normal vec-
tor. The inequality νTx ≤
0/νTx ≥ 0 defines a CLOSED
half-space bounded by a hyper-
plane passing through the ori-
gin and perpendicular to ν.

ν ∈ Rn − {0}, b ∈ R. The so-
lution set of the non-trivial lin-
ear inequality νTx ≤ b/νTx ≥
b is not trivial.

ν ∈ Rn − {0} is a nor-
mal vector. The inequality
νTx ≤ b = νTv0/νTx ≥ b
defines a CLOSED half-space
bounded by a hyperplane pass-
ing through v0 and perpendic-
ular to ν.
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Formal Definitions

Definition

Let ν ∈ Rn be a nonzero vector, τ any real number. Then the set
{x ∈ Rn : νTx = τ} is called a hyperplane in Rn. The sets of the
form {x ∈ Rn : νTx ≤ τ} are called (closed) half-spaces.

Remark

Every hyperplane defines two closed half-spaces, which share the
same boundary.

Lemma

Half-spaces and hyperplanes are convex.
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Solution Sets of Inequality Systems

LINEAR ALGEBRA GEOMETRY

A ∈ Rk×n. Solution set of the ho-
mogeneous linear equation system
Ax = 0.

Intersection of finitely many hyper-
planes passing through the origin
≡ linear subspace.

A ∈ Rk×n, b ∈ Rk . Solution set of
the linear equation system Ax = b.

Intersection of finitely many hyper-
planes ≡ affine subspace.

A ∈ Rk×n. Solution set of the ho-
mogeneous linear inequality system
Ax � 0.

Intersection of finitely many closed
half-spaces passing through the
origin ≡ polyhedral (closed, con-
vex) cone.

A ∈ Rk×n, b ∈ Rk . Solution set of
the linear inequality system Ax �
b.

Intersection of finitely many closed
half-spaces ≡ (convex, closed)
polyhedron.
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Formal Definitions

Definition: Linear Combination of Vectors

Let v1, v2, . . . , vN ∈ Rn be vectors in a finite system and
λ1, λ2, . . . , λN ∈ R be a system of real numbers. Then

λ1v1 + λ2v2 + . . .+ λNvN

is called the linear combination of the vi vectors.

Definition: Linear Subspace of Rn

L ⊂ Rn is a linear subspace if 0 ∈ L and closed under linear
combination.

Example

Example: Finitely Generated Linear Subspace

〈v1, v2, . . . , vN〉lin = {λ1v1 + λ2v2 + . . .+ λNvN : λi ∈ R}.
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Formal Definitions (continued)

Definition: Affine Combination of Vectors

Let v1, v2, . . . , vN ∈ Rn be vectors in a finite system and
λ1, λ2, . . . , λN ∈ R be a system of real numbers such that
λ1 + λ2 + . . .+ λN = 1. Then

λ1v1 + λ2v2 + . . .+ λNvN

is called the affine combination of the vi vectors.

Definition: Affine Subspace of Rn

A ⊂ Rn is an affine subspace if closed under affine combination.

Example

Example: Finitely Generated Affine Subspace

〈v1, v2, . . . , vN〉affine = {λ1v1+λ2v2+. . .+λNvN : λi ∈ R,
∑
i

λi = 1}.
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Formal Definitions (continued)

Definition: Cone Combination of Vectors

Let v1, v2, . . . , vN ∈ Rn be vectors in a finite system and
λ1, λ2, . . . , λN ∈ R+ be nonnegative real numbers. Then

λ1v1 + λ2v2 + . . .+ λNvN

is called the cone combination of the vi vectors.

Definition: Cone in Rn

C ⊂ Rn is a (convex) cone if closed under cone combination.

Example

Example: Finitely Generated Cone
〈v1, v2, . . . , vN〉cone = {λ1v1 + λ2v2 + . . .+ λNvN : λi ∈ R+}.
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Formal Definitions (continued)

Definition: Convex Combination of Vectors

Let v1, v2, . . . , vN ∈ Rn be vectors in a finite system and
λ1, λ2, . . . , λN ∈ R+ be nonnegative real numbers such that
λ1 + λ2 + . . .+ λN = 1. Then

λ1v1 + λ2v2 + . . .+ λNvN

is called the convex combination of the vi vectors.

Definition: Convex Set in Rn

K ⊂ Rn is a convex point set if closed under convex combination.

Example

Example: Finitely Generated Convex Set

〈v1, v2, . . . , vN〉convex = {λ1v1 + λ2v2 + . . .+ λNvN : λi ∈ R+,
∑
i

λi = 1}.
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Theorems

Theorem

Let 0 ∈ L ⊂ Rn. Then the following are equivalent:

(i) Closed under line joining.

(ii) Closed under linear combination.

(iii) Solution set of Ax = 0 for some A ∈ Rk×n.

(iv) Finitely generated linear subspace.

Theorem

Let A ⊂ Rn. Then the following are equivalent:

(i) Closed under line joining.

(ii) Closed under affine combination.

(iii) Solution set of Ax = b for some A ∈ Rk×n, b ∈ Rk .

(iv) Finitely generated affine subspace.
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Theorems (continued)

Minkowski-Weyl Theorem

Let C ⊂ Rn. Then the following are equivalent:

(i) Solution set of Ax � 0 for some A ∈ Rk×n.

(ii) Finitely generated cone.

Fundamental Theorem of Polytopes

Let T ⊂ Rn. Then the following are equivalent:

(i) Bounded polyhedron (≡ polytope).

(ii) Finitely generated convex set.

Minkowski-Weyl Theorem

Let P ⊂ Rn. Then the following are equivalent:

(i) Polyhedron, i.e., solution set of Ax � b for some A ∈ Rk×n, b ∈ Rk .

(ii) T + C, where T is a polytope/finitely generated convex set and C is a
polyhedral/finitely generated cone.
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Nice Polyhedrons

Definition

Let P be a polyhedron. P is called nice if it does not contain a line.

Lemma

Let P be a polyhedron in Rn: P = {x : Ax � b}. Then the
following are equivalent:

(i) Not nice. That is, there exists a nonzero vector v such that
for some p ∈ P, the line in the direction of v through p is a
subset of P.

(ii) There exists a nonzero vector v such that for every p ∈ P, the
line in the direction of v through p is a subset of P.

(iii) The row rank of A is less than n (number of
columns/dimension/number of variables).

(iv) extP = ∅.
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Further Decomposition Theorems
• When decomposing a non-nice polyhedron according to the
above fundamental theorem, a component will be a line segment.

Definition: Pointed Cone

Among cones, those that do not contain a line are called pointed
cones.

• These are exactly those cones for which there exists a hyperplane
passing through the origin, such that all nonzero vectors of the
cone lie strictly on one side of it. (This needs to be proved!)

• Every cone is a sum of a linear subspace and a pointed cone.

Theorem

Let P be an arbitrary polyhedron. Then

P = T + Cpointed + L,
where T is polytope, Cpointed is a pointed cone, and L is a linear
subspace.
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Break
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Vertices of Polyhedra

LINEAR ALGEBRA GEOMETRY

If the polyhedron P : Ax � b is con-
tained in the half-space F : νTx ≤ β
and P ∩H 6= ∅, where H : νTx = β
(that is, F is a closed half-space
border), then F is a half-space and
the hyperplane H is the supporting
face, or supporting hyperplane, of
the polyhedron P.

A solution m of a linear inequality
system Ax � b (assuming A has no
zero rows) is exactly an interior point
of m (and any neighborhood of m
contains only solutions) if every con-
dition is satisfied with strict inequali-
ties. That is, every condition is tight.

The boundary points of a polyhedron
P are those points that have both P-
interior and P-exterior points in ev-
ery neighborhood. The set of bound-
ary points, or the boundary itself, is
denoted by ∂P. The polyhedron P
is closed, thus ∂P ⊆ P.
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Boundary Points Revisited

Theorem

A polyhedron is a closed, convex set.

• If A has a zero row, then the resulting inequality can have either
all x ∈ Rn as solutions or none at all. In a special case
(A = 0 ∈ Rk×n, b = 0 ∈ Rk), the entire space is a polyhedron.
The empty set is also a polyhedron.

• Even in two dimensions, it is easy to give a closed set and a
point on its boundary such that no supporting hyperplane can be
placed on it. This is not the case in the convex setting.

Theorem

Let K ⊆ Rn be a closed convex set. The following are equivalent:

(i) p ∈ ∂ K ,

(ii) p ∈ K and a supporting hyperplane can be placed on it.
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Faces of Polyhedra

Definition

Let K be a closed convex set. A face of K is a subset of its
boundary that can be intersected by an appropriate supporting
hyperplane.

• Of course, faces are also closed, convex sets, subsets of ∂K .

Definition

Let K be a convex set and F be a face. Let aff(F ) be the affine
hull of the set F , i.e., the smallest affine subspace containing F .
The dimension of F is dim(aff(F )).
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Special Faces: Vertices

Theorem

Let P : {x : Ax � b} ⊂ Rn be a polyhedron, e ∈ P. Then the
following are equivalent:

(i) There exists a supporting hyperplane that intersects P only at
e.

(ii) There is no line segment in P that contains e as an interior
point.

(iii) Let I = {i : aT
i e = bi}. Then I is such that {ai : i ∈ I} spans

Rn.
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General Faces

• The surfaces of polyhedra are formed by the faces. We’ve only
looked at the vertices in a bit more detail.

Definition

Let P be a polyhedron, p ∈ ∂ P

Cp := {ν ∈ Rn\{0} :∃α ∈ R such that

{x : νTx ≤ α} ⊇ P and νp = α} ∪ {0}.

Lemma

Cp is a convex cone.
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Special Faces: Vertices (again)

• The cone associated with boundary points provides a new,
alternative description of the vertices.

Theorem

Let P be a polyhedron, P = {x : Ax � b}, p ∈ ∂ P. The following
are equivalent:

(i) p ∈ ext(P),

(ii) Cp has an interior point (in Rn),

(iii) there exist row vectors aT
i1
, aT

i2
, . . . , aT

in
in A such that

(1) they are linearly independent,
(2) aT

ij
p = bij for every j = 1, 2, . . . , n.

• That is, Cp is full-dimensional if and only if p is a vertex.
Generally, the dimension of Cp determines the dimension of the
interior point of the boundary p point.
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Refinement of Minkowski-Weyl Theorem

• Let P be a polyhedron, i.e., for some A ∈ Rk×n, b ∈ Rk ,
P = {x ∈ Rn : Ax � b}.

• If P is not nice, it’s easy to recognize this based on linear
algebraic knowledge. Moreover, we can decompose it into the sum
of an affine space and a nice polyhedron. We can assume that our
polyhedron is nice.

Theorem

Let P = {x ∈ Rn : Ax � b} be an arbitrary nice polyhedron.

Let C = {x ∈ Rn : Ax � 0} be a polyhedral/cone.

Let T = 〈ext(P)〉conv be a finitely generated convex set/polytope.

Then
P = T + C.
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Break Time
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LP Geometrically

• The fundamental task of LP is to minimize a linear function,
cTx , over a polyhedron.

• The level sets of cTx are hyperplanes.

• A lower bound, λ, on the objective function over a non-empty
polytope P means that the half-space {x : cTx ≥ λ} contains the
polyhedron P.

• The half-space cTx = λ lies on one side of P.

• The minimal objective value is attained when λ is increased
(pushing the hyperplane towards P) until the moving hyperplane
touches P.

• Then P supports the hyperplane. The supporting points are the
optimal points.
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Optimal Points and Vertices

Theorem

Let P = {x : Ax � b} be a non-empty nice polyhedron. Consider
the

Minimize cTx-t

subject to Ax � b,

LP problems (where c varies).

Then

(i) For every c ∈ Rn, either p∗ = −∞ or there exists x ∈ ext(P)
as an optimal point.

(ii) For every x ∈ ext(P), there exists c such that x is the unique
optimal point.
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Proof

(i) We know that P = T + C, where T is a polytope and C is a
cone.

• Assume p∗ 6= −∞.

• Let o be an optimal point: o ∈ P = T + C, i.e., o = t + k ,
where t ∈ T and k ∈ C.

• Firstly, cTk ≥ 0.

• Indeed. For α ≥ 0, αk ∈ C, so t + αk ∈ P. If cTk < 0, then the
objective function can take arbitrarily small values.

• If cTk ≥ 0, we can assume k = 0, i.e., o falls into the polytope
part of our polyhedron.
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Proof (continued)

• Then o is a convex combination of ext(T ) points.

• Thus cTo is a convex combination of cTe values (e ∈ ext(C)).
In particular,

cTo ≥ min{cTe : e ∈ ext(T )}.

This proves the statement.

(ii) Consider a supporting hyperplane ({x : νTx ≥ b}), where
{x : νTx = b} ∩ P = {x}.

• Obviously, c = ν is a good choice.
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Rational Optimal Points

Theorem

For the

Minimize cTx-t

subject to Ax � b

LP problem, assume that A ∈ Qk×n, b ∈ Qk . Moreover, assume
that {x : Ax � b} is a nice polyhedron.

If p∗ ∈ R, then there exists x ∈ Qn as an optimal point.
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Proof

• If p∗ ∈ R, then we can choose e ∈ ext(P) as an optimal point.

• Then the inequalities aT
i x ≤ bi satisfied by e are such that the

corresponding ai vectors span Rn.

• Specifically, we can write a system of n equations, whose matrix
is a submatrix of A, constants are the components of b, and e is
the unique solution.

• By Cramer’s rule, the components of e are the ratio of the
determinants of two matrices containing rational numbers,
specifically rational.
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Break Time
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Farkas’ Lemma: First Alternative Form

Farkas’ Lemma, First Alternative Form

Let Ax � b be a system of equations, where A ∈ Rk×n,

x =


x1

x2
...
xn

, and b ∈ Rk . Then exactly one of the following two

statements holds:

(i) The system of equations is solvable, i.e., there exists x0 ∈ Rn

such that Ax0 � b.

(ii) There exists 0 � λ ∈ Rk such that λTA = 0T and λTb = −1.
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Second Alternative Form

Farkas’ Lemma, Second Alternative Form

Consider the system of equations

{
Ax = b

x � 0
, where A ∈ R`×n,

x =


x1

x2
...
xn

, and b ∈ R`. Then exactly one of the following two

statements holds:

(i) The system of equations is solvable, i.e., there exists
0 � x0 ∈ Rn such that Ax0 = b.

(ii) There exists λ ∈ R` such that λTA � 0T and λTb = −1.
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Farkas’ Lemma: Geometric Form

Let C ⊂ Rn be a finitely generated cone. That is, there exists a
matrix G ∈ Rn×k such that

C = {Gλ : 0 � λ ∈ Rk}.

The columns of G are the generators of the cone.

• Alternatively, b ∈ CG if and only if

{
Gx = b,

0 � x
is solvable.

• The infeasibility of such a system of inequalities is precisely one
alternative of Farkas’ Lemma. What is the other alternative?
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Farkas’ Lemma: Geometric Form (continued)

• According to Farkas’ Lemma, the infeasibility of

{
Gx = b,

0 � x
is

equivalent to the existence of a vector λ ∈ Rn such that

λTG � 0 and λTb = −1.

• In other words, the hyperplane H : λTx = 0 passing through the
origin separates the cone and the point b, where one side
F≥ : λTx ≥ 0 contains the cone C, while the other side
F≤ : λTx ≤ 0 contains b.

Farkas’ Lemma: Geometric Form

Let C ⊂ Rn be a finitely generated cone, b 6∈ C. Then there exists
a hyperplane H : λTx = 0 that separates the cone and b.
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Proof of Weyl’s Theorem: If a cone is finitely generated,
then it’s polyhedral

Let G = {Gλ : 0 � λ} be a finitely generated cone.

Let
Ĝ =

{(
λ
y

)
: y = Gλ, 0 � λ

}
.

Clearly, Ĝ is a polyhedron.

Obviously, G can be obtained from the projections of Ĝ.

Theorem

The projection of a polyhedron is also a polyhedron.

We know that G is both a polyhedron and a cone.

Lemma

We know that C is both a polyhedron and a cone. Then C is a
polyhedral cone.
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Minkowski’s Lemma

Lemma

Suppose that
{x : Ax � 0} = {Gλ : 0 � λ}.

Then
{x : GTx � 0} = {ATλ : 0 � λ}.

• We can interpret the condition of the lemma as two containment
relations:

{x : Ax � 0} ⊃ {Gλ : 0 � λ}.

{x : Ax � 0} ⊂ {Gλ : 0 � λ}.
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Minkowski’s Lemma: The First Condition

{x : Ax � 0} ⊃ {Gλ : 0 � λ}.

• The elements on the left side are cone combinations of the
columns of G . By containment, each of these vectors is contained
in the left-hand set.

• This is equivalent to saying that the columns of G are contained
in the left-hand set.

• This is equivalent to saying that

the elements of AG are all non-positive.
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Minkowski’s Lemma: The Second Condition

{x : Ax � 0} ⊂ {Gλ : 0 � λ}.

• An element b from the left side is also in the right side. That is,

if Ab � 0, then the system

{
Gλ = b

0 � λ
is solvable.

• By Farkas’ Lemma, this can be reformulated as: The system
Ab � 0

µTG � 0

µTb = 1

has no solution.
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Minkowski’s Lemma: The Conditions

• Based on the above, the conditions are

the elements of AG are all non-positive and


Ab � 0

µTG � 0

µTb = 1

has no solution.

• Alternatively,

the elements of GTAT are all non-positive and


GTµ � 0

bTAT � 0

bTµ = 1

has no solution.

• These are equivalent to the proposition to be proven.
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Polytopes

Definition

A polyhedron P ⊂ Rn is called a polytope if it is bounded.

• Bounded polyhedra/polytopes play an important role in
understanding polyhedra.
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Fundamental Theorem of Convex Polytopes

Theorem

Let P ⊂ Rd . Then the following are equivalent:

(i) P is a bounded polyhedron.

(ii) P is the convex hull of finitely many points in Rd .
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Polyhedra: Coning, Homogenization

Let P be a polyhedron, i.e.,

P = {x : Ax � b} ⊂ Rd .

Define

P̂ =

{(
x
λ

)
: x ∈ Rd , λ ∈ R,Ax � λb, 0 ≤ λ

}
⊂ Rd×R+ ⊂ Rd+1.

Example

P = {(x , y)T : x ≤ 0, y ≤ 0} ⊂ R2.

P̂ = {(x , y , λ)T : x ≤ 0, y ≤ 0, λ ≥ 0} ⊂ R2 × R+ ⊂ R3.
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Coning of Polyhedra: The Observation

Observation

(i) x ∈ P if and only if

(
x
1

)
∈ P̂.

(ii) P̂ is a polyhedral cone.
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Fundamental Theorem of Convex Polytopes: Proof
(i)⇒(ii)

• Since P is bounded, the polyhedral cone P̂ contains only 0 from
the hyperplane λ = 0.

• By Weyl’s theorem,

P̂ = 〈ĝ1, ĝ2, . . . , ĝk〉cone =

〈(
g1

1

)
,

(
g2

1

)
, . . . ,

(
gk
1

)〉
cone

• Thus, (
g
1

)
∈ P̂

if and only if
g ∈ 〈g1, g2, . . . , gk〉convex
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Fundamental Theorem of Convex Polytopes: Proof
(ii)⇒(i)

Assume P = 〈g1, g2, . . . , gk〉convex. Clearly, P is bounded.
Let

P̂ =

〈(
g1

1

)
,

(
g2

1

)
, . . . ,

(
gk
1

)〉
cone

,

a finitely generated polyhedral cone.

By Weyl’s theorem, there exists a matrix (A| − b) such that

P̂ =

{(
x
λ

)
: (A| − b)

(
x
λ

)
� 0

}
.

Then
P = {x : Ax � b},

i.e., P is a polyhedron.
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Combining Geometric Sets

Definition

Let A,B ⊂ Rd . Then

A + B = {a + b : a ∈ A, b ∈ B}

is called the direct or Minkowski sum of sets A and B.
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Minkowski–Weyl Theorem

Minkowski–Weyl Theorem

(i) Let P be any polyhedron. Then there exist finitely generated
convex sets/polytopes T and C

P = T + C.

(ii) Let T be a finitely generated convex set/polytope and C be a

finitely generated cone. Then T + C is a polyhedron.
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Minkowski–Weyl Theorem: Proof: (i)

• For P, we defined a P̂ polyhedral cone.

• By Weyl’s theorem,

P̂ =

〈(
g1

1

)
,

(
g2

1

)
, . . . ,

(
gk
1

)
,

(
h1

0

)
,

(
h2

0

)
, . . . ,

(
h`
0

)〉
cone

,

• Then

P = 〈g1, g2, . . . , gk〉convex + 〈h1, h2, . . . , h`〉cone ,
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Minkowski–Weyl Theorem: Proof: (ii)

Assume P = 〈g1, g2, . . . , gk〉convex + 〈h1, h2, . . . , h`〉cone.
Let

P̂ =

〈(
g1

1

)
,

(
g2

1

)
, . . . ,

(
gk
1

)
,

(
h1

0

)
,

(
h2

0

)
, . . . ,

(
h`
0

)〉
cone

,

a finitely generated cone.

By Weyl’s theorem, there exists a matrix (A| − b) such that

P̂ =

{(
x
λ

)
: (A| − b)

(
x
λ

)
� 0

}
.

Then
P = {x : Ax � b},

i.e., P is a polyhedron.
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This is the End!

Thank you for your attention!
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