
Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

Independent sets, perfect graphs
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Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

Independent vertex sets

Reminder

We call a set F ⊆ V (G ) an independent vertex set if every edge of
G has at most one endpoint in F , i.e., if the vertices of F are not
connected by an edge.

This concept is already well-known from our previous studies.

Using it, we define the following polytope.

Definition, vertex packing polytope

PP(G ) := conv {χF : F ⊆ V (G ) independent vertex set} ⊆ RV ,

where χF ∈ {0, 1}V is the characteristic vector of the vertex set F .
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Simple inequalities

Observation

We can write a simple containment for this set:

PP(G ) ⊆ {x ∈ RV :x � 0, and for every e = uv edge,

xu + xv ≤ 1} =: PP0(G ).

The set on the right-hand side consists of non-negative vectors for
which the sum of two components is less than or equal to 1
whenever there is an edge between the corresponding vertices in G .

To establish the containment, we only need to verify that the
characteristic vectors of independent vertex sets are contained in
the intersection of the half-spaces described on the right-hand side
(which obviously defines a convex vertex set).

Péter Hajnal Independent sets and perfect graphs, SzTE, 2025



Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

Simple inequalities

Observation

We can write a simple containment for this set:

PP(G ) ⊆ {x ∈ RV :x � 0, and for every e = uv edge,

xu + xv ≤ 1} =: PP0(G ).

The set on the right-hand side consists of non-negative vectors for
which the sum of two components is less than or equal to 1
whenever there is an edge between the corresponding vertices in G .

To establish the containment, we only need to verify that the
characteristic vectors of independent vertex sets are contained in
the intersection of the half-spaces described on the right-hand side
(which obviously defines a convex vertex set).
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Case of Bipartite Graphs

The following theorem, based on what we learned about totally
unimodular matrices, can be easily proven (we omit the formal
proof).

Theorem

Let G be a bipartite graph without isolated vertices. Then

PP(G ) = PP0(G ).

So, bipartiteness is sufficient for our obvious upper bound
described with inequalities to coincide with our combinatorially
defined vertex set.

The inequalities beyond the sign conditions in the description of
PP0(G ) are called edge conditions.

In the general case, further conditions are necessary.
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Clique Conditions

Among the missing conditions, perhaps the simplest ones are given
below.

Definition, clique conditions

P̂P(G ) := {x ∈ RV :x � 0, and for every K clique,∑
u∈K

xu ≤ 1}.
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Simple Containments

• A pair of vertices connected by an edge actually forms a clique of
size two. Thus, the edge conditions are special clique conditions.
Therefore,

P̂P(G ) ⊂ PP0(G ).

• A clique and an independent vertex set can have at most one
common vertex (since if there were two vertices, they would have
to be connected, which they are not).

• When considering the components corresponding to the elements
of a clique in the characteristic vectors of independent vertex sets,
only one common 1 is allowed.

• Thus,
PP(G ) ⊆ P̂P(G ).

• Summarizing,

PP(G ) ⊆ P̂P(G ) ⊆ PP0(G )
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Example

Example

Now we show that, for example, in the case of the five-cycle graph,
P̂P is strictly larger than PP.

Since C5 has only one- and two-element cliques, it is sufficient for
elements of P̂P(C5) to satisfy the edge conditions (the sum must
be less than one for adjacent vertices).

For example, ( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) ∈ P̂P(C5).

Note that α(C5) = 2, so the independent vertex sets have at most
two elements.

Thus, in their characteristic vectors, the sum of components does
not exceed 2. The same holds true for any element of their convex
hull.

However, the vector ( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) does not fit this condition.
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Another Example

Example

For C3, not only the edge conditions appear, but also the
inequality x1 + x2 + x3 ≤ 1.

• It’s easy to verify that

{x ∈ R3 : x � 0, x1 + x2 + x3 ≤ 1} = conv(0, e1, e2, e3),

where ei are the standard basis, i.e., one-element subsets (which
are exactly the nonempty matchings in K3) characteristic vectors.

• PP(C3) = P̂P(C3) holds.

•
P̂P(C3) ( PP0(C3) 3 (1/2, 1/2, 1/2)

• Under what conditions on G will PP(G ) = P̂P(G ) hold? We
explore this question further, but it requires a small digression into
graph theory.
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Péter Hajnal Independent sets and perfect graphs, SzTE, 2025



Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

Another Example

Example

For C3, not only the edge conditions appear, but also the
inequality x1 + x2 + x3 ≤ 1.

• It’s easy to verify that

{x ∈ R3 : x � 0, x1 + x2 + x3 ≤ 1} = conv(0, e1, e2, e3),

where ei are the standard basis, i.e., one-element subsets (which
are exactly the nonempty matchings in K3) characteristic vectors.

• PP(C3) = P̂P(C3) holds.

•
P̂P(C3) ( PP0(C3) 3 (1/2, 1/2, 1/2)

• Under what conditions on G will PP(G ) = P̂P(G ) hold? We
explore this question further, but it requires a small digression into
graph theory.
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Colorings, Cliques

Reminder

Let c be a proper coloring, and K be a clique of G . We know that
a clique can only be colored by assigning different colors to each of
its vertices. Therefore, the number of required colors is at least
|K |.
We obtain the graph parameter χ(G ) by considering the minimal
number of colors needed, and ω(G ) by considering the maximal
clique size. However, the inequality holds true even between these
optima, so χ(G ) ≥ ω(G ).

Definition

G graph is nice if χ(G ) = ω(G ).

Péter Hajnal Independent sets and perfect graphs, SzTE, 2025



Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

Colorings, Cliques

Reminder

Let c be a proper coloring, and K be a clique of G . We know that
a clique can only be colored by assigning different colors to each of
its vertices. Therefore, the number of required colors is at least
|K |.
We obtain the graph parameter χ(G ) by considering the minimal
number of colors needed, and ω(G ) by considering the maximal
clique size. However, the inequality holds true even between these
optima, so χ(G ) ≥ ω(G ).

Definition

G graph is nice if χ(G ) = ω(G ).
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The Main Notion

Definition

G graph is perfect if every induced subgraph R of G is nice.

Usually, we only mention the authors of major theorems and
proofs, but in some cases, it’s worth mentioning the inventors of
important definitions as well. Perfect graphs were first defined by
Claude Berge, a French mathematician, in 1962.
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Examples I.

Example

The complete graph with n vertices, Kn, and the empty graph with
n vertices, Kn = En, are both perfect.

• In complete graphs, χ(Kn) = ω(Kn) = n.

• In empty graphs, χ(En) = ω(En) = 1 for all n.

• This is only a small part of the definition.

• But also note that any induced subgraph of a complete graph
or an empty graph remains complete or empty, respectively.

• Thus, both are perfect.
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Péter Hajnal Independent sets and perfect graphs, SzTE, 2025



Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

Examples I.

Example

The complete graph with n vertices, Kn, and the empty graph with
n vertices, Kn = En, are both perfect.

• In complete graphs, χ(Kn) = ω(Kn) = n.

• In empty graphs, χ(En) = ω(En) = 1 for all n.

• This is only a small part of the definition.

• But also note that any induced subgraph of a complete graph
or an empty graph remains complete or empty, respectively.

• Thus, both are perfect.
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Examples II.

Example

If G is bipartite, then it’s also perfect. Here we provide an entire
class of examples. As we know, any induced subgraph of a
bipartite graph is also bipartite, so it suffices to prove the niceness
of bipartite graphs. Suppose G has an edge. Then it can be
colored with at most two colors, and its maximal cliques are the
edges, so χ(G ) = ω(G ) = 2.

Example

If G is bipartite, then G is perfect.
In the complement of bipartite graphs, the lower and upper vertex
sets form cliques, and the remaining edges connect vertices
between these sets. The niceness of this is nontrivial, equivalent to
Kőnig’s theorem. We leave the verification to the interested
student.
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Examples III.

Example

Consider an arbitrary partially ordered set (P, <). The partial
ordering means that < is a relation, but we don’t require that any
two elements of P be comparable.
From this set, we can define a graph by taking the vertex set as P
and connecting two points only if they are comparable as elements
of the partially ordered set. This is called the comparability graph
of (P, <).
Analogously, we can define the incomparability graph, and we can
observe that these two concepts are graph theoretically related by
complementation.
The interested student can also verify that both are perfect graphs.
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Examples IV.

Example

C2k+1 (k ≥ 2), an odd cycle of length 2k + 1, is not perfect and
not even nice, as χ(C2k+1) = 3 6= 2 = ω(C2k+1).
This does not apply to the triangle graph, so we cannot generally
speak of odd cycles, only those with more than five vertices.
We leave it to the interested student to verify that C2k+1 (k ≥ 2)
is also not nice.
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A Note

Notation

G w R means R is an induced subgraph of G .

Observation

After the definition of perfection and the examples, the following
are trivial:

(i) If G is perfect and G w R, then R is also perfect.

(ii) If G is not perfect and S w G , then S is also not perfect.

(iii) If G w C2k+1 or G w C2k+1 for some k ≥ 2, then G is not
perfect.

For all known non-perfect graphs, non-perfection follows from
observation (iii). Based on this, Berge first formulated in 1962 as a
conjecture that observation (iii) can be reversed (strong perfect
graph conjecture).
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Strong Perfect Graph Conjecture/Theorem

It was only proven in 2006 by the quartet of
Chudnovsky—Seymour—Robertson—Thomas. Their paper is over
100 pages
long, and the proof of the theorem alone would fit into a
semester-long PhD course.

Theorem (Strong Perfect Graph Theorem,
Chudnovsky—Seymour—Robertson—Thomas, 2006)

G is not perfect if and only if it does not contain C2k+1 and C2k+1

graphs as induced subgraphs for k ≥ 2.

Let G be perfect. We know it cannot contain any odd cycle of
length at least five or its complement as induced subgraphs. This
property naturally holds for its complement. Thus, if the strong
perfect graph conjecture is true, then G is also perfect.
Consequently, the perfection of G and G go hand in hand.
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Weak Perfect Graph Theorem

Berge also saw this line of thought. He couldn’t prove it (it might
be possible with the proof of the strong conjecture absent). He
referred to this assertion as the weak perfect graph conjecture. It
remained unsolved only for ten years.

Theorem (Weak Perfect Graph Theorem, Lovász, 1972)

G is perfect if and only if G is perfect.

Without the strong version, this theorem is not a trivial statement
either, but it can be proven in a single lecture of an MSc course. In
the rest of the lecture, our aim will be to prove this theorem.
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Perfect Graphs and Polytopes

Theorem (Fulkerson—Chvatal Theorem, 1973)

The following are equivalent:

(i) PP(G ) = P̂P(G )

(ii) The vertices of P̂P(G ) are integers

(iii) G is perfect

The equivalence (i)⇐⇒ (ii) is based on a simpler statement,
which we do not formally describe. After the previous ideas and
reasoning, the interested student can easily understand it.
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Two Sides of the Fulkerson—Chvatal Theorem

The proof of (ii)⇐⇒ (iii) relies on the following assertions:

G is perfect ⇒(A) The vertices of P̂P(G ) are integers ⇒(B) G is
perfect.

Repeating the above inferences for G , we obtain the complete
proof of the Fulkerson—Chvatal Theorem and, along with it, the
weak perfect graph theorem.

It also follows that for non-perfect graphs, beyond the clique
conditions, additional inequalities are necessary for describing PP.
This research direction remains active and important to this day.
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Graph Theory Preliminaries, 1st Lemma

To prove (A), we will first establish two lemmas.

Lemma

G is perfect if and only if every spanning subgraph satisfies

(?) : there exists an independent set intersecting every

optimal (maximum size) clique.
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Proof of 1st Lemma (⇐=)

Since the property (?) is inherited by spanning subgraphs, it
suffices to prove the niceness of G .

Let F1 be an independent set in G satisfying (?).

Let k := ω(G ). Then ω(G − F1) = k − 1, as F1 cuts at least one
vertex from each maximal clique, and it cannot cut more because
F1 is an independent set and can have at most one common vertex
with a clique.

We can apply property (?) again to G − F1, obtaining an
independent set F2 for which ω(G − F1 − F2) = k − 2.
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Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

Proof of 1st Lemma (=⇒)

We will prove from the niceness of G that it satisfies (?).

Indeed, let χ(G ) = ω(G ) = k and consider one of its optimal
colorings with k color classes.

These classes are independent sets, so if we take an optimal clique,
it can intersect each color class at most once, but due to the
niceness of G , it is necessary that it also contains one vertex from
each class.

Thus, by choosing any color class, we exhibit a set satisfying (?).
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Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

A Note

At the end of the previous proof, we saw that we have great
freedom in choosing the set satisfying (?), as any color class of an
optimal coloring suffices. Based on this, we can replace (?) with a
stricter condition, the fulfillment of which remains equivalent to
the perfection of G for every spanning subgraph.

Lemma+

G is perfect if and only if every spanning subgraph satisfies

(?)+ : for any x ∈ V (G ), there exists an independent

set containing x , intersecting every optimal clique.
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Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

Graph Theory Preliminaries, Blow up

For the final lemma, we will need a graph-theoretical operation.

Definition

Let G be a graph with an associated vector n = (nv )v∈V ∈ NV .
Each component assigns a natural number to every vertex.

The blow up of G (with the vector n) is the graph obtained by
replacing each vertex with a clique of size nv , and connecting the
vertices of these resulting cliques (each with all others) if and only
if the corresponding vertices in the original graph were connected.
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Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

Graph Theory Preliminaries, 2nd Lemma

2nd Lemma

Let G be a perfect graph and n ∈ NV , n = (nv )v∈V an arbitrary
vector. Then G remains perfect when blown up with the vector n.
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Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

Remarks

1st Remark

Let H be the graph obtained from G by blow up with n. According
to the previous lemma, it suffices to show that (?) holds for all
spanning subgraphs of H. However, H’s subgraphs are blown up
graphs of G with different vectors, so once we prove that H
satisfies (?) for an arbitrary vector n, we need not concern
ourselves with its spanning subgraphs.

2nd Remark

A blow up can be done step by step, only one vertex blown up at a
time. Thus, we can assume that n = (1, . . . , 1, nv , 1, . . . , 1), as the
ones in the vector represent cliques of a single vertex. The blown
up vertex is denoted by v .
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Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

Proof of 2nd Lemma

H is the graph obtained from the perfect graph G by blowing up
the vertex v .

According to the previous lemma, we know (?)+ for G , so there
exists an independent set F in G such that v ∈ F and it intersects
every optimal clique.

Given F , we can construct an independent set F ′ in H, defined as
{v or one of the vertices blown up from v} ∪ (F\v). We need to
show that F ′ satisfies (?) for H, i.e., intersects every optimal clique.

Notice that the optimal cliques in H can be of two types:

a) Contains the entire blown up vertex set of v ,
b) Corresponds to an optimal clique in G which does not contain

v .

Type a) cliques are intersected by F ′ because it includes one
of the vertices blown up from v . Type b) cliques are intersected
because of F\{v}. This completes the proof of the lemma.
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Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

G is Perfect ⇒(A) Vertices of P̂P(G ) are Integers

Let G be perfect, e ∈ P̂P(G ) a vertex of the polytope.

Our goal is to show that e ∈ ZV .

We know that e ∈ QV . Let e = (nVN )v∈V be the common
denominator form of the coordinates.

We use the previous lemma on the graph G and the vector
n = (nv )v∈V , thus constructing the blown up graph H.

The lemma assures us that H is perfect.

Let’s find the largest clique in H, or in other words, the optimal
clique K of G for which

∑
v∈K

nv is maximal.
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Péter Hajnal Independent sets and perfect graphs, SzTE, 2025



Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

G is Perfect ⇒(A) Vertices of P̂P(G ) are Integers

Let G be perfect, e ∈ P̂P(G ) a vertex of the polytope.

Our goal is to show that e ∈ ZV .

We know that e ∈ QV . Let e = (nVN )v∈V be the common
denominator form of the coordinates.

We use the previous lemma on the graph G and the vector
n = (nv )v∈V , thus constructing the blown up graph H.

The lemma assures us that H is perfect.

Let’s find the largest clique in H, or in other words, the optimal
clique K of G for which

∑
v∈K

nv is maximal.
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Proof of (A) (continued)

Since (nvN ) ∈ P̂P(G ), we have∑
v∈K

nv
N
≤ 1 and∑

v∈K
nv ≤ N,

implying that H has no clique larger than N.

From the perfection of H, we deduce that it can be colored with N
colors.

Thus, there exist independent sets F1, . . . ,FN whose union covers
V (H).
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Proof of (A) (continued)

The sets Fi can be projected back to G : let Fi ⊂ V (H) correspond
to Φi ⊂ V (G ).

The union of Φi covers each vertex v nv times. Thus,

N∑
i=1

χΦi
= (n1, n2, . . .).

Dividing by N, we obtain:

N∑
i=1

χΦi

N
= e.
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Conclusion of (A)

• The left-hand side represents an average of the independent set
characteristic vectors (specifically, P̂P elements). On the

right-hand side, we see a vertex of P̂P(G ).

• This implies that e is one of the χΦi
(indeed, all of them are

equal to e). Therefore, e is an integer.

• Indeed: If e is a vertex of P̂P, then a suitable half-space
{x ∈ RV : νT x ≤ b} contains P̂P such that only e satisfies the
inequality as an equality.
• Assume that there is a vector in the average that is not e.
(Indirect proof)
• This vector strictly satisfies the defining inequality of the
half-space mentioned above. The other terms also satisfy the
inequality. However, these inequalities can also be averaged. The
result will be a strict inequality, meaning that the average vector
cannot be e.
• This contradiction proves the claimed relationship.
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Independent vertex sets and LP Perfect Graphs Fulkerson—Chvatal Theorem

Proving G Perfect if Vertices of P̂P(G ) are Integers

The vertices of P̂P(G ) are integers, meaning that they represent
characteristic vectors of independent sets.

The half-space {x ∈ RV : 1Tx ≤ α(G )} contains the P̂P(G )
polytope.

The boundaries of this half-space correspond to the characteristic
vectors of maximal independent sets.

More precisely,

P̂P(G )∩{x ∈ RV : 1Tx ≤ α(G )} =

conv {χF : F is a maximal independent set of size α(G )}.

This forms a facet of the polytope.
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Proof of (B) (continued)

One of the supporting hyperplanes derived from the inequalities
defining the polytope must contain it.

Moreover, such a hyperplane must also exist among the clique
constraints.

If the hyperplane
∑

v :v∈K xv = 1 associated with a clique K
contains all characteristic vectors of maximal independent sets,
then α(G − K ) < α(G ).
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Conclusion of Proof of (B)

The conclusion of proving statement (B) is that if the vertices of

P̂P(G ) are integers, then the vertices of P̂P(R) are integers for
every spanning subgraph R v G .

Seeing that we found the above clique K in G , we can find a
similar clique K ′ in G − K .

Continuing this process, we can cover V (G ) with α(G ) cliques.
This precisely means that G is perfect.

The same line of reasoning holds for every spanning subgraph of
G , proving that G is perfect.
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This is the end!

Thank you for your attention!
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