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The roots of optimization

• Optimization is the meeting point of various branches of
mathematics.
• There are several applications in natural sciences, economics, and
computer science, which are based on optimization results.
• Breakthroughs in the field of optimization have received
significant scientific recognition due to their wide-ranging
applications.

L.V. Kantorovich
(1912-1986)

• Kantorovich
(Soviet mathematician) was awarded
the Nobel Prize in Economics in 1975 for his
contributions to optimal resource allocation.
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The fundamental problem of optimization

• Let c : dom (c) ⊆ Rn → R be a given real-valued function of n
variables (n ∈ N), which we call the objective function.

• We use x = (x1, . . . , xn)T to denote a general element of the
domain dom (c). NOTE! Throughout the semester, we work
exclusively with column vectors.

• The fundamental task of optimization is to minimize the
function c subject to predefined constraints. Hereinafter, we use
the following abbreviated notation:

Minimize c(x)

subject to x ∈ F

where x ∈ dom (c) and F ⊆ Rn represents the domain determined
by the constraints.
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Constraints

• Constraints can have diverse origins: they can be formalized as
mathematical conditions or stem from physical, economic
constraints.
• There are various ways to specify constraints. Here we mention
two methods:
• Implicit constraints. An algorithm/oracle/subroutine decides
whether a given x ∈ Rn satisfies the constraints:

x ⇒ ALGORITHM ⇒ good/bad (∈ F/6∈ F)

• Explicit constraints. The condition is described by a finite set
of equations and/or inequalities:{

fi (x) ≤ 0, i ∈ [k] := {1, 2, . . . , k},
gj(x) = 0, j ∈ [`],

(1.1)

where fi (i ∈ [k]) and gj (j ∈ [`]) are also real-valued functions of n
variables. In this case, F is the solution set of the above system.
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Domain of Definition, Feasible Solutions

• The domain of definition of the optimization problem is the
intersection of the domains of definition of the objective function
and the constraints. For explicit constraints (1.1), this is

D := dom (c) ∩
( k⋂

i=1

dom (fi )

)
∩
( ⋂̀

j=1

dom (gj)

)
,

which contains those x values for which both the objective
function and the constraints are defined.
• Feasible solutions refer to those x ∈ D vectors that satisfy the
criteria, i.e., x ∈ F . The set of these x values is denoted by L.
Thus,

L := D ∩ F ,
which, for explicit constraints (1.1), becomes

L = {x ∈ D : fi (x) ≤ 0, gj(x) = 0, i ∈ [k], j ∈ [`]}.
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Optimal Value, Optimal Location

• The optimal value associated with the problem is

p∗ = inf
x∈L

c(x) ∈ R ∪ {−∞} ∪ {∞},

where the infimum is ∞ if the set of feasible solutions is empty,
and −∞ if the objective function c takes arbitrarily small values on
the feasible solutions.
• An x∗ ∈ L vector is called an optimal location if the objective
function takes the optimal value there:

c(x∗) = p∗.

• The vector x` is a local optimum if for every point in its
neighborhood, c is at least as large as at x`:

∃ ε > 0, ∀ x : ‖x − x`‖2 < ε implies c(x`) ≤ c(x),

where ‖ ‖2 is the Euclidean norm defined on Rn,

‖ ‖2 : Rn → [0,∞), y 7→ ‖y‖2 :=
√
y21 + · · ·+ y2n .
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Approximate Solutions

• We say that x0 is an ε-close solution (ε > 0) if

c(x0) ≤ p∗ + ε.

• An x0 vector is an ε-approximate solution (ε > 0) if

(0 < p∗ ≤)c(x0) ≤ (1 + ε)p∗.

• In the definition of ε-approximate solution, we include the
condition that the optimal value is positive, p∗ > 0. In problems
with negative optimal values, we need to impose the condition
c(x0) ≤ (1− ε)p∗.
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Introductory example I

Minimize
1

x
subject to x ≥ 0.

• The objective function is c(x) = x−1, a reciprocal function
defined on dom (c) = R \ {0}. The explicit constraint is a single
inequality, f1(x) = −x ≤ 0, hence k = 1, ` = 0. Since
dom (f1) = R, the domain of the problem is

D = R \ {0}.

It can be seen that the set of feasible solutions is the open interval

L = R>0 := (0,∞) =]0,∞[
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Introductory example I (continued)

• Since the infimum of the function values taken on the feasible
solutions x ∈ L is zero, we have

p∗ = 0.

• However, there does not exist an x ∈ L at which c achieves this
value, hence there is no optimal location.

• It is worth noting that for any ε > 0, the numbers x0 ≥ ε−1 are
ε-close solutions.

• However, there are no ε-approximate solutions.

Peter Hajnal Optimization: Examples, SzTE, 2024



Basic notions Reformulating Optimization Problems Examples of Optimization Problems

Introductory example II

Minimize x log x

• There are no constraints imposed this time, i.e., F = R.
• In this case, we consider a global optimization problem.
• The objective function is differentiable over its domain.
Optimization is a standard part of calculus courses: The
single-variable objective function c(x) = x log x is defined on
dom (c) = R>0. Since there are no constraints, we have

L = D ∩ F = D = dom (c) = R>0.

The optimal value can be determined, for example, by elementary
methods of calculus.
• As a result, we obtain

p∗ = −1

e
, x∗ =

1

e
.
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Transforming Our Optimization Problem

• Once we understand an optimization problem, there are several
ways to formalize it.

• In other words, a formalized optimization problem can often be
reformulated to describe the same problem.

• Some transformations can lead to problems that are equivalent
to the original one. However, slightly different forms of the same
problem can have significant differences.

• By equivalent transformation, we mean a formal rearrangement
such that the optimal value/location of one problem can be easily
determined based on the optimal value/location of the other
problem.

• Now (without claiming completeness), let’s mention a few
possibilities.
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Transformations: Exchange of Min/Max

Maximize c(x)

subject to x ∈ F ≡

Minimize −c(x)

subject to x ∈ F

• An optimal point of the minimization problem is also an optimal
point of the maximization problem.

• If we know the optimal value of the minimization problem, its
negative will be the optimal value of the maximization problem.

Peter Hajnal Optimization: Examples, SzTE, 2024



Basic notions Reformulating Optimization Problems Examples of Optimization Problems

Transformations: Equivalent Reformulation of Constraints

• We have already seen equivalent transformations of
formulas/inequalities/equations in high school.

• We can naturally use these techniques for our constraints.

x1
x22 + 1

≤ 0 ⇐⇒ x1 ≤ 0.

(x1 + x2)2 ≤ 0 ⇐⇒ (x1 + x2)2 = 0 ⇐⇒ x1 + x2 = 0.
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Transformations: Substituting Inequalities with Sign
Conditions

Minimize c(x)

subject to fi (x) ≤ 0

gi (x) = 0

≡

Minimize c(x)

subject to fi (x) + si = 0

gi (x) = 0

si ≥ 0

• The introduced variables si are called slack variables.
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Transformations: Elimination of Linear Equalities

• The solution of the linear equality system Ax = b is basic algebra
material. The general solution can be written in the form
x = x0 + Fy , where x0 is an arbitrary solution, and the columns of
F generate the linear subspace described by the equation Ax = 0.
If F has r columns, then y ∈ Rr .
• Determining x0 and F can be done efficiently.

Minimize c(x)

subject to fi (x) ≤ 0

Ax = b ≡

Minimize c(x0 + Fy)

subject to fi (x0 + Fy) ≤ 0
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Transformations: Substituting the Objective Function with
a Monotonic Function

• Let m : R→ R be a strictly monotonic function on the range c
(the set of values taken by the objective function).

• Then

Minimize c(x)

subject to x ∈ F ≡

Minimize m(c(x))

subject to x ∈ F
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Transformations: Substituting the Objective Function with
a Monotonic Function: Example

Example

Minimize ‖x‖2
subject to x ∈ F ≡

Minimize ‖x‖22
subject to x ∈ F

• In this case, range c = R≥0, where m(x) = x2 is a monotonic
function.

• We made minimal changes, but the new objective function is
differentiable. We will see that such a small advantage can be very
significant.

Peter Hajnal Optimization: Examples, SzTE, 2024



Basic notions Reformulating Optimization Problems Examples of Optimization Problems

Transformations: Substituting the Objective Function with
a Monotonic Function: A More Complex Example

Maximize x1x2 + x2x3 + x3x1.

subject to x1 + x2 + x3 = 100,

x1, x2, x3 ≥ 0. ≡

Minimize

√
x21+x22+x23

3 .

subject to x1+x2+x3
3 = 100

3 ,

x1, x2, x3 ≥ 0.

• The two sets of constraints are obviously equivalent.
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Transformations: Substituting the Objective Function with
a Monotonic Function: A More Complex Example
(Continued)

• The two objective functions are:

c1(x1, x2, x3) = x1x2 + x2x3 + x3x1, and c2(x1, x2, x3) =

√
x21+x22+x23

3 .

• The relationship is evident (when the constraints are satisfied):

3c22 + 2c1 = (x1 + x2 + x3)2 = 1002.

• Instead of maximizing c1, we can minimize 1002 − 2c1 = 3c22 .
Then we can apply the strictly monotonic function m(x) =

√
x
3

(on the set of non-negative values taken by the new objective
function). Thus, we obtain the second form above.

• The advantage of the new form is evident. We need to minimize
the square sum given a fixed arithmetic mean. With the inequality
between arithmetic and quadratic means, the optimization
question can be solved with elementary mathematics.
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Break
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Textual Examples vs. Our Basic Problem

• Throughout the lecture series, we will often encounter problems
where the formalization poses the most challenge.

• In practice, we are given informal problems. We need to
communicate with the applicant. We need to understand their
language, their way of thinking. Sometimes we need to learn
physics, chemistry, biology to see the constrains as equations,
inequalities before us.

• Often, mathematical ideas are necessary for formal description.

• After a good, fortunate formalization, the optimization algorithm
is often ready to go.

• Below, we present some introductory examples of basic concepts
and elementary formalization tricks.
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Example I

Example

I want to enclose the largest possible rectangular area with a fence
100 m long, with one side being a wall. How do I need to choose
the side lengths?

x

x1

2
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Example I (Continued)

• This problem can be described as the following optimization task:

Maximize Maximize x1x2

subject to subject to x1 + 2x2 = 100,

x1, x2 ≥ 0.

• It is obvious that the objective function c(x1, x2) = x1x2 is
defined over the entire R2 plane and
f1(x1, x2) = −x1, f2(x1, x2) = −x2, g1(x1, x2) = x1 + 2x2 − 100,
thus D = R2 and L = R≥0 × R≥0.

• Applying the inequality between arithmetic and geometric means
and taking the constraints into account, we get

50 =
x1 + 2x2

2
≥
√
x1(2x2) (≥ 0).
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Example I (Continued)

• Squaring both sides, we obtain

2500 ≥ 2x1x2 = 2c(x1, x2),

which means the objective function is bounded from above:
c(x1, x2) ≤ 1250.

• Since x∗ = (50, 25) ∈ L is a feasible solution where c reaches
this bound, thus p∗ = 1250.

• Analyzing the case of equality in the inequality between
arithmetic and geometric means is beneficial. Based on this,
(50, 25) is not just one optimal point. (50, 25) is the ONLY
optimal point.
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Example II

Example

Suppose a horse rider wants to reach from point A on one side of a
river to point B on the same side, while also watering the horse.
What is the shortest such route?

A

B

B
,
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Example II: The Solution

• We might have encountered this problem in geometry class in
elementary school.

• Let t be the line representing the bank on which our rider is.

• Let M be the watering point. For any possible solution, by
keeping the segment AM of the rider’s path and then reflecting the
later segment onto t, we obtain a path leading from A to B ′ (the
mirror image of point B on line t). The length of the modified
path is the length/cost of the arbitrarily chosen possible solution.

• Among the modified paths, obviously traversing segment AB ′ is
optimal. That is, the intersection of t and segment AB ′ is the
optimal watering point.

• Here, coming straight from A and then moving straight to B will
be the shortest path for the horse in the problem.
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Example II: Formalization

• The formalized optimization problem can be written in several
ways.

• One option is to introduce rectangular coordinates (e.g., the
bank from the side of the horse as the x-axis).

• Our task is to find the point M(x∗, 0) where the sum of the
lengths of segments AM and MB is minimal.

• Because it is obvious that if the horse does not move in a
straight line between points A and M or between M and B, then
its path is not optimal.

• Therefore, given points A(a1, a2) and B(b1, b2), the problem can
be formulated as follows:

Minimize
√

(a1 − x)2 + a22 +
√

(b1 − x)2 + b22.
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Example III

Example

What is the minimal distance from the origin to any point on the
plane defined by the equation x1 + x2 + x3 = 100?

• Notice that instead of the distance, we can also consider its
√

1
3

times.

• The formalization (similar to a previous example) can be as
follows:

Minimize

√
x21+x22+x23

3

subject to x1+x2+x3
3 = 100

3

x1, x2, x3 > 0.
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Example III (continued)

We use the inequality between the arithmetic and quadratic means
to estimate the original optimal value:√

1

3
c(x) =

√
x21 + x22 + x23

3
≥ x1 + x2 + x3

3
=

100

3
.

• So,

p∗ ≥
√

3
100

3
.

• Moreover, the constraint is achievable if x1 = x2 = x3 = 100
3 (and

only then). So the single optimal point of the problem is

x∗ =

(
100

3
,

100

3
,

100

3

)
.

• Furthermore, its optimal value is

p∗ = c(x∗) =
√

3
100

3
.
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Example IV

Example

What is the largest surface area (in the shape of a rectangular
prism) that can be bound by a 400 cm long string (in the manner
shown in the accompanying figure)?

x

x

x1

2

3

Peter Hajnal Optimization: Examples, SzTE, 2024



Basic notions Reformulating Optimization Problems Examples of Optimization Problems

Example IV: Formalization

The formalization is obvious:

Maximize 2x1x2 + 2x2x3 + 2x3x1

subject to 4x1 + 4x2 + 4x3 = 400

x1, x2, x3 > 0.

Based on previous considerations, this is an equivalent problem to
the previous one. Rethinking the equivalence leads to the
conclusion that the optimal point is the same as in the previous
problem.

x∗ =

(
100

3
,

100

3
,

100

3

)
.

From this, the optimal value of the original problem is

p∗ = c(x∗) =
20 000

3
.
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Example V

Example

Among the 3-part simple graphs with 100 vertices, which ones
have the maximum number of edges?

• With this problem, we encountered the Turán theorem in the
Combinatorics course. If we denote the sizes of the three parts as
x1, x2, and x3 and observe that we are looking for the maximum
among complete 3-partite graphs, then the problem is as follows:

Maximize x1x2 + x2x3 + x3x1

subject to x1 + x2 + x3 = 100

x1, x2, x3 > 0

x1, x2, x3 ∈ Z.
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Example V (continued)

• Since F is a non-empty finite set, there must be an optimal point
x∗ among the possible solutions, with an optimal value p∗ ∈ R.

• It is also evident from the condition that if (x1, x2, x3) is a
possible solution, then, for example, (x1 − 1, x2 + 1, x3) is also a
possible solution (assuming x1 > 1).

• If x1 ≥ x2 + 2, then the objective function is greater in the latter
case than in the former.

• This also means that at the optimal point, |x∗i − x∗j | ≤ 1 for all
i , j ∈ {1, 2, 3}.

• There are three such possible solutions where the objective
function takes a common value. Thus, the optimal points are
(34, 33, 33), (33, 34, 33), (33, 33, 34).

• The optimal value is p∗ = 3333.
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Example V: Remarks

• The above problem is NOT equivalent to any of our previous
examples.

• This is indicated by the difference in the sets of optimal points
and possible solutions, which is due to the essential difference in
conditions: now only integer-coordinate points are considered.

• In the continuous problem (previous two examples), the optimal
value is 3 3331

3 , which is larger than the current one.

• This is natural: in the continuous competition, there are more
participants, and the maximum value is at least as much as when
only integer-coordinate competitors are involved.

• Interestingly, but perhaps the discrete problem seems easier at
first glance: We need to find the optimal one(s) among finite
possibilities. Yet, it seems like more ideas are needed for the
discrete case.
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Break
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Example VI

Example

Let d , n ∈ N and `1(x), . . . , `n(x) : Rd → R be given linear
functions. Determine the minimum of the function
c(x) = max1≤i≤n `i (x).

So the formalized problem is:

Minimize c(x)

The problem is global (there are no constraints).
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Example VI: Figure

• The accompanying figure illustrates a general configuration for
the case of d = 1, n = 5.

c(x)

• Even this specific choice gives a faithful representation of the
objective function. The maximum of linear functions c is piecewise
linear. For d > 1, this means that the domain of c can be divided
into connected parts on which c is linear.
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Example VI: Reformulation

• In the optimization problem equivalent to the previous one, we
minimize the number m such that the definition (maximality) of
the objective function in that case is built into the constraints.

Minimize m

subject to `1(x) ≤ m,

...

`n(x) ≤ m,

where (x ,m) ∈ Rd × R.
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Example VII: A Class of Problems

• This form of optimization problem may be familiar from the
Operations Research course.

Linear Programming, LP

Let A ∈ Rm×n be a given matrix, b ∈ Rm, c ∈ Rn fixed vectors,
and x ∈ Rn the unknown vector. The problem:

Minimize cTx

subject to Ax � b,

where Ax � b denotes the componentwise less than or equal
relation between Ax and b in Rm.
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Example VII: A Class of Problems

• The LP problem class is extensively discussed in the Operations
Research course.

• It is noted that the LP problem is a very central problem. Many
algorithms are considered good both in practice and in theory.

• If we formulate a problem as an LP problem, then we are beyond
the hard part. (Just like in high school, if we reduced our work to
solving a quadratic equation during solving equations).

• We finish our work with one of the general LP algorithms (such
algorithms are easily accessible with public source code).
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Example VIII

Example

Consider the LP problem where the linear objective function (cTx)
is a random variable represented by the vector c . We assume that
its expected value, c = E[c], is known, and the constraints are no
longer dependent on randomness.

Minimize the expected value of the objective function.

• Based on the linearity of expected value, E[cTx ] = (E[c])Tx .

• An LP problem remains our optimization question:

Minimize (E[c])Tx

subject to Ax � b.
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Example IX: Chebyshev Center

Definition

Sets of points in the form P = {x ∈ Rn : aTi x ≤ b, i = 1, . . . , k}
are called polyhedra. If the polyhedron P is bounded (i.e.,
compact: bounded and closed), then it is called a polytope.

Example: Chebyshev Centers of Polytopes

Given P polytope. What are the innermost points of P?

• In fact, deciding whether P is empty is also a central problem.

• In our case, we need to measure how deeply a point in P is
inside P.

• There are many solutions/answers. We discuss one solution
associated with Chebyshev.
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Example IX: Chebyshev Center (continued)

Definition

B(c , r) = {x ∈ Rn : |x − c |2 ≤ r2} is the ball centered at c with
radius r .

The Chebyshev depth of a point p ∈ P is defined as

M(p) = sup{r : B(p, r) ⊂ P}.

c is a Chebyshev center of the polytope P if

M(c) = sup
p∈P

M(p).

• Our fundamental problem: Given P, find a Chebyshev center.
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Example IX: Chebyshev Center (continued)

• The problem appears nonlinear at first glance. We will need
some geometric knowledge.

Definition

A hyperplane in Rn: H = {x : aTx = b} represents a set of points.

A point r lies exactly on H if aTr − b = 0.

The signed distance of a point p from H is

aT

|a|
p − b

|a|
.

The absolute value of the signed distance is the distance, and its
sign describes which side of the hyperplane the point lies on.

There are two types of signed distances. The above one is positive
in the half-space {x : aTx > b} and negative in the complementary
(open) half-space.
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Example IX: Chebyshev Center (continued)

• The Chebyshev center problem is equivalent to the following:

Maximize r

subject to aTi x + |ai |r ≤ bi , i = 1, . . . , k

r ≥ 0

• Our first type of condition is equivalent to
aTi
|ai |x + r ≤ b

|ai | , i.e.,

r ≤ b

|ai |
−

aTi
|ai |

x .

• On the right side, there is a signed distance, chosen so that it is
positive in the half-spaces where aix < b.

• The reformulated optimization problem is an LP problem.
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Break
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Example X: Least Squares Problem

• The following problem and its solution methods are encountered
in the field of numerical analysis.

Example: Least Squares Problem

The problem involves minimizing

Minimize ‖c − Ax‖

or

Minimize ‖c − Ax‖2

where x ∈ Rn, A ∈ Rk×n is a real matrix, and c ∈ Rk .

• This is an unconstrained optimization problem. It is easily
handled based on basic linear algebraic and geometric knowledge.
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Example X: Least Squares Problem (continuation)

Example

Consider a series of measurements (e.g., measurements taken at
different times in an experimental laboratory or measurements
from a meteorological station at certain location), where
t1, t2, . . . tN and p1, p2, . . . , pN denote the measurement times and
the measured parameters, respectively. We are looking for a ”low,”
d-degree polynomial that is a good ”hypothesis” for the changes in
p.
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Example X: Least Squares Problem (continuation)

• Let
p(x) = xdx

d + · · ·+ x1x + x0

be the polynomial, i.e., for the measured vector p = (p1, . . . , pN)T,
we need to minimize the distance in L2 from

xd(td1 , . . . , t
d
N)T + xd−1(td−11 , . . . , td−1N )T + . . .

to p.

• In the least squares problem, the objective function is quadratic,
unlike in LP where it is linear. We will now examine a common
generalization of the two problems.
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Example XI: Quadratic Programming

Quadratic Programming, QP

Let A ∈ Rn×n and C ∈ Rm×n be symmetric matrices, and let
b ∈ Rn, d ∈ Rm be vectors.

Minimize xTAx + bTx

subject to Cx � d .

• The constraint system of the QP basic problem is linear.
However, the objective function is much more general.

• It is worth noting that the basic QP problem can also be handled
(an efficient algorithm is known for it) if the objective function is
convex (i.e., A is positive semidefinite). If we bring a problem into
this form (convex QP), then we are ”ready”.
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Example XII: Stochastic Linear Programming

• Consider the LP problem in which the linear objective function
(cTx) is a vector of random variables c . Assume that its expected
value is c = E[c], and its covariance matrix is
Σ = E[(c − c)(c − c)T]. Furthermore, the constraints do not
depend on randomness anymore.

• We have seen that if we only minimize the expected value of the
objective function (E[cTx ] = (E[c])Tx), then we obtain an LP
problem.

• However, in this case, we do not take into account the risk.
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Example XII: Stochastic Linear Programming (continued)

• It is common to consider the following variation:

Stochastic LP

Minimize E[cTx ] + γ Var [cTx ]

subject to Ax � b

Dx = e

where γ ∈ R>0 is a parameter chosen for the application.

• With simple transformations,

Var [cTx ] = E[(cTx − E[cTx ])2] = E[(cTx − (E[c])Tx)2]

=E[((cT − E[c]T)x)2] = xTE[(c − E[c])(cT − E[c]T)]x = xTΣx .

• The convex QP form of the question is now apparent.
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Example XIII: Distance between Polyhedra

Example

Determine the distance between two given polyhedra in
n-dimensional Euclidean space!

• Since the polyhedra arise as solution sets of linear inequalities,
each polytope corresponds to an inequality system (C1 ∈ Rk1×n,
C2 ∈ Rk2×n):

P1 = {x1 ∈ Rn : C1x1 � d1} and P2 = {x2 ∈ Rn : C2x2 � d2}.

• The distance between them is

d(P1,P2) = inf{d(x1, x2) : x1 ∈ P1, x2 ∈ P2},

where d(x1, x2) = ‖x1 − x2‖2.
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Example XIII: Distance between Polyhedra (continued)

• Considering the squared distance leads to an equivalent
optimization problem:

Minimize ‖x1 − x2‖22
subject to C1x1 � d1,

C2x2 � d2.

• To this end, consider the vectors and matrices formed from
d1 ∈ Rk1 , d2 ∈ Rk2 , x1, x2 ∈ Rn and C1,C2 ∈ R(k1+k2)×n as follows:

d =

(
d1
d2

)
, x =

(
x1
x2

)
∈ R2n, C =

(
C1 0
0 C2

)
∈ R2n×2n

where 0 denotes appropriately sized zero matrices. Our constraint
system is: Cx � d .
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Example XIII: Distance between Polyhedra (continued)

• If we further construct the n × n identity matrix, then

A =

(
I −I
−I I

)
∈ R2n×2n

our objective function can be written in the form xTAx .

• Using the above notation, we see that this is a convex QP
problem. Based on the above, determining the distance between
two polytopes can be efficiently accomplished.
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Break
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Example XIV: Clique Problem

Example

Given a simple graph G . Determine
ω(G ) = max{|K | : K ⊂ V (G ) is a clique}.

• Any arbitrary vertex set can be described by its characteristic
vector χU ∈ {0, 1}V ⊂ RV . The size of U is exactly 1TχU , where
1 ∈ RV is a vector with all components equal to 1.

• The elements of {0, 1}V can be described by the conditions
0 ≤ xv ≤ 1, xv ∈ Z for all v vertices. A 0-1 vector will be the
characteristic vector of a clique if at most one of its vertices falls
into every pair of disconnected vertices u and v . That is, for all
uv 6∈ E (G ), u 6= v vertices, we have xu + xv ≤ 1.
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Example XIV: Clique Problem (continued)

• The well-known NP-hard clique problem can be formulated as follows:

Maximize 1Tx ,

subject to 0 ≤ xv ≤ 1, xv ∈ Z for all v vertices

xu + xv ≤ 1

for all disconnected vertices uv 6∈ E (G ), u 6= v .
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Example XV: Integer Programming

• The previous example is a general scheme element: Again, let’s intervene
in the LP basic problem. Now, modify the constraint system. Include in the
constraints that the coordinates of our competitor vectors must be integers.

Integer Programming, IP

The basic problem:

Minimize cTx

subject to Ax � b,

x ∈ Zd .

• For LP, the set of possible solutions was a polyhedron. Now it is the
intersection of a polyhedron and Zd (in the case of polytopes, this is a finite
set). This modification may seem more innocent than modifying the
objective function, yet the resulting problem is difficult. This general form is
capable of formalizing NP-complete problems. A general, efficient solution
cannot be expected.
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Example XVI: Matching Problem

Example

Given a graph G , find the maximum matching among its edges.

• Formalizing the problem:

Maximize 1Tx (where 1T = (1, . . . , 1), x ∈ RE(G))

subject to x is the characteristic vector of the matching.

• Algebraically formalizing the condition yields the following
equivalent optimization problem:

Maximize 1Tx (where x ∈ RE(G))

subject to 0 ≤ xe ≤ 1, xe ∈ Z∑
e:v∈e

xe ≤ 1 for all v vertices.
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Example XVI: Matching Problem: Relaxation

• That is, we see an IP problem. The omission of the condition
xe ∈ Z is called LP relaxation. With this, we open up the
competition to competitors with non-integer coordinates as well.
Of course, the optimal value of the maximization problem may
increase.

• The relaxed problem is a manageable problem/LP problem:

Maximize 1Tx

subject to 0 ≤ xe ≤ 1∑
e:v∈e

xe ≤ 1 for all v vertices.

Notation

ν∗(G )

denotes the optimal value of the above LP problem.

Peter Hajnal Optimization: Examples, SzTE, 2024



Basic notions Reformulating Optimization Problems Examples of Optimization Problems

Example XVI: Matching Problem (continued)

Theorem

If G is bipartite, then ν∗(G ) = ν(G ).

That is, the optimization problem obtained by LP relaxation is
equivalent to the original one.

• The initial form of our problem can also be equivalently rewritten
in LP form. Originally, we had finitely many competitors, the
characteristic vectors of the matchings. By replacing this set of
competitors with their convex hulls, we obtain an equivalent
problem (our objective function is linear!):

Maximize 1Tx

subject to x ∈ conv{χM : M is a matching}
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Example XVI: Matching Problem (continued)

• The condition describes a polytope. This can be described as the
intersection of finitely many half-spaces, that is, algebraically the
solution set of a finite system of linear inequalities.

Theorem∗

Let G be a bipartite graph. Then

conv{χM : M is a matching} =

={x ∈ RE : 0 ≤ xe ≤ 1,
∑
e:v∈e

xe ≤ 1 for all v vertices.}

• The case of non-bipartite graphs will be studied further later.
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Example XIV: Clique Problem Revisited

• Finally, let’s formalize/algebraize an NP-hard problem. The
resulting form is that of a QP basic problem. However, it will
certainly not be a convex problem.

Example

Given a graph G . Determine the clique parameter (ω(G )), i.e., the
size of the largest clique.

• We saw that the question can also be formulated as an IP
problem. The following theorem gives an alternative, far from
obvious, formalization of determining ω(G ).
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Example XIV: Clique Problem Revisited: Theorem

Theorem

Let A ∈ RV×V be the adjacency matrix of graph G , and consider
the following problem (x , 0, 1 ∈ RV ):

Maximize xTAx

subject to x � 0

1Tx = 1.

Then

p∗ = 1− 1

ω(G )
.
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Example XIV: Clique Problem Revisited: Proof

(1): p∗ ≥ 1− 1

ω(G )
.

• Let K be an optimal (maximal size) clique. Then at

xK = (0, . . . , 0,
1

ω
, . . . ,

1

ω︸ ︷︷ ︸
K

, 0, . . . , 0)

feasible location the value of

c(xK ) = xTKAxK =
1

ω2
ω(ω − 1) = 1− 1

ω
.
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Example XIV: Clique Problem Revisited: Proof

(2): p∗ ≤ 1− 1

ω(G )
.

• Consider the

x =

( v1
n1
N
, . . . ,

vk
nk
N

)
∈ L ∩QV (G)

vector, where k = |V (G )| and n1, . . . , nk ∈ N numbers form a
partition of N ∈ N.
• Then assign a graph G̃ to G as follows:

◦ Each point vi of G corresponds to an independent set Vi of
ni points in G̃ (i = 1, . . . , k).

◦ If points vi , vj ∈ V (G ) are adjacent, then a complete
bipartite graph Kni ,nj is formed between the respective Vi , Vj sets
(all possible edges are drawn).

◦ If points vi , vj ∈ V (G ) are not adjacent, then there is no
edge between the corresponding Vi , Vj sets.
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Example XIV: Clique Problem Revisited: Proof

• By definition, the number of points of G̃ is

|V (G̃ )| =
k∑

i=1

ni = N
k∑

i=1

ni
N

= N

• Based on the construction, the number of edges of G̃ is

|E (G̃ )| =
∑

{vi ,vj}∈E(G)

ninj =
1

2
N2

∑
vivj∈E(G)

ni
N

nj
N

=
N2

2
xTAx =

N2

2
c(x).

• The largest clique of G̃ has size ω(G ). Applying Turán’s
theorem, its number of edges is at most the number of edges of
the ω(G )-class/N-point Turán graph ( ω(G )|N):

|E (G̃ )| ≤ |E (TN,ω(G))| =

(
ω(G )

2

)(
N

ω(G )

)2

=

(
1− 1

ω(G )

)
N2

2
.
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Example XIV: Clique Problem Revisited: Proof

• Summarizing the above, we obtain

c(x) =
2

N2
|E (G̃ )| ≤ 1− 1

ω(G )
,

if x ∈ L ∩QV (G).

• QV (G) is a dense set in L, and the objective function is
continuous.

• This proves the missing inequality. Thus, p∗ = 1− 1
ω(G) .
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Example XIV: Clique Problem Revisited: Remarks

• In the formalization provided by the theorem, a quadratic form
needs to be maximized.

• Among the conditions of the convex QP problem, only the
positive semidefiniteness of the quadratic form matrix is missing.

• Omitting this condition results in a form capable of formalizing
hopeless optimization problems.
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This is the End!

Thank you for your attention!
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