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SDP: Basics SDP: Duality

Semidefinite Programming, SDP

General Formulation of Semidefinite Programming

Minimize cTx-t

subject to
∑n

i=1 xiAi � B

Dx = e,

where c , x ∈ Rn, Ai ,B ∈ Sk = {M ∈ Rk×k : MT = M} ⊂ Rk×k ,
D ∈ R`×n, and e ∈ R`.

Sn denotes the set of real symmetric n × n matrices, i.e.,
M ∈ Rn×n belongs to Sn if and only if MT = M. Specifically,
Sn ⊂ Rn×n.

Notation

A � B if and only if A,B ∈ Sn and 0 � B − A, i.e., B − A is
positive semidefinite, denoted as B − A ∈ Sn+.
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SDP: Basics SDP: Duality∑n
i=1 xiAi


A

(1)
1,1x1 + . . .+ A

(n)
1,1xn A

(1)
1,2x1 + . . .+ A

(n)
1,2xn . . . A

(1)
1,kx1 + . . .+ A

(n)
1,kxn
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A
(1)
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(n)
k,1xn A

(1)
k,2x1 + . . .+ A

(n)
k,2xn . . . A

(1)
k,kx1 + . . .+ A

(n)
k,kxn



Example


2x1 − 3x2 + x3 5x1 + 2x2 − x3 x1 − x2 + 8x3 6x1 + 5x2 + x3

5x1 + 2x2 − x3 −x1 + 7x2 − 2x3 9x1 − 3x2 + x3 −2x1 − x2 + 4x3

x1 − x2 + 8x3 9x1 − 3x2 + x3 10x1 − 2x2 + 2x3 8x1 + x2 + x3

6x1 + 5x2 + x3 −2x1 − x2 + 4x3 8x1 + x2 + x3 −11x1 + 2x2 − 3x3
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Linear Inequalities as SDP Constraints

The non-negativity constraints can be expressed as the positivity of
suitable matrices:

x1, . . . xn ≥ 0 ⇐⇒

x1 0
. . .

0 xn

 � 0 ⇐⇒

−x1 0
. . .

0 −xn

 � 0

Observation

The LP problem is a special case of an SDP problem.
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Sn

Sn is a linear subspace of Rn×n/R[n]×[n]/RH×H . Its dimension is((n
2

))
.

Notation

〈., .〉 : Sn ×Sn → R is the following inner product: For M,N ∈ Sn,

〈M,N〉 = Tr(MTN) =
∑
j

(MTN)jj =
∑
i ,j

MT
ji Nij =

∑
i ,j

MijNij .

An alternative: Let vec : Rn×n → Rn2
be the vectorization of a

matrix (i.e., stacking the columns of a table into a vector). Then
〈M,N〉 = vec(M)Tvec(N).
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〈., .〉

Below we summarize the properties of the introduced inner
product. Interested students can verify these properties themselves.

Lemma

Let M,N,P ∈ Sn

(i) 〈M,N〉 = 〈N,M〉
(ii) 〈MN,P〉 = 〈M,PN〉

(iii) 〈M,M〉 = TrM2 =
n∑

i=1

λ2
i ≥ 0

Notation

‖M‖F =
√
〈M,M〉, the Frobenius norm of a symmetric matrix M.
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Sn+, Positive Semidefinite Matrices

Lemma

Let M ∈ Sn be arbitrary. The following are equivalent:

(i) M is positive semidefinite, i.e., xTMx ≥ 0 for all x ∈ Rn,

(ii) The eigenvalues of M are nonnegative,

(iii) M is a Gram matrix, i.e., there exists a matrix V ∈ Rk×n such
that M = V TV ,

(iv) Every symmetric submatrix of M (obtained by deleting s rows
and the corresponding s columns) has a nonnegative
determinant.
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Another Lemma providing an equivalent description

Lemma

If M � 0, then there exists M
1
2 � 0 such that M = M

1
2M

1
2 .

• Let the eigenvalues of M be λ1, . . . , λn ≥ 0.

• Define

Λ =

λ1 0
. . .

0 λn

 , Λ
1
2 =


√
λ1 0

. . .

0
√
λn

 .

• Since M is symmetric, there exists an orthogonal matrix Q such
that QTMQ = Λ.

• Thus,

M = QΛQT = QΛ
1
2 Λ

1
2QT = QΛ

1
2QTQΛ

1
2QT = (QΛ

1
2QT)(QΛ

1
2QT).

• Choosing M
1
2 = QΛ

1
2QT proves the Lemma.
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Péter Hajnal Semidefinite programming, SzTE, 2024



SDP: Basics SDP: Duality

Another Lemma providing an equivalent description

Lemma

If M � 0, then there exists M
1
2 � 0 such that M = M

1
2M

1
2 .

• Let the eigenvalues of M be λ1, . . . , λn ≥ 0.

• Define

Λ =

λ1 0
. . .

0 λn

 , Λ
1
2 =


√
λ1 0

. . .

0
√
λn

 .

• Since M is symmetric, there exists an orthogonal matrix Q such
that QTMQ = Λ.

• Thus,

M = QΛQT = QΛ
1
2 Λ

1
2QT = QΛ

1
2QTQΛ

1
2QT = (QΛ

1
2QT)(QΛ

1
2QT).

• Choosing M
1
2 = QΛ

1
2QT proves the Lemma.
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Sn+ Geometrically

Observation

Sn+ is a cone in Sn ⊂ Rn×n.

The Set of Positive Semidefinite Matrices

(
α β
β γ

)
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Normal Forms of SDP

SDP: I. Normal Form

Minimize 〈C ,X 〉-t
subject to 〈Ai ,X 〉 = bi , i = 1, . . . k

X � 0,

where C ,X ,Ai ∈ Sn and b ∈ Rk .

SDP: II. Normal Form

Minimize cTx-t

subject to
∑n

i=1 xiAi � B,

where c , x ∈ Rn and Ai ,B ∈ Sk .
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Break
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Duality (Lagrange Method)

We examine the primal problem in the first normal form:

Minimize 〈C ,X 〉-t
subject to 〈Ai ,X 〉 = bi , i = 1, . . . k ,

X � 0.

We proceed with the usual idea. We “embed” the constraints into
the Lagrangian function.

There is no issue with the finitely many linear constraints.

However, we cannot incorporate the positive semidefiniteness
constraint into L, so we “constrain” the domain of L with this
condition.

L(X , µ) = 〈C ,X 〉+
∑

µi (〈Ai ,X 〉 − bi ), dom L = {X : X � 0}.
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∑

µi (〈Ai ,X 〉 − bi ), dom L = {X : X � 0}.
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Duality (Lagrange Method)
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Péter Hajnal Semidefinite programming, SzTE, 2024



SDP: Basics SDP: Duality

Duality (Lagrange Method)

Minimizing this function leads to the objective function of the dual
problem.
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Duality (Lagrange Method)

Lemma

M is positive semidefinite if and only if 〈M,X 〉 ≥ 0 for all X � 0.

Before proving this lemma, we highlight a consequence.

Corollary

If M,N � 0, then 〈M,N〉 ≥ 0.

We need a simple equality:

Auxiliary Lemma

Let A ∈ Rk×` and B ∈ R`×k . Then

Tr (AB) = Tr (BA).
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Proof of the Lemma

• Let M,X � 0. Then

〈M,X 〉 = Tr (MX ) = Tr (M1/2M1/2X 1/2X 1/2)

= Tr ((M1/2M1/2X 1/2)X 1/2) = Tr (X 1/2(M1/2M1/2X 1/2))

= Tr ((X 1/2M1/2)(M1/2X 1/2))

= Tr ((M1/2X 1/2)T(M1/2X 1/2)) ≥ 0,

since M1/2 and X 1/2 are symmetric.
• Conversely, assume that 〈M,X 〉 ≥ 0 for all X � 0 matrices. Let
x ∈ Rn be arbitrary. Apply our assumption to the positive
semidefinite matrix X = xxT:

0 ≤ 〈M,X 〉 = Tr (M(xxT)) = Tr ((Mx)xT) = Tr (xT(Mx))

= Tr (xTMx) = xTMx .

Thus, M is positive semidefinite.
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Application of the Lemma

It follows from the lemma that

inf〈M,X 〉 =

{
0, M � 0

−∞, otherwise
.

• Indeed, if M � 0, then by the lemma 〈M,X 〉 cannot be negative,
but M = 0 shows it can be 0.

• Similarly, by the lemma, if M � 0, then 〈M,X 〉 can be negative.
Multiplying X by a positive scalar, we can make it arbitrarily large
in absolute value and negative.
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Geometric Interpretation of the Lemma

The following definition provides an opportunity to rephrase our
lemma in a useful manner:

Definition

The dual of a cone K ⊆ RN is:

K ∗ = {x ∈ RN : xTk ≥ 0 ∀k ∈ K}.

Then our proved lemma can be stated as follows:

Lemma

(i) Sn+ is a cone.

(ii) Sn+ is self-dual, (Sn+)∗ = Sn+.
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Dual Problem

As a result of the detour, we obtain that

inf
X�0

L(X , µ) =

{
−
∑

biµi , C +
∑
µiAi � 0

−∞, otherwise
.

Thus, we find the dual of the starting SDP (primal) problem.

Maximize −
∑

biµi -t

subject to −
∑
µiAi � C

Equivalently,

Minimize
∑

biµi -t

subject to C +
∑
µiAi = S ,

S � 0.
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Weak Duality Theorem

Weak Duality

If p∗ is the optimum of the primal SDP and d∗ is the optimum of
the dual SDP, then d∗ ≤ p∗.

Assume p∗ <∞, d∗ > −∞.

Let X ∈ LP be a feasible solution of the primal problem and
(µ, S) ∈ LD be a feasible solution of the dual.

Claim

〈C ,X 〉 ≥ −bTµ.

The claim states that any primal objective value is at least as large
as any dual objective value. From this, the theorem trivially
follows.
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Péter Hajnal Semidefinite programming, SzTE, 2024



SDP: Basics SDP: Duality

Weak Duality Theorem

Weak Duality

If p∗ is the optimum of the primal SDP and d∗ is the optimum of
the dual SDP, then d∗ ≤ p∗.

Assume p∗ <∞, d∗ > −∞.

Let X ∈ LP be a feasible solution of the primal problem and
(µ, S) ∈ LD be a feasible solution of the dual.

Claim

〈C ,X 〉 ≥ −bTµ.

The claim states that any primal objective value is at least as large
as any dual objective value. From this, the theorem trivially
follows.
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Proof of Weak Duality

We have seen that the product of two positive semidefinite
matrices is nonnegative. Hence,

0 ≤〈X , S〉 = 〈X ,C +
∑

µiAi 〉 = 〈X ,C 〉+
∑

µi 〈Ai ,X 〉

=〈C ,X 〉+
∑

µibi = 〈C ,X 〉+ bT
i µi .

From this, the claim follows by rearrangement.
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Example

Minimize x12-t

subject to

 0 x12 0
x12 x22 0
0 0 1 + x12

 � 0
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Example: Converting to Standard Form, Introduction

To dualize the problem, we first bring the problem to the standard
form of semidefinite programming I:

We introduce the following variable matrix:

X =

x11 x12 x13

x12 x22 x23

x13 x23 x33



The matrix in the original form is

 0 x12 0
x12 x22 0
0 0 1 + x12

.

This is equivalent to setting x11 = 0, x13 = 0, x23 = 0,
x33 = 1 + x12.
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Example: Rewriting the Constraints

Rewriting these constraints in the standard form:

• Setting x11 = 0:

〈1 0 0
0 0 0
0 0 0

 ,X

〉
= 0 (this equality

constraint corresponds to the dual variable µ1).

• Setting x13 = 0:

〈0 0 1
0 0 0
1 0 0

 ,X

〉
= 0 (this equality

constraint corresponds to the dual variable µ2).

• Setting x23 = 0:

〈0 0 0
0 0 1
0 1 0

 ,X

〉
= 0 (this equality

constraint corresponds to the dual variable µ3).

• Setting x33 = 1 + x12:

〈 0 −1
2 0

−1
2 0 0

0 0 1

 ,X

〉
= 1 (this

equality constraint corresponds to the dual variable µ4).

Péter Hajnal Semidefinite programming, SzTE, 2024



SDP: Basics SDP: Duality

Example: Rewriting the Constraints

Rewriting these constraints in the standard form:

• Setting x11 = 0:

〈1 0 0
0 0 0
0 0 0

 ,X

〉
= 0 (this equality

constraint corresponds to the dual variable µ1).

• Setting x13 = 0:

〈0 0 1
0 0 0
1 0 0

 ,X

〉
= 0 (this equality

constraint corresponds to the dual variable µ2).

• Setting x23 = 0:

〈0 0 0
0 0 1
0 1 0

 ,X

〉
= 0 (this equality

constraint corresponds to the dual variable µ3).

• Setting x33 = 1 + x12:

〈 0 −1
2 0

−1
2 0 0

0 0 1

 ,X

〉
= 1 (this

equality constraint corresponds to the dual variable µ4).
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The Example in Normal Form

The new form of our problem:

Minimize

〈0 1
2 0

1
2 0 0
0 0 0

 ,X

〉
-t

subject to

〈1 0 0
0 0 0
0 0 0

 ,X

〉
= 0,

〈0 0 1
0 0 0
1 0 0

 ,X

〉
= 0,

〈0 0 0
0 0 1
1 0 0

 ,X

〉
= 0,

〈 0 −1
2 0

−1
2 0 0

0 0 1

 ,X

〉
= 1.

X � 0
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Example: Dualization

Maximize −µ4-t

subject to

0 1
2 0

1
2 0 0
0 0 0

+ µ1

1 0 0
0 0 0
0 0 0

+ µ2

0 0 1
0 0 0
1 0 0

+

µ3

 0 0 0
0 0 1
0 1 0

+ µ4

 0 −1
2 0

−1
2 0 0

0 0 1

 � 0.

So,

Maximize −µ4-t

subject to

 µ1
1−µ4

2 µ2
1−µ4

2 0 µ3

µ2 µ3 µ4

 � 0.
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p∗ with Elementary Methods

Minimize x12-t

subject to

 0 x12 0
x12 x22 0
0 0 1 + x12

 � 0

If there exists an X ∈ L, then the upper-left 2× 2 principal minor
of the matrix in the example’s condition must be positive
semidefinite. Thus, the product of its eigenvalues (determinant)
must be greater than zero.

In our case, −x2
12 > 0, so x12 = 0. Hence p∗ = 0.
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d∗ with Elementary Methods

Maximize −µ4-t

subject to

 µ1
1−µ4

2 µ2
1−µ4

2 0 µ3

µ2 µ3 µ4

 � 0.

d∗: Based on the previous considerations, it must hold that

det

(
µ1

1−µ4
2

1−µ4
2 0

)
≥ 0.

This only holds for µ4 = 1. So, d∗ = −1.

Thus, indeed the weak duality theorem holds, so p∗ > d∗

(0 > −1).

However, there is no strong duality.
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Strong Duality

Notation

X ∈ L+
P if and only if 〈Ai ,X 〉 = bi , i = 1, . . . , ` and X � 0 (i.e., X

is positive definite).

Similarly defined is L+
D .

Strong Duality

If L+
P ,L

+
D 6= ∅, then p∗ = d∗.

Moreover, the set of optimal points is nonempty and compact.

Strong duality holds even with slightly weakened conditions.

Strong Duality

If L+
P ,LD 6= ∅, then p∗ = d∗.

We won’t prove the theorems here.
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This is the End!

Thank you for your attention!
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