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Eigenvalues

Eigenvalue Problem

Given M ∈ Sn ⊂ Rn×n symmetric matrix. // Thus we know its
eigenvalues are real.

Let’s determine its eigenvalues:

λmax = λ1 ≥ λ2 ≥ . . . ≥ λn = λmin.

The eigenvalues (with multiplicities) form the spectrum of the
matrix.
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J

Consider the all-1 matrix:

J = Jk =


1 1 · · · 1

1
. . . 1

...
. . .

...
1 1 · · · 1


k×k

.

What are its eigenvalues, eigenvectors?
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The Solution

• The all-1 vector: 1 = j = (1, 1, · · · , 1)T ∈ Rk is an eigenvector
of the matrix: J1 = k1. So, the eigenvalue associated with the
found eigenvector is k .

• Consider another eigenvalue and its eigenvector, let it be:
(x1, · · · , xk)T ∈ Rk .

• We know that it is orthogonal to 1, i.e.,
∑

xi = 0.

• This idea is reversible: If
∑

xi = 0, then Jx = 0 = 0x .

• Thus, we found that 0 is an eigenvalue and certain associated
eigenvectors span a (k − 1)-dimensional subspace. So, 0 is at least
k − 1 times an eigenvector.

• With this, we have all eigenvalues:

k ≥ 0 ≥ 0 ≥ . . . ≥ 0 ≥ 0.

Specifically, λmax(Jk×k) = k.
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Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

The Solution

• The all-1 vector: 1 = j = (1, 1, · · · , 1)T ∈ Rk is an eigenvector
of the matrix: J1 = k1. So, the eigenvalue associated with the
found eigenvector is k .

• Consider another eigenvalue and its eigenvector, let it be:
(x1, · · · , xk)T ∈ Rk .

• We know that it is orthogonal to 1, i.e.,
∑

xi = 0.

• This idea is reversible: If
∑

xi = 0, then Jx = 0 = 0x .

• Thus, we found that 0 is an eigenvalue and certain associated
eigenvectors span a (k − 1)-dimensional subspace. So, 0 is at least
k − 1 times an eigenvector.

• With this, we have all eigenvalues:

k ≥ 0 ≥ 0 ≥ . . . ≥ 0 ≥ 0.

Specifically, λmax(Jk×k) = k.
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Maximal Eigenvalue Problem

Simplified Eigenvalue Problem

Given M ∈ Sn, determine its maximal eigenvalue.

It is easy to see and well-known that

λmax = max
x∈Rn:x 6=0

xTMx

xTx
= max

x∈Rn:‖x‖=1
xTMx .

So, determining the maximal eigenvalue can be formulated as:

Maximize xTMx-t

subject to ‖x‖ = 1.
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Maximal Eigenvalue Otherwise

Observation

The eigenvalues of λI −M are

λ− λn ≥ λ− λn−1 ≥ . . . ≥ λ− λ1.

• These eigenvalues are nonnegative if and only if λ ≥ λ1 = λmax.
The nonnegativity of eigenvalues of λI −M precisely means the
positive semidefiniteness of λI −M.

• The smallest such λ value is λmax. Our reformulation:

Minimize λ-t

subject to λI −M � 0

• This is an SDP formulation of determining λmax.

Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024
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A More Complex Eigenvalue Problem

Let X =
∑n

1=1 xiAi , where Ai ∈ Sk (so X ∈ Sk holds).

That is, X has the following formα
(1)
11 x1 + α

(2)
11 x2 + . . . α

(1)
12 x1 + α

(2)
12 x2 + . . . · · · α

(1)
1n x1 + α

(2)
1n x2 + . . .

...
...

. . .
...

α
(1)
n1 x1 + α

(2)
11 x2 + . . . α

(1)
n2 x1 + α

(2)
n2 x2 + . . . · · · α

(1)
nn x1 + α

(2)
nn x2 + . . .


k×k

,

i.e., an k × k matrix, where each element is a linear function.

Task

Find x ∈ Rn such that λmax(X ) is minimized.

Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024
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SDP Formulation

The
”

more complex” task can be easily rephrased with previous
ideas:

Minimize µ-t

subject to X =
∑n

i=1 xiAi

µI − X � 0.

That is, our eigenvalue question can again be formulated as an
SDP problem.

Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024
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The PLAN

• In the following, we tackle a difficult (NP-complete)
graph-theoretical problem.

• We provide an estimation for its optimum using eigenvalues.

• Then, we formulate the assertion of the best estimate as an SDP
problem.
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Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

The PLAN

• In the following, we tackle a difficult (NP-complete)
graph-theoretical problem.

• We provide an estimation for its optimum using eigenvalues.

• Then, we formulate the assertion of the best estimate as an SDP
problem.
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Break
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Reminder: Adjacency Matrix

The adjacency matrix AG of a simple graph G

AG =



y x

0 · · ·

y 0 · · ·

{
1, if yx ∈ E

0, otherwise
...

...
. . .

...
...

x

{
1, if xy ∈ E

0, otherwise
· · · 0

· · · 0


.

• AG can be imagined as being indexed by the vertices V , with
n = |V |.
• To represent AG , we need to fix an ordering of the vertices.

• In an ordering-independent view of the matrix, we must interpret
it as a function V × V → {0, 1}.

Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024
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Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

Reminder: Adjacency Matrix

The adjacency matrix AG of a simple graph G

AG =



y x

0 · · ·

y 0 · · ·

{
1, if yx ∈ E

0, otherwise
...

...
. . .

...
...

x

{
1, if xy ∈ E

0, otherwise
· · · 0

· · · 0


.

• AG can be imagined as being indexed by the vertices V , with
n = |V |.
• To represent AG , we need to fix an ordering of the vertices.

• In an ordering-independent view of the matrix, we must interpret
it as a function V × V → {0, 1}.
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Reminder: Independent Sets

Definition

F ⊂ V (G ) is an independent set if every edge has at most one
endpoint in F .

That is, there are no edges within F . That is, G |F
is an empty graph.

For a given simple graph G , the associated optimization problem is

Maximize |F |-t
subject to F independent set

The standard notation for the optimal value is α(G ).

Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

Reminder: Independent Sets

Definition

F ⊂ V (G ) is an independent set if every edge has at most one
endpoint in F . That is, there are no edges within F .

That is, G |F
is an empty graph.

For a given simple graph G , the associated optimization problem is

Maximize |F |-t
subject to F independent set

The standard notation for the optimal value is α(G ).
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Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

Independent Sets and Adjacency Matrix

If F is an independent set, then the vertices in F indicate a zero
submatrix in AG :



F︷︸︸︷

F

{ 0 . . . 0
...

. . .
...

0 . . . 0


i.e., if we remove the rows/columns corresponding to vertices
outside F , we get a matrix filled with zeros. That is, AG |F×F ≡ 0.
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A Twist

For technical reasons, let’s consider another formulation of the
problem, where we work with AG instead of AG .

In this matrix, we interchange the 0s and 1s: the main diagonal
contains 1s, elsewhere, we map non-edges between vertex pairs to
1, and edges to 0.

That is,

AG =



y

1 · · ·
y 1 · · ·

. . .

x

{
0, if xy ∈ E

1, otherwise
· · · 1


= J − AG = I + AG .

F is an independent set if and only if AG |F×F = J, the constant
matrix of ones.
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The Idea

• Based on these, let’s take the eigenvector corresponding to the
|F | eigenvalue of the |F | × |F | submatrix of AG (∈ RF×F ).

• Extend it with zeros to obtain a vector in RV , let’s call it χF .

• It’s easy to verify that

|F | =
χT
FAGχF

χT
FχF

≤ max
x :x∈RV−{0}

xTAGx

xTx
= λmax(AG ).

• We arrive at the following result:

Theorem

Let G be a simple graph, F an independent set in our graph. Then

λmax

(
AG

)
> |F |.

Specifically,
λmax

(
AG

)
> α(G ).
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Why is this useful?

• From complexity theory, we know that determining the size of
the largest independent set is an NP-hard problem.

• From numerical methods, we know that the maximum eigenvalue
can be efficiently determined.

• By calculating λmax

(
AG

)
, we obtain an estimate for an

NP-hard function.
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Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

Squeezing the Idea

Observation

In this line of thought, we only used the property that in AG , both
the main diagonal and the non-edges have 1s.

Consequence

Let G be any simple graph.
• Let M ∈ SV be any arbitrary matrix that satisfies

(i) 1’s on the main diagonal,

(ii) 1’s for non-edges

// Let this property be TG for M ∈ SV

• Let F be any independent set.

Then
λmax(M) > |F |.
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Maximally Utilizing the Consequence

• The consequence has two
”

participants”.

(i) the matrix with property TG ,

(ii) the independent set F .

• One is on the left, the other on the right side.
• Thus, it’s straightforward to formulate the sharpest version of
the theorem.

Theorem

Let G be a simple graph. Then

min{λmax(M) : M ∈ SV satisfies TG} >
max{|F | : F is an independent set}.
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The Left-hand Side of the Inequality

Minimize λmax(M)-t

subject to Muu = 1, for all u ∈ V ,

Muv = 1, for all uv 6∈ E ,

M ∈ Sn.

Let’s reformulate the problem and see that its determination is an
SDP problem.
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Reformulation: Notations

Let e = xy ∈ E (G ) be any edge. Let Se be the matrix where only
the positions xy and yx contain 1, while everywhere else contains
0. That is,

Se =



x y

0 0 . . . 0 . . . 0 . . . 0
0 0 . . . 0 . . . 0 . . . 0
...

...
. . .

...
...

...
x 0 0 . . . 0 . . . 1 . . . 0

...
...

...
. . .

...
...

y 0 0 . . . 1 . . . 0 . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . 0 . . . 0


.

That is,

Se(u, v) =

{
1, u = x , v = y or u = y , v = x

0 otherwise.
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The Reformulated Problem

After this, a symmetric matrix M’s satisfying the property TG is
equivalent to M = J −

∑
e∈E xeSe for some xe ∈ RE vector: The

main diagonal and the non-edges of the J matrix are 1, and
everywhere else (at the position of edge e) we modify it by xe (to
any value).

Then, this is an SDP problem as in the first example:

Minimize µ-t

subject to M = J −
∑

e∈E xeSe

µI −M � 0.

That is (in the second normal form),

Minimize µ-t

subject to −µI −
∑

e∈E xeSe � −J.
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Summary

Summarizing:

Definition/Notation

Let G be a simple graph. Then

ϑ(G ) = the optimal value of the above SDP problem.

We obtained that

Theorem

Let G be a simple graph. Then

ϑ(G ) ≥ α(G ).

Knowing that the optimum of an SDP optimization problem can
be efficiently determined, the left-hand side of the theorem’s
inequality is NP-hard, while the right-hand side is tractable.

Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

Break
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Clique Cover Problem

Problem

Given a simple graph G . Cover its vertex set with as few cliques as
possible.

Let χ(G ) be the minimum number of cliques required for this
cover.

• A clique cover is a proper coloring of the complement graph.
That is, the clique cover problem is the coloring problem for the
complement graph, i.e., χ(G ) = χ(G ).
• Specifically, the clique cover problem is NP-hard.
• For a simple graph G , we can again describe it with a matrix.
For us, the AG matrix will be

”
convenient”.

• Take a clique cover of G . Let ` be the number of cliques. That
is, V = K1

.
∪ K2

.
∪ . . .

.
∪ K`, where Ki are disjoint cliques.
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Vectors, Matrices

We can reflect the classification of vertices in the linear algebraic
notation.
• We think of the elements of RV being divided into ` blocks:

(

K1︷ ︸︸ ︷
x1, . . . |

K2︷ ︸︸ ︷
. . . | . . . |

K`︷ ︸︸ ︷
. . . , xn).

• Similarly, a matrix of type V × V can be considered as a block
matrix of type `× `:

M =

K1︷︸︸︷ K2︷︸︸︷ . . .
K`︷︸︸︷


K1

{
K2

{
...

K`

{
.
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The Neighborhood Block Matrix

Let’s specifically look at AG :

AG =

K1︷︸︸︷ K2︷︸︸︷ . . .
K`︷︸︸︷


K1

{
0

K2

{
0

...
. . .

K`

{
0

.

Let the eigenvalues of AG be denoted by
λ1 6 λ2 6 . . . 6 λn = λmax (n = |V |).
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v and ṽ

Let vT = (v1|v2| . . . |vl) be the eigenvector corresponding to λmax.

Define

ṽT :=
(
‖v1‖, 0, . . . , 0

∣∣‖v2‖, 0, . . . , 0
∣∣ . . . ∣∣‖v`‖, 0, 0, . . . , 0)

where ‖w‖ =
√∑d

i=1 (wi ) 2, the L2 norm of the d-dimensional
vector w .
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ṽT :=
(
‖v1‖, 0, . . . , 0

∣∣‖v2‖, 0, . . . , 0
∣∣ . . . ∣∣‖v`‖, 0, 0, . . . , 0)

where ‖w‖ =
√∑d

i=1 (wi ) 2, the L2 norm of the d-dimensional
vector w .
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Q Orthogonal Matrix

• Clearly, ‖ṽ‖ = ‖v‖, so there exists an orthogonal matrix Q that
transforms ṽ to v : Qv = ṽ .
• Q can be chosen to be compatible with the existing blocking:
the L2 norms of vectors ṽ and v within the blocks are preserved.
• Thus, there exist orthogonal matrices Qi such that Qi ṽi = vi ,
where ṽi = (‖vi‖2, 0, 0, . . . , 0)T ∈ RKi .
• Then

Q =

K1︷︸︸︷ K2︷︸︸︷ . . .
K`︷︸︸︷


K1

{
Q1 0 . . . 0

K2

{
0 Q2 . . . 0

...
...

...
. . .

...

K`

{
0 0 . . . Q`

, and Qṽ = v .
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, and Qṽ = v .
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Observation

Observation

If u is an eigenvector corresponding to the eigenvalue λ of AG ,
then Q−1u = QTu is an eigenvector of the matrix Q−1AGQ
corresponding to the same eigenvalue λ.

Indeed,

(Q−1AGQ)(Q−1u) = Q−1AG (QQ−1u) = Q−1AGu = Q−1λu = λQ−1u.
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Q−1AGQ

Specifically, the eigenvalues of AG and Q−1AGQ coincide.

Note that the block structure and the zero blocks on the main
diagonal of Q−1AGQ can also be recognized:

Q−1AGQ =

K1︷︸︸︷ K2︷︸︸︷ . . .
K`︷︸︸︷


K1

{
0

K2

{
0

...
. . .

K`

{
0

.
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R = AG |F×F

• That is, λmax is an eigenvalue of the matrix Q−1AGQ, and
Q−1v = ṽ is the corresponding eigenvector to λmax.

• This eigenvector contains at most ` non-zero coordinates (the
first element of each block may be non-zero).

• Let F be the set of vertices corresponding to the first elements of
the blocks. That is, we take one vertex from each color class
(considering the complement graph).

• The set F can be seen as a set of rows or columns.

• We form a submatrix R of AG by removing the rows and
columns not in F . (This operation is called symmetric submatrix
extraction.)
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Q−1v = ṽ is the corresponding eigenvector to λmax.

• This eigenvector contains at most ` non-zero coordinates (the
first element of each block may be non-zero).

• Let F be the set of vertices corresponding to the first elements of
the blocks. That is, we take one vertex from each color class
(considering the complement graph).

• The set F can be seen as a set of rows or columns.

• We form a submatrix R of AG by removing the rows and
columns not in F . (This operation is called symmetric submatrix
extraction.)
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Linear Algebraic Detour

Cauchy’s Theorem

Let Ms×s be a symmetric matrix, and let’s form a symmetric
submatrix Rt×t . Let λ1 ≤ . . . ≤ λs be the eigenvalues of Ms×s ,
and let µ1 ≤ . . . ≤ µt be the eigenvalues of Rt×t .

Then

(i) λ1 ≤ µ1, λ2 ≤ µ2, . . ., λt ≤ µt ,
(ii) µt ≤ λs , µt−1 ≤ λs−1, . . ., µ1 ≤ λs−t+1.
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Where Are We?

• We obtained a `× ` matrix R of type F × F from Q−1AGQ
through symmetric submatrix extraction.

• It’s easy to see that ṽ |F ∈ RF (vector formed by the first
elements of the blocks of ṽ) is an eigenvector of R.

• Moreover, the corresponding eigenvalues are λmax. Let’s
specialize Cauchy’s theorem to our case.

• The eigenvalues of Q−1AGQ (and AG ):
λmin = λ1 ≤ λ2 ≤ . . . ≤ λn = λmax.

• What does Cauchy’s theorem say about the eigenvalues of R
(µ1 ≤ µ2 ≤ . . . ≤ µ`)? They lie between λmin and λmax.

• Based on the above, the largest eigenvalue is λmax.

• The sum of eigenvalues is the trace of our matrix, which is 0.
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• It’s easy to see that ṽ |F ∈ RF (vector formed by the first
elements of the blocks of ṽ) is an eigenvector of R.
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Where Are We? Summarized

• If we assume that the known eigenvalues of λmax are
accompanied by `− 1 other eigenvalues estimated to be λmin, then
we get: 0 = trace R =

∑`
i=1 µi ≥ (`− 1)λmin + λmax.

• Hence
−(`− 1)λmin ≥ λmax,

If AG has eigenvalues other than 0, then λmin � 0 � λmax (we
know their sum is 0). This occurs when G is not an empty graph,
meaning G is not complete.

• Then we can divide by −λmin:

`− 1 ≥ λmax

−λmin
.

• That is,

` ≥ 1 +
λmax

−λmin
.
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Hoffman’s Theorem, Complementary Form

Hoffman’s Theorem, Complementary Form

Let G be a non-complete graph.

AG is the adjacency matrix of the complement graph, i.e., it has
0’s on its main diagonal, and off-diagonal 1’s encode
non-adjacency of G (or adjacency of 0’s in G ).

Let ψ be a clique cover, `(ψ) be the number of cliques.

Then

`(ψ) ≥ 1 +
λmax(AG )

−λmin(AG )
.
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Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

Hoffman’s Theorem, Complementary Form

Hoffman’s Theorem, Complementary Form

Let G be a non-complete graph.

AG is the adjacency matrix of the complement graph, i.e., it has
0’s on its main diagonal, and off-diagonal 1’s encode
non-adjacency of G (or adjacency of 0’s in G ).

Let ψ be a clique cover, `(ψ) be the number of cliques.

Then

`(ψ) ≥ 1 +
λmax(AG )

−λmin(AG )
.
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Hoffman’s Theorem

If we apply the theorem to the complement of G , we obtain an
estimation for the chromatic number.

Hoffman’s Theorem, Original/Coloring Form

Let G be a simple graph, not empty. Let AG be the adjacency
matrix of the graph.

χ(G ) ≥ 1 +
λmax(AG )

−λmin(AG )
.
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Extracting the
”

Essence”

The proof only depended on the fact that the main diagonal of our
matrix AG consists of 0’s and the off-diagonals encode 0’s for
adjacency.

Definition

Let T̃G be a V × V symmetric matrix having 0’s on its main
diagonal and encoding the 0’s for adjacency in G .

• The above proof can be repeated with T̃G instead of AG .

• This opens up the possibility to improve the Hoffman’s
estimation, even optimizing these improvements.
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Hoffman’s Theorem, Strong Form
Hoffman’s Theorem, Complementary Strong Form

Let G be a simple graph that is not a complete graph.

Let M be a symmetric matrix of type V × V with property T̃G .

Let f be a clique cover, and `(f ) be the number of cliques in the
clique cover.

Then

`(f ) ≥ 1 +
λmax(M)

−λmin(M)
.

That is,

min{`(f ) : f is a clique cover} ≥

max

{
1 +

λmax(M)

−λmin(M)
: M has property T̃G

}
.

The value of the left-hand side of the final inequality is χ(G ).

Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

Hoffman’s Theorem, Strong Form
Hoffman’s Theorem, Complementary Strong Form

Let G be a simple graph that is not a complete graph.

Let M be a symmetric matrix of type V × V with property T̃G .

Let f be a clique cover, and `(f ) be the number of cliques in the
clique cover.

Then

`(f ) ≥ 1 +
λmax(M)

−λmin(M)
.

That is,

min{`(f ) : f is a clique cover} ≥

max

{
1 +

λmax(M)

−λmin(M)
: M has property T̃G

}
.

The value of the left-hand side of the final inequality is χ(G ).
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Break
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The Right-hand Side

Let (L) denote the optimization problem on the right-hand side:

1 +
λmax(M)

−λmin(M)

subject to:
Muu = 0 for all u ∈ V

and
〈M,Se〉 = 0 for all e ∈ E

with M ∈ Sn.

This problem can be reformulated into an SDP form.

The journey towards our ”beloved” SDP form will be long.
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Intermediate Problem

Let (K) be an intermediate problem:

λmax(N)

subject to:
Nuu = 1 for all u ∈ V

and
Nuv = 0 for all uv ∈ E

with N � 0.

Theorem

The optimization problems describing the derivation of Hoffman’s
Theorem, (L), and the intermediate problem (K) are equivalent.

The claim is that the optimal values of the two problems coincide.
This is demonstrated by establishing both directions of the
inequality between them.
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From (L) Solution to (K) Solution with Non-worsening
Objective

Maximize 1 + λmax(M)
−λmin(M) -t

subject to Muu = 0 for all u ∈ V

〈M, Se〉 = 0 for all e ∈ E

M ∈ Sn.

We construct matrix N = I + 1
−λmin(M)M from a feasible M.

It can be seen that the constructed N is a feasible solution to the
intermediate problem.

The smallest eigenvalue of 1
−λmin(M)M will be −1. Thus, adding

the identity matrix ensures all eigenvalues become non-negative.

Moreover, its objective function value remains the same as the one
defined on M in the original problem.
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From (K) Solution to (L) Solution with Non-worsening
Objective

Maximize λmax(N)-t

subject to Nuu = 1 for all u ∈ V

Nuv = 0 for all uv ∈ E

N � 0.

This train of thought can be reversed. Let N be an optimal
solution to the intermediate problem (K).

Observation

Suppose an off-diagonal element of a positive semidefinite matrix
A is 0. Then, its corresponding row and column vectors are all 0
vectors.
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From (K) Solution to (L) Solution (continued)

• If N has a 0 off-diagonal element, then it has 0 row and column
vectors on that part. On this part, let N be 1 on the diagonal and
0 otherwise. The essential part of the construction lies in defining
the other elements. We focus on this: essentially, we assume that
the off-diagonal elements of Λ are non-zero.

• Let u be a vector formed from square roots of the positive
(assumed) elements on the diagonal of Λ. This will obviously be a
unit vector.

• Let U = uuT. According to our assumption, this is a non-zero
matrix.

• Let N be the matrix for which N ·H U = Λ holds.

• This is a feasible solution to problem (K) with a non-worsening
objective function.
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The Final Form, (L̃)

After these, we show that the intermediate problem can be
reformulated into the following SDP form (L̃):

Maximize 〈J,Λ〉-t
subject to 〈Se ,Λ〉 = 0

〈I ,Λ〉 = 1

Λ � 0.

Theorem

The intermediate problem (K) and the SDP problem (L̃) are
equivalent (their optimal values coincide).

Corollary

The optimal value of the SDP problem (L̃) is an estimate of the
twisted Hoffman bound for the clique cover problem.
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From (K) Solution to (L̃) Solution with Non-worsening
Objective

The value of the objective function is

〈J,Λ〉 = 〈J,N ·H (uuT)〉 = uTNu = λmax(N).

If we examine the positions in Λ = N ·H U where 0 appears in N,
by definition, we see 0s.

〈I ,Λ〉 = Tr(N ·H (uuT)) = Tr(uuT) = uTu = 1.
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Λ is Positive Semidefinite

• The positive semidefiniteness of Λ is left to be shown. This is
obvious from the following lemma.

Lemma

Let A,B � 0. Then, A ·H B � 0.

• The lemma easily follows from the fact that any positive
semidefinite matrix can be written as a sum of positive semidefinite
matrices of rank 1.

• By writing A and B in this form, we see that the parentheses in
A ·H B can be expanded, resulting in A ·H B being the Hadamard
product of rank 1 positive semidefinite matrices.

• However, the positive semidefiniteness of these is obvious.

• With this lemma and one direction of the inequality, we have
derived both directions.
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Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

Λ is Positive Semidefinite

• The positive semidefiniteness of Λ is left to be shown. This is
obvious from the following lemma.

Lemma

Let A,B � 0. Then, A ·H B � 0.

• The lemma easily follows from the fact that any positive
semidefinite matrix can be written as a sum of positive semidefinite
matrices of rank 1.

• By writing A and B in this form, we see that the parentheses in
A ·H B can be expanded, resulting in A ·H B being the Hadamard
product of rank 1 positive semidefinite matrices.

• However, the positive semidefiniteness of these is obvious.

• With this lemma and one direction of the inequality, we have
derived both directions.
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From (L̃) Solution to (K) Solution

Let’s reverse the above argument for the other direction of the
inequality.

Maximize 〈J,Λ〉-t
subject to 〈Se ,Λ〉 = 0

〈I ,Λ〉 = 1

Λ � 0.

• Suppose Λ = 1
|V | · I is a feasible solution to the SDP. The

objective function value is at least 1.

• Let Λ be any feasible solution to the SDP.

Note

Assume that one of the diagonal elements of a positive
semidefinite matrix is 0. Then, the row and column vectors on this
element are all 0 vectors.
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Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

From (L̃) Solution to (K) Solution

Let’s reverse the above argument for the other direction of the
inequality.

Maximize 〈J,Λ〉-t
subject to 〈Se ,Λ〉 = 0

〈I ,Λ〉 = 1

Λ � 0.

• Suppose Λ = 1
|V | · I is a feasible solution to the SDP.

The
objective function value is at least 1.

• Let Λ be any feasible solution to the SDP.

Note

Assume that one of the diagonal elements of a positive
semidefinite matrix is 0. Then, the row and column vectors on this
element are all 0 vectors.
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From (L̃) Solution to (K) Solution (continued)

• If Λ has a 0 diagonal element, then it has 0 row and column
vectors on that part. On this part, let N be such that it is 1 on the
diagonal and 0 otherwise. The essential part of the construction
lies in defining the other elements. We focus on this: essentially,
we assume that the off-diagonal elements of Λ are non-zero.

• Let u be a vector formed from square roots of the positive
(assumed) elements on the diagonal of Λ. This will obviously be a
unit vector.

• Let U = uuT. According to our assumption, this is a non-zero
matrix.

• Let N be the matrix for which N ·H U = Λ holds.

• This is a feasible solution to problem (K) with a non-worsening
objective function.
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Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

From (L̃) Solution to (K) Solution (continued)

• If Λ has a 0 diagonal element, then it has 0 row and column
vectors on that part. On this part, let N be such that it is 1 on the
diagonal and 0 otherwise. The essential part of the construction
lies in defining the other elements. We focus on this: essentially,
we assume that the off-diagonal elements of Λ are non-zero.

• Let u be a vector formed from square roots of the positive
(assumed) elements on the diagonal of Λ. This will obviously be a
unit vector.

• Let U = uuT. According to our assumption, this is a non-zero
matrix.

• Let N be the matrix for which N ·H U = Λ holds.

• This is a feasible solution to problem (K) with a non-worsening
objective function.
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objective function.

Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

From (L̃) Solution to (K) Solution (continued)

• If Λ has a 0 diagonal element, then it has 0 row and column
vectors on that part. On this part, let N be such that it is 1 on the
diagonal and 0 otherwise. The essential part of the construction
lies in defining the other elements. We focus on this: essentially,
we assume that the off-diagonal elements of Λ are non-zero.

• Let u be a vector formed from square roots of the positive
(assumed) elements on the diagonal of Λ. This will obviously be a
unit vector.

• Let U = uuT. According to our assumption, this is a non-zero
matrix.

• Let N be the matrix for which N ·H U = Λ holds.

• This is a feasible solution to problem (K) with a non-worsening
objective function.
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Summary

Definition

Let ϑ̃(G ) be the optimum of the (L̃)/(K),(L) optimization problem.

Our reformulations stemmed from formalizing the clique cover
problem as a twisted Hoffman bound estimation. Thus, we obtain
the following theorem.

Theorem

ϑ̃(G ) ≤ χ(G ).
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Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

Summary

Definition

Let ϑ̃(G ) be the optimum of the (L̃)/(K),(L) optimization problem.

Our reformulations stemmed from formalizing the clique cover
problem as a twisted Hoffman bound estimation. Thus, we obtain
the following theorem.

Theorem

ϑ̃(G ) ≤ χ(G ).
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Reminder

For both α(G ) and χ(G ), we provided an SDP problem, the
optimal value of which estimates the corresponding graph
parameter:

Minimize µ-t

subject to −µI −
∑

e∈E xeSe � −J.

Maximize 〈J,Λ〉-t
subject to 〈Se ,Λ〉 = 0

〈I ,Λ〉 = 1

Λ � 0.
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Summary: The Sandwich

Observation

(i) The two SDP problems are dual to each other.

(ii) Both SDP problems satisfy conditions that ensure strong
duality.

Thus, the two concepts coincide.

Definition: The ϑ(G ) of Graph G by Lovász

ϑ(G ) = ϑ̃(G ).

The two previous estimates are summarized by the following
theorem.

Lovász’s Sandwich Theorem

α(G ) ≤ ϑ(G ) ≤ χ(G ).
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Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

Summary: The Sandwich

Observation

(i) The two SDP problems are dual to each other.

(ii) Both SDP problems satisfy conditions that ensure strong
duality.

Thus, the two concepts coincide.

Definition: The ϑ(G ) of Graph G by Lovász

ϑ(G ) = ϑ̃(G ).

The two previous estimates are summarized by the following
theorem.

Lovász’s Sandwich Theorem

α(G ) ≤ ϑ(G ) ≤ χ(G ).
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The Moral

• The intermediate function initially appears very complex,
unnatural.

• The two extreme functions have elementary definitions,
understandable even to an interested high school student.

• However, the two extreme graph optimization questions are
complex. NP-hard. We see no possibility for efficient calculation
(according to the general belief).

• The value of the intermediate function, however, can be
calculated/approximated efficiently ( SDP problems are
manageable).
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Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

The Moral

• The intermediate function initially appears very complex,
unnatural.

• The two extreme functions have elementary definitions,
understandable even to an interested high school student.

• However, the two extreme graph optimization questions are
complex. NP-hard.

We see no possibility for efficient calculation
(according to the general belief).

• The value of the intermediate function, however, can be
calculated/approximated efficiently ( SDP problems are
manageable).
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Péter Hajnal Semidefinite programming and eigenvalues, SzTE, 2024



Eigenvalues Independent Sets Clique Covers Clique Covers as SDP; The Sandwich

The Moral

• The intermediate function initially appears very complex,
unnatural.

• The two extreme functions have elementary definitions,
understandable even to an interested high school student.

• However, the two extreme graph optimization questions are
complex. NP-hard. We see no possibility for efficient calculation
(according to the general belief).

• The value of the intermediate function, however, can be
calculated/approximated efficiently ( SDP problems are
manageable).
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This is the End!

Thank you for your attention!
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