Structure of Polyhedra

Geometry of linear programming

Péter Hajnal

2025. Fall

Structure of Polyhedra

Basics of Linear Programming

• There exist various normal forms.

Basics of Linear Programming

• There exist various normal forms. The one we most commonly use is the following:

Minimize	c [⊤] x-t
subject to	$Ax \leq b$

where $c \in \mathbb{R}^n$, $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$.

Basics of Linear Programming

• There exist various normal forms. The one we most commonly use is the following:

Minimize	$c^{T}x$ -t
subject to	$Ax \leq b$

where $c \in \mathbb{R}^n$, $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$.

• In this normal form, only linear inequalities are allowed among the constraints.

Basics of Linear Programming

• There exist various normal forms. The one we most commonly use is the following:

where $c \in \mathbb{R}^n$, $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$.

- In this normal form, only linear inequalities are allowed among the constraints.
- Another common normal form is:

Minimize	c [⊤] x-t
subject to	Ax = b,
	$x \succeq 0$.

LP Duality

- (i) $p^* = d^*$, i.e., strong duality holds,
- (ii) $d^* = -\infty < \infty = p^*$.

LP Duality

- (i) $p^* = d^*$, i.e., strong duality holds,
- (ii) $d^* = -\infty < \infty = p^*$.
- For example, if $\mathcal{L} \neq \emptyset$ (where \mathcal{L} is the feasible solutions set), and c is bounded below (which is often the case in practical applications), then $p^* = d^* \in \mathbb{R}$.

- (i) $p^* = d^*$, i.e., strong duality holds,
- (ii) $d^* = -\infty < \infty = p^*$.
- For example, if $\mathcal{L} \neq \emptyset$ (where \mathcal{L} is the feasible solutions set), and c is bounded below (which is often the case in practical applications), then $p^* = d^* \in \mathbb{R}$.
- If $p^* = -\infty$, weak duality guarantees strong duality.

LP Duality

- (i) $p^* = d^*$, i.e., strong duality holds,
- (ii) $d^* = -\infty < \infty = p^*$.
- For example, if $\mathcal{L} \neq \emptyset$ (where \mathcal{L} is the feasible solutions set), and c is bounded below (which is often the case in practical applications), then $p^* = d^* \in \mathbb{R}$.
- If $p^* = -\infty$, weak duality guarantees strong duality.
- The only loophole for an LP problem to evade strong duality is to have $p^* = \infty$ and $d^* = -\infty$.

LP Duality

- (i) $p^* = d^*$, i.e., strong duality holds,
- (ii) $d^* = -\infty < \infty = p^*$.
- For example, if $\mathcal{L} \neq \emptyset$ (where \mathcal{L} is the feasible solutions set), and c is bounded below (which is often the case in practical applications), then $p^* = d^* \in \mathbb{R}$.
- If $p^* = -\infty$, weak duality guarantees strong duality.
- The only loophole for an LP problem to evade strong duality is to have $p^* = \infty$ and $d^* = -\infty$. That is, both primal and dual problems are infeasible.

LP Duality

For any LP problem, exactly one of the following two conditions holds:

- (i) $p^* = d^*$, i.e., strong duality holds,
- (ii) $d^* = -\infty < \infty = p^*$.
- For example, if $\mathcal{L} \neq \emptyset$ (where \mathcal{L} is the feasible solutions set), and c is bounded below (which is often the case in practical applications), then $p^* = d^* \in \mathbb{R}$.
- If $p^* = -\infty$, weak duality guarantees strong duality.
- The only loophole for an LP problem to evade strong duality is to have $p^* = \infty$ and $d^* = -\infty$. That is, both primal and dual problems are infeasible. This possibility is not theoretical; it can occur in concrete examples.

LINEAR ALGEBRA

GEOMETRY

LINEAR ALGEBRA	GEOMETRY
$v\in\mathbb{R}^n$ is a vector.	

LINEAR ALGEBRA	GEOMETRY
$v \in \mathbb{R}^n$ is a vector.	V is a point in \mathbb{R}^n , its position vector is v .

LINEAR ALGEBRA	GEOMETRY
$v \in \mathbb{R}^n$ is a vector.	V is a point in \mathbb{R}^n , its position vector is v .
$\nu \in \mathbb{R}^n - \{0\}$. $\nu^T x = 0$ is a non-trivial, homogeneous linear equation solution set.	

LINEAR ALGEBRA	GEOMETRY
$v \in \mathbb{R}^n$ is a vector.	V is a point in \mathbb{R}^n , its position vector is v .
$\nu \in \mathbb{R}^n - \{0\}$. $\nu^T x = 0$ is a nontrivial, homogeneous linear equation solution set.	$\nu \in \mathbb{R}^n - \{0\}$ is a normal vector. $\nu^T x = 0$ is the equation of vectors perpendicular to ν . It describes a hyperplane passing through the origin O .

LINEAR ALGEBRA	GEOMETRY
$v \in \mathbb{R}^n$ is a vector.	V is a point in \mathbb{R}^n , its position vector is v .
$\nu \in \mathbb{R}^n - \{0\}$. $\nu^T x = 0$ is a non-trivial, homogeneous linear equation solution set.	$\nu \in \mathbb{R}^n - \{0\}$ is a normal vector. $\nu^T x = 0$ is the equation of vectors perpendicular to ν . It describes a hyperplane passing through the origin O .
$\nu \in \mathbb{R}^n - \{0\}, \ b \in \mathbb{R}. \ \nu^T x = b$ is a nontrivial linear equation solution set.	

LINEAR ALGEBRA	GEOMETRY
$v\in\mathbb{R}^n$ is a vector.	V is a point in \mathbb{R}^n , its position vector is v .
$\nu \in \mathbb{R}^n - \{0\}$. $\nu^T x = 0$ is a nontrivial, homogeneous linear equation solution set.	$\nu \in \mathbb{R}^n - \{0\}$ is a normal vector. $\nu^T x = 0$ is the equation of vectors perpendicular to ν . It describes a hyperplane passing through the origin O .
$\nu \in \mathbb{R}^n - \{0\}, \ b \in \mathbb{R}. \ \nu^T x = b$ is a nontrivial linear equation solution set.	$\nu \in \mathbb{R}^n - \{0\}$ is a normal vector. $\nu^T x = b = \nu^T v_0$ is the equation of vectors perpendicular to ν and passing through v_0 .

Solution Set of Linear Inequalities

Solution Set of Linear Inequalities

LINEAR ALGEBRA

 $\nu \in \mathbb{R}^n - \{0\}$. The solution set of the non-trivial linear homogeneous inequality $\nu^{\mathsf{T}}x$ < $0/\nu^{\mathsf{T}}x > 0$ is not trivial.

GEOMETRY

 $\nu \in \mathbb{R}^n - \{0\}$ is a normal vector. The inequality $\nu^T x <$ $0/\nu^T x \ge 0$ defines a CLOSED half-space bounded by a hyperplane passing through the origin and perpendicular to ν .

 $\nu \in \mathbb{R}^n - \{0\}, \ b \in \mathbb{R}$. The solution set of the non-trivial linear inequality $\nu^{\mathsf{T}} x < b/\nu^{\mathsf{T}} x > 0$ b is not trivial.

 $\nu \in \mathbb{R}^n - \{0\}$ is a normal vector. The inequality $\nu^{\mathsf{T}} x < b = \nu^{\mathsf{T}} v_0 / \nu^{\mathsf{T}} x > b$ defines a CLOSED half-space bounded by a hyperplane passing through v_0 and perpendicular to ν .

Formal Definitions

Polyhedra and Optimization

Formal Definitions

Definition

Let $\nu \in \mathbb{R}^n$ be a nonzero vector, τ any real number. Then the set $\{x \in \mathbb{R}^n : \nu^\mathsf{T} x = \tau\}$ is called a hyperplane in \mathbb{R}^n . The sets of the form $\{x \in \mathbb{R}^n : \nu^\mathsf{T} x < \tau\}$ are called (closed) half-spaces.

Formal Definitions

Definition

Let $\nu \in \mathbb{R}^n$ be a nonzero vector, τ any real number. Then the set $\{x \in \mathbb{R}^n : \nu^\mathsf{T} x = \tau\}$ is called a hyperplane in \mathbb{R}^n . The sets of the form $\{x \in \mathbb{R}^n : \nu^\mathsf{T} x \leq \tau\}$ are called (closed) half-spaces.

Remark

Every hyperplane defines two closed half-spaces, which share the same boundary.

Definition

Let $\nu \in \mathbb{R}^n$ be a nonzero vector, τ any real number. Then the set $\{x \in \mathbb{R}^n : \nu^\mathsf{T} x = \tau\}$ is called a hyperplane in \mathbb{R}^n . The sets of the form $\{x \in \mathbb{R}^n : \nu^\mathsf{T} x \leq \tau\}$ are called (closed) half-spaces.

Remark

Every hyperplane defines two closed half-spaces, which share the same boundary.

Lemma

Half-spaces and hyperplanes are convex.

LINEAR ALGEBRA

GEOMETRY

LINEAR ALGEBRA	GEOMETRY
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear equation system $Ax = 0$.	

LINEAR ALGEBRA	GEOMETRY
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear equation system $Ax = 0$.	Intersection of finitely many hyperplanes passing through the origin ≡ linear subspace.

Polyhedra and Optimization

Solution Sets of Inequality Systems

LINEAR ALGEBRA	GEOMETRY
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear equation system $Ax = 0$.	Intersection of finitely many hyper- planes passing through the origin = linear subspace.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^k$. Solution set of the linear equation system $Ax = b$.	

LINEAR ALGEBRA	GEOMETRY
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear equation system $Ax = 0$.	Intersection of finitely many hyperplanes passing through the origin ≡ linear subspace.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^k$. Solution set of the linear equation system $Ax = b$.	Intersection of finitely many hyperplanes \equiv affine subspace.

LINEAR ALGEBRA	GEOMETRY
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear equation system $Ax = 0$.	Intersection of finitely many hyper- planes passing through the origin = linear subspace.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^k$. Solution set of the linear equation system $Ax = b$.	Intersection of finitely many hyperplanes \equiv affine subspace.
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear inequality system $Ax \leq 0$.	

LINEAR ALGEBRA	GEOMETRY
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear equation system $Ax = 0$.	Intersection of finitely many hyper- planes passing through the origin = linear subspace.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^k$. Solution set of the linear equation system $Ax = b$.	Intersection of finitely many hyperplanes \equiv affine subspace.
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear inequality system $Ax \leq 0$.	Intersection of finitely many closed half-spaces passing through the origin \equiv polyhedral (closed, convex) cone.

LINEAR ALGEBRA	GEOMETRY
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear equation system $Ax = 0$.	Intersection of finitely many hyper- planes passing through the origin = linear subspace.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^k$. Solution set of the linear equation system $Ax = b$.	Intersection of finitely many hyperplanes \equiv affine subspace.
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear inequality system $Ax \preceq 0$.	Intersection of finitely many closed half-spaces passing through the origin \equiv polyhedral (closed, convex) cone.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^k$. Solution set of the linear inequality system $Ax \leq b$.	<□> <周> <5> <5> <5 > <5 > <5 > <5 > <5 > <

Intersection of finitely many hyper-

Solution Sets of Inequality Systems

 $\Lambda \subset \mathbb{D}^{k \times n}$ Colution set of the ho

Geometric Background of LP

LINEAR ALGEBRA

$A \in \mathbb{R}^{n \times n}$. Solution set of the homogeneous linear equation system $Ax = 0$.	planes passing through the origin in linear subspace.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^k$. Solution set of the linear equation system $Ax = b$.	Intersection of finitely many hyperplanes \equiv affine subspace.
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear inequality system $Ax \leq 0$.	Intersection of finitely many closed half-spaces passing through the origin \equiv polyhedral (closed, convex) cone.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^k$. Solution set of the linear inequality system $Ax \leq b$.	Intersection of finitely many closed half-spaces \equiv (convex, closed) polyhedron.
Péter Hajnal	Geometry of LP, SzTE, 2025

GEOMETRY

Formal Definitions

Definition: Linear Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}$ be a system of real numbers. Then

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the linear combination of the v_i vectors.

Formal Definitions

Definition: Linear Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \dots, \lambda_N \in \mathbb{R}$ be a system of real numbers. Then

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the linear combination of the v_i vectors.

Definition: Linear Subspace of \mathbb{R}^n

 $\mathcal{L} \subset \mathbb{R}^n$ is a linear subspace if $0 \in \mathcal{L}$ and closed under linear combination.

Formal Definitions

Definition: Linear Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \dots, \lambda_N \in \mathbb{R}$ be a system of real numbers. Then

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the linear combination of the v_i vectors.

Definition: Linear Subspace of \mathbb{R}^n

 $\mathcal{L} \subset \mathbb{R}^n$ is a linear subspace if $0 \in \mathcal{L}$ and closed under linear combination.

Example

Example: Finitely Generated Linear Subspace

$$\langle v_1, v_2, \dots, v_N \rangle_{\mathsf{lin}} = \{ \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_N v_N : \lambda_i \in \mathbb{R} \}.$$

Geometry of LP. SzTE. 2025

Polyhedra and Optimization

Definition: Affine Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}$ be a system of real numbers such that $\lambda_1 + \lambda_2 + \ldots + \lambda_N = 1$. Then

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the affine combination of the v_i vectors.

Definition: Affine Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}$ be a system of real numbers such that $\lambda_1 + \lambda_2 + \ldots + \lambda_N = 1$. Then

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the affine combination of the v_i vectors.

Definition: Affine Subspace of \mathbb{R}^n

 $\mathcal{A} \subset \mathbb{R}^n$ is an affine subspace if closed under affine combination.

Definition: Affine Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}$ be a system of real numbers such that $\lambda_1 + \lambda_2 + \ldots + \lambda_N = 1$. Then

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the affine combination of the v_i vectors.

Definition: Affine Subspace of \mathbb{R}^n

 $\mathcal{A} \subset \mathbb{R}^n$ is an affine subspace if closed under affine combination.

Example

Example: Finitely Generated Affine Subspace

$$\langle v_1, v_2, \ldots, v_N \rangle_{\mathsf{affine}} = \{\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N : \lambda_i \in \mathbb{R}, \sum_i \lambda_i = 1\}.$$

Definition: Cone Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}_+$ be nonnegative real numbers. Then

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the cone combination of the v_i vectors.

Definition: Cone Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}_+$ be nonnegative real numbers. Then

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the cone combination of the v_i vectors.

Definition: Cone in \mathbb{R}^n

 $\mathcal{C} \subset \mathbb{R}^n$ is a (convex) cone if closed under cone combination.

Definition: Cone Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}_+$ be nonnegative real numbers. Then

Structure of Polyhedra

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the cone combination of the v_i vectors.

Definition: Cone in \mathbb{R}^n

 $\mathcal{C} \subset \mathbb{R}^n$ is a (convex) cone if closed under cone combination.

Example

Example: Finitely Generated Cone

$$\langle v_1, v_2, \dots, v_N \rangle_{\mathsf{cone}} = \{ \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_N v_N : \lambda_i \in \mathbb{R}_+ \}.$$

Definition: Convex Combination of Vectors

Let $v_1,v_2,\ldots,v_N\in\mathbb{R}^n$ be vectors in a finite system and $\lambda_1,\lambda_2,\ldots,\lambda_N\in\mathbb{R}_+$ be nonnegative real numbers such that $\lambda_1+\lambda_2+\ldots+\lambda_N=1$. Then

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the convex combination of the v_i vectors.

Definition: Convex Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}_+$ be nonnegative real numbers such that $\lambda_1 + \lambda_2 + \ldots + \lambda_N = 1$. Then

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the convex combination of the v_i vectors.

Definition: Convex Set in \mathbb{R}^n

 $\mathcal{K} \subset \mathbb{R}^n$ is a convex point set if closed under convex combination.

Definition: Convex Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}_+$ be nonnegative real numbers such that

$$\lambda_1 + \lambda_2 + \ldots + \lambda_N = 1$$
. Then

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the convex combination of the v_i vectors.

Definition: Convex Set in \mathbb{R}^n

 $\mathcal{K} \subset \mathbb{R}^n$ is a convex point set if closed under convex combination.

Example

Example: Finitely Generated Convex Set

$$\langle v_1, v_2, \dots, v_N \rangle_{\text{convex}} = \{\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_N v_N : \lambda_i \in \mathbb{R}_+, \sum \lambda_i = 1\}.$$

Theorems

Theorems

Theorem

Let $0 \in \mathcal{L} \subset \mathbb{R}^n$. Then the following are equivalent:

- (i) Closed under line joining.
- (ii) Closed under linear combination.
- (iii) Solution set of Ax = 0 for some $A \in \mathbb{R}^{k \times n}$.
- (iv) Finitely generated linear subspace.

Polyhedra and Optimization

Theorems

Theorem

Let $0 \in \mathcal{L} \subset \mathbb{R}^n$. Then the following are equivalent:

- (i) Closed under line joining.
- (ii) Closed under linear combination.
- (iii) Solution set of Ax = 0 for some $A \in \mathbb{R}^{k \times n}$.
- (iv) Finitely generated linear subspace.

$\mathsf{Theorem}$

Let $\mathcal{A} \subset \mathbb{R}^n$. Then the following are equivalent:

- (i) Closed under line joining.
- (ii) Closed under affine combination.
- (iii) Solution set of Ax = b for some $A \in \mathbb{R}^{k \times n}$. $b \in \mathbb{R}^k$.
- (iv) Finitely generated affine subspace.

Theorems (continued)

Minkowski-Weyl Theorem

- Let $\mathcal{C} \subset \mathbb{R}^n$. Then the following are equivalent:
 - (i) Solution set of $Ax \leq 0$ for some $A \in \mathbb{R}^{k \times n}$.
- (ii) Finitely generated cone.

Theorems (continued)

Minkowski-Weyl Theorem

Let $\mathcal{C} \subset \mathbb{R}^n$. Then the following are equivalent:

- (i) Solution set of $Ax \leq 0$ for some $A \in \mathbb{R}^{k \times n}$.
- (ii) Finitely generated cone.

Fundamental Theorem of Polytopes

Let $\mathcal{T} \subset \mathbb{R}^n$. Then the following are equivalent:

- (i) Bounded polyhedron (\equiv polytope).
- (ii) Finitely generated convex set.

Theorems (continued)

Minkowski-Weyl Theorem

- Let $\mathcal{C} \subset \mathbb{R}^n$. Then the following are equivalent:
 - (i) Solution set of $Ax \prec 0$ for some $A \in \mathbb{R}^{k \times n}$.
- (ii) Finitely generated cone.

Fundamental Theorem of Polytopes

Let $\mathcal{T} \subset \mathbb{R}^n$. Then the following are equivalent:

- (i) Bounded polyhedron (≡ polytope).
- (ii) Finitely generated convex set.

Minkowski-Weyl Theorem

- Let $\mathcal{P} \subset \mathbb{R}^n$. Then the following are equivalent:
 - (i) Polyhedron, i.e., solution set of $Ax \leq b$ for some $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$.
- (ii) $\mathcal{T} + \mathcal{C}$, where \mathcal{T} is a polytope/finitely generated convex set and \mathcal{C} is a polyhedral/finitely generated cone.

Definition

Let \mathcal{P} be a polyhedron. \mathcal{P} is called nice if it does not contain a line.

Definition

Let \mathcal{P} be a polyhedron. \mathcal{P} is called nice if it does not contain a line.

Lemma

Let \mathcal{P} be a polyhedron in \mathbb{R}^n : $\mathcal{P} = \{x : Ax \leq b\}$. Then the following are equivalent:

Definition

Let $\mathcal P$ be a polyhedron. $\mathcal P$ is called nice if it does not contain a line.

Lemma

Let \mathcal{P} be a polyhedron in \mathbb{R}^n : $\mathcal{P} = \{x \colon Ax \leq b\}$. Then the following are equivalent:

(i) Not nice. That is, there exists a nonzero vector v such that for some $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P} .

Definition

Let \mathcal{P} be a polyhedron. \mathcal{P} is called nice if it does not contain a line.

Lemma

Let \mathcal{P} be a polyhedron in \mathbb{R}^n : $\mathcal{P} = \{x : Ax \leq b\}$. Then the following are equivalent:

- (i) Not nice. That is, there exists a nonzero vector v such that for some $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P} .
- (ii) There exists a nonzero vector v such that for every $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P} .

Definition

Let \mathcal{P} be a polyhedron. \mathcal{P} is called nice if it does not contain a line.

Lemma

Let \mathcal{P} be a polyhedron in \mathbb{R}^n : $\mathcal{P} = \{x \colon Ax \leq b\}$. Then the following are equivalent:

- (i) Not nice. That is, there exists a nonzero vector v such that for some $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P} .
- (ii) There exists a nonzero vector v such that for every $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P} .
- (iii) The row rank of A is less than n (number of columns/dimension/number of variables).

Definition

Let $\mathcal P$ be a polyhedron. $\mathcal P$ is called nice if it does not contain a line.

Lemma

Let \mathcal{P} be a polyhedron in \mathbb{R}^n : $\mathcal{P} = \{x \colon Ax \leq b\}$. Then the following are equivalent:

- (i) Not nice. That is, there exists a nonzero vector v such that for some $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P} .
- (ii) There exists a nonzero vector v such that for every $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P} .
- (iii) The row rank of A is less than n (number of columns/dimension/number of variables).
- (iv) $\operatorname{ext} \mathcal{P} = \emptyset$.

• When decomposing a non-nice polyhedron according to the above fundamental theorem, a component will be a line segment.

• When decomposing a non-nice polyhedron according to the above fundamental theorem, a component will be a line segment.

Definition: Pointed Cone

Among cones, those that do not contain a line are called *pointed* cones.

• When decomposing a non-nice polyhedron according to the above fundamental theorem, a component will be a line segment.

Definition: Pointed Cone

Among cones, those that do not contain a line are called *pointed* cones.

• These are exactly those cones for which there exists a hyperplane passing through the origin, such that all nonzero vectors of the cone lie strictly on one side of it. (This needs to be proved!)

Polyhedra and Optimization

Further Decomposition Theorems

• When decomposing a non-nice polyhedron according to the above fundamental theorem, a component will be a line segment.

Definition: Pointed Cone

Among cones, those that do not contain a line are called *pointed* cones.

- These are exactly those cones for which there exists a hyperplane passing through the origin, such that all nonzero vectors of the cone lie strictly on one side of it. (This needs to be proved!)
- Every cone is a sum of a linear subspace and a pointed cone.

• When decomposing a non-nice polyhedron according to the above fundamental theorem, a component will be a line segment.

Definition: Pointed Cone

Among cones, those that do not contain a line are called *pointed* cones.

- These are exactly those cones for which there exists a hyperplane passing through the origin, such that all nonzero vectors of the cone lie strictly on one side of it. (This needs to be proved!)
- Every cone is a sum of a linear subspace and a pointed cone.

Theorem

Let \mathcal{P} be an arbitrary polyhedron. Then

$$\mathcal{P} = \mathcal{T} + \mathcal{C}_{pointed} + \mathcal{L},$$

where $\mathcal T$ is polytope, $\mathcal C_{\text{pointed}}$ is a pointed cone, and $\mathcal L$ is a linear subspace.

Break

LINEAR ALGEBRA

GEOMETRY

LINEAR ALGEBRA	GEOMETRY
	If the polyhedron $\mathcal{P}: Ax \leq b$ is contained in the half-space $\mathcal{F}: \nu^T x \leq \beta$ and $\mathcal{P} \cap \mathcal{H} \neq \emptyset$, where $\mathcal{H}: \nu^T x = \beta$ (that is, \mathcal{F} is a closed half-space border), then \mathcal{F} is a half-space and the hyperplane \mathcal{H} is the supporting face, or supporting hyperplane, of the polyhedron \mathcal{P} .

LINEAR ALGEBRA

GEOMETRY

If the polyhedron $\mathcal{P}: Ax \leq b$ is contained in the half-space $\mathcal{F}: \nu^{\mathsf{T}} x \leq \beta$ and $\mathcal{P} \cap \mathcal{H} \neq \emptyset$, where $\mathcal{H} : \nu^{\mathsf{T}} x = \beta$ (that is, \mathcal{F} is a closed half-space border), then \mathcal{F} is a half-space and the hyperplane \mathcal{H} is the supporting face, or supporting hyperplane, of the polyhedron \mathcal{P} .

Polyhedra and Optimization

A solution m of a linear inequality system $Ax \leq b$ (assuming A has no zero rows) is exactly an interior point of m (and any neighborhood of mcontains only solutions) if every condition is satisfied with strict inequalities. That is, every condition is tight.

LINEAR ALGEBRA

GEOMETRY

If the polyhedron $\mathcal{P}:Ax \leq b$ is contained in the half-space $\mathcal{F}:\nu^\mathsf{T}x \leq \beta$ and $\mathcal{P}\cap\mathcal{H}\neq\emptyset$, where $\mathcal{H}:\nu^\mathsf{T}x=\beta$ (that is, \mathcal{F} is a closed half-space border), then \mathcal{F} is a half-space and the hyperplane \mathcal{H} is the supporting face, or supporting hyperplane, of the polyhedron \mathcal{P} .

A solution m of a linear inequality system $Ax \leq b$ (assuming A has no zero rows) is exactly an interior point of m (and any neighborhood of m contains only solutions) if every condition is satisfied with strict inequalities. That is, every condition is tight.

The boundary points of a polyhedron \mathcal{P} are those points that have both \mathcal{P} -interior and \mathcal{P} -exterior points in every neighborhood. The set of boundary points, or the boundary itself, is denoted by $\partial \mathcal{P}$. The polyhedron \mathcal{P} is closed, thus $\partial \mathcal{P} \subseteq \mathcal{P}$.

Theorem

A polyhedron is a closed, convex set.

Theorem

A polyhedron is a closed, convex set.

• If A has a zero row, then the resulting inequality can have either all $x \in \mathbb{R}^n$ as solutions or none at all.

Theorem

A polyhedron is a closed, convex set.

• If A has a zero row, then the resulting inequality can have either all $x \in \mathbb{R}^n$ as solutions or none at all. In a special case $(A = 0 \in \mathbb{R}^{k \times n}, b = 0 \in \mathbb{R}^k)$, the entire space is a polyhedron.

Theorem

A polyhedron is a closed, convex set.

• If A has a zero row, then the resulting inequality can have either all $x \in \mathbb{R}^n$ as solutions or none at all. In a special case $(A = 0 \in \mathbb{R}^{k \times n}, b = 0 \in \mathbb{R}^k)$, the entire space is a polyhedron. The empty set is also a polyhedron.

Theorem

A polyhedron is a closed, convex set.

- If A has a zero row, then the resulting inequality can have either all $x \in \mathbb{R}^n$ as solutions or none at all. In a special case $(A = 0 \in \mathbb{R}^{k \times n}, b = 0 \in \mathbb{R}^k)$, the entire space is a polyhedron. The empty set is also a polyhedron.
- Even in two dimensions, it is easy to give a closed set and a point on its boundary such that no supporting hyperplane can be placed on it.

Theorem

A polyhedron is a closed, convex set.

- If A has a zero row, then the resulting inequality can have either all $x \in \mathbb{R}^n$ as solutions or none at all. In a special case $(A = 0 \in \mathbb{R}^{k \times n}, b = 0 \in \mathbb{R}^k)$, the entire space is a polyhedron. The empty set is also a polyhedron.
- Even in two dimensions, it is easy to give a closed set and a point on its boundary such that no supporting hyperplane can be placed on it. This is not the case in the convex setting.

Theorem

A polyhedron is a closed, convex set.

- If A has a zero row, then the resulting inequality can have either all $x \in \mathbb{R}^n$ as solutions or none at all. In a special case $(A = 0 \in \mathbb{R}^{k \times n}, b = 0 \in \mathbb{R}^k)$, the entire space is a polyhedron. The empty set is also a polyhedron.
- Even in two dimensions, it is easy to give a closed set and a point on its boundary such that no supporting hyperplane can be placed on it. This is not the case in the convex setting.

Theorem

Let $K \subseteq \mathbb{R}^n$ be a closed convex set. The following are equivalent:

- (i) $p \in \partial K$,
- (ii) $p \in K$ and a supporting hyperplane can be placed on it.

Faces of Polyhedra

Definition

Let K be a closed convex set. A face of K is a subset of its boundary that can be intersected by an appropriate supporting hyperplane.

Faces of Polyhedra

Definition

Let K be a closed convex set. A face of K is a subset of its boundary that can be intersected by an appropriate supporting hyperplane.

• Of course, faces are also closed, convex sets, subsets of ∂K .

Faces of Polyhedra

Definition

Let K be a closed convex set. A face of K is a subset of its boundary that can be intersected by an appropriate supporting hyperplane.

ullet Of course, faces are also closed, convex sets, subsets of ∂K .

Definition

Let K be a convex set and F be a face. Let aff(F) be the affine hull of the set F, i.e., the smallest affine subspace containing F. The dimension of F is dim(aff(F)).

Special Faces: Vertices

Special Faces: Vertices

Theorem

Let $\mathcal{P}: \{x: Ax \leq b\} \subset \mathbb{R}^n$ be a polyhedron, $e \in \mathcal{P}$. Then the following are equivalent:

- (i) There exists a supporting hyperplane that intersects $\mathcal P$ only at e.
- (ii) There is no line segment in \mathcal{P} that contains e as an interior point.
- (iii) Let $I = \{i : a_i^T e = b_i\}$. Then I is such that $\{a_i : i \in I\}$ spans \mathbb{R}^n .

General Faces

General Faces

• The surfaces of polyhedra are formed by the faces. We've only looked at the vertices in a bit more detail.

• The surfaces of polyhedra are formed by the faces. We've only looked at the vertices in a bit more detail.

Definition

Let \mathcal{P} be a polyhedron, $p \in \partial \mathcal{P}$

$$C_p := \{ \nu \in \mathbb{R}^n \setminus \{0\} : \exists \alpha \in \mathbb{R} \text{ such that }$$

$$\{x \colon \nu^\mathsf{T} x \leq \alpha\} \supseteq \mathcal{P} \text{ and } \nu p = \alpha\} \cup \{\underline{0}\}.$$

• The surfaces of polyhedra are formed by the faces. We've only looked at the vertices in a bit more detail.

Definition

Let \mathcal{P} be a polyhedron, $p \in \partial \mathcal{P}$

$$C_p := \{ \nu \in \mathbb{R}^n \setminus \{0\} : \exists \, \alpha \in \mathbb{R} \text{ such that}$$
$$\{ x \colon \nu^\mathsf{T} x \le \alpha \} \supseteq \mathcal{P} \text{ and } \nu p = \alpha \} \cup \{\underline{0}\}.$$

Lemma

 C_n is a convex cone.

Special Faces: Vertices (again)

• The cone associated with boundary points provides a new, alternative description of the vertices.

Special Faces: Vertices (again)

 The cone associated with boundary points provides a new, alternative description of the vertices.

$\mathsf{Theorem}$

Let \mathcal{P} be a polyhedron, $\mathcal{P} = \{x \colon Ax \leq b\}, \ p \in \partial \mathcal{P}$. The following are equivalent:

- (i) $p \in \text{ext}(\mathcal{P})$,
- (ii) C_p has an interior point (in \mathbb{R}^n),
- (iii) there exist row vectors $a_{i_1}^\mathsf{T}, a_{i_2}^\mathsf{T}, \dots, a_{i_n}^\mathsf{T}$ in A such that
 - (1) they are linearly independent,
 - (2) $a_{i_j}^{\mathsf{T}} p = b_{i_j}$ for every j = 1, 2, ..., n.

Special Faces: Vertices (again)

 The cone associated with boundary points provides a new, alternative description of the vertices.

$\mathsf{Theorem}$

Let \mathcal{P} be a polyhedron, $\mathcal{P} = \{x : Ax \leq b\}, \ p \in \partial \mathcal{P}$. The following are equivalent:

- (i) $p \in \text{ext}(\mathcal{P})$,
- (ii) C_p has an interior point (in \mathbb{R}^n),
- (iii) there exist row vectors $a_{i_1}^\mathsf{T}, a_{i_2}^\mathsf{T}, \dots, a_{i_n}^\mathsf{T}$ in A such that
 - (1) they are linearly independent,
 - (2) $a_{i_i}^T p = b_{i_j}$ for every j = 1, 2, ..., n.
- That is, C_p is full-dimensional if and only if p is a vertex. Generally, the dimension of C_p determines the dimension of the interior point of the boundary p point.

• Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$, $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$.

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$, $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$.
- \bullet If ${\mathcal P}$ is not nice, it's easy to recognize this based on linear algebraic knowledge.

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$, $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$.
- ullet If ${\mathcal P}$ is not nice, it's easy to recognize this based on linear algebraic knowledge. Moreover, we can decompose it into the sum of an affine space and a nice polyhedron.

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$, $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$.
- ullet If ${\mathcal P}$ is not nice, it's easy to recognize this based on linear algebraic knowledge. Moreover, we can decompose it into the sum of an affine space and a nice polyhedron. We can assume that our polyhedron is nice.

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$, $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$.
- ullet If ${\mathcal P}$ is not nice, it's easy to recognize this based on linear algebraic knowledge. Moreover, we can decompose it into the sum of an affine space and a nice polyhedron. We can assume that our polyhedron is nice.

Theorem

Let $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$ be an arbitrary nice polyhedron.

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$, $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$.
- ullet If ${\mathcal P}$ is not nice, it's easy to recognize this based on linear algebraic knowledge. Moreover, we can decompose it into the sum of an affine space and a nice polyhedron. We can assume that our polyhedron is nice.

Theorem

Let $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$ be an arbitrary nice polyhedron.

Let $C = \{x \in \mathbb{R}^n : Ax \leq 0\}$ be a polyhedral/cone.

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$, $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$.
- ullet If ${\mathcal P}$ is not nice, it's easy to recognize this based on linear algebraic knowledge. Moreover, we can decompose it into the sum of an affine space and a nice polyhedron. We can assume that our polyhedron is nice.

Theorem

Let $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$ be an arbitrary nice polyhedron.

Let $C = \{x \in \mathbb{R}^n : Ax \leq 0\}$ be a polyhedral/cone.

Let $\mathcal{T} = \langle ext(\mathcal{P}) \rangle_{conv}$ be a finitely generated convex set/polytope.

Refinement of Minkowski-Weyl Theorem

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$, $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$.
- ullet If ${\mathcal P}$ is not nice, it's easy to recognize this based on linear algebraic knowledge. Moreover, we can decompose it into the sum of an affine space and a nice polyhedron. We can assume that our polyhedron is nice.

Theorem

Let $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$ be an arbitrary nice polyhedron.

Let $C = \{x \in \mathbb{R}^n : Ax \leq 0\}$ be a polyhedral/cone.

Let $\mathcal{T} = \langle ext(\mathcal{P}) \rangle_{conv}$ be a finitely generated convex set/polytope.

Then

$$\mathcal{P} = \mathcal{T} + \mathcal{C}$$
.

Geometric Background of LP Structure of Polyhedra Polyhedra and Optimization

Proofs

Break Time

LP Geometrically

• The fundamental task of LP is to minimize a linear function, $c^{\mathsf{T}}x$, over a polyhedron.

Polyhedra and Optimization

• The fundamental task of LP is to minimize a linear function,

- $c^{\mathsf{T}}x$, over a polyhedron.
- The level sets of $c^{\mathsf{T}}x$ are hyperplanes.

LP Geometrically

- The fundamental task of LP is to minimize a linear function, $c^{\mathsf{T}}x$, over a polyhedron.
- The level sets of $c^{\mathsf{T}}x$ are hyperplanes.
- \bullet A lower bound, λ , on the objective function over a non-empty polytope \mathcal{P} means that the half-space $\{x: c^{\mathsf{T}}x \geq \lambda\}$ contains the polyhedron \mathcal{P} .

- The fundamental task of LP is to minimize a linear function, $c^{T}x$, over a polyhedron.
- The level sets of $c^{\mathsf{T}}x$ are hyperplanes.
- A lower bound, λ , on the objective function over a non-empty polytope \mathcal{P} means that the half-space $\{x: c^\mathsf{T} x \geq \lambda\}$ contains the polyhedron \mathcal{P} .
- The half-space $c^{\mathsf{T}}x = \lambda$ lies on one side of \mathcal{P} .

LP Geometrically

- The fundamental task of LP is to minimize a linear function, $c^{\mathsf{T}}x$, over a polyhedron.
- The level sets of $c^{\mathsf{T}}x$ are hyperplanes.
- A lower bound, λ , on the objective function over a non-empty polytope \mathcal{P} means that the half-space $\{x: c^{\mathsf{T}}x \geq \lambda\}$ contains the polyhedron \mathcal{P} .
- The half-space $c^{\mathsf{T}}x = \lambda$ lies on one side of \mathcal{P} .
- The minimal objective value is attained when λ is increased (pushing the hyperplane towards \mathcal{P}) until the moving hyperplane touches \mathcal{P} .

- The fundamental task of LP is to minimize a linear function, $c^{T}x$, over a polyhedron.
- The level sets of $c^{\mathsf{T}}x$ are hyperplanes.
- A lower bound, λ , on the objective function over a non-empty polytope \mathcal{P} means that the half-space $\{x: c^\mathsf{T} x \geq \lambda\}$ contains the polyhedron \mathcal{P} .
- The half-space $c^{\mathsf{T}}x = \lambda$ lies on one side of \mathcal{P} .
- ullet The minimal objective value is attained when λ is increased (pushing the hyperplane towards $\mathcal P$) until the moving hyperplane touches $\mathcal P$.
- ullet Then ${\mathcal P}$ supports the hyperplane. The supporting points are the optimal points.

Theorem

Let $\mathcal{P} = \{x : Ax \leq b\}$ be a non-empty nice polyhedron.

Structure of Polyhedra

Theorem

Let $\mathcal{P} = \{x : Ax \leq b\}$ be a non-empty nice polyhedron. Consider the

Structure of Polyhedra

Minimize
$$c^{\mathsf{T}}x$$
-t subject to $Ax \leq b$,

LP problems (where c varies).

Theorem

Let $\mathcal{P} = \{x : Ax \leq b\}$ be a non-empty nice polyhedron. Consider the

Minimize
$$c^{\mathsf{T}}x$$
-t subject to $Ax \leq b$,

LP problems (where c varies).

Then

Theorem

Let $\mathcal{P} = \{x : Ax \leq b\}$ be a non-empty nice polyhedron. Consider the

Minimize
$$c^{\mathsf{T}}x$$
-t subject to $Ax \leq b$,

LP problems (where c varies).

Then

(i) For every $c \in \mathbb{R}^n$, either $p^* = -\infty$ or there exists $x \in \text{ext}(\mathcal{P})$ as an optimal point.

Theorem

Let $\mathcal{P} = \{x : Ax \leq b\}$ be a non-empty nice polyhedron. Consider the

Minimize
$$c^{\mathsf{T}}x$$
-t subject to $Ax \leq b$,

LP problems (where c varies).

Then

- (i) For every $c \in \mathbb{R}^n$, either $p^* = -\infty$ or there exists $x \in \text{ext}(\mathcal{P})$ as an optimal point.
- (ii) For every $x \in \text{ext}(\mathcal{P})$, there exists c such that x is the unique optimal point.

(i)

(i) We know that $P = \mathcal{T} + \mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.

- (i) We know that $P = \mathcal{T} + \mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.
- Assume $p^* \neq -\infty$.

- (i) We know that $P = \mathcal{T} + \mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.
- Assume $p^* \neq -\infty$.
- Let o be an optimal point: $o \in \mathcal{P} = \mathcal{T} + \mathcal{C}$,

- (i) We know that $P = \mathcal{T} + \mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.
- Assume $p^* \neq -\infty$.
- Let o be an optimal point: $o \in \mathcal{P} = \mathcal{T} + \mathcal{C}$, i.e., o = t + k, where $t \in \mathcal{T}$ and $k \in \mathcal{C}$.

Geometric Background of LP

- (i) We know that $P = \mathcal{T} + \mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.
- Assume $p^* \neq -\infty$.
- Let o be an optimal point: $o \in \mathcal{P} = \mathcal{T} + \mathcal{C}$, i.e., o = t + k. where $t \in \mathcal{T}$ and $k \in \mathcal{C}$.
- Firstly, $c^T k > 0$.

- (i) We know that P = T + C, where T is a polytope and C is a cone.
- Assume $p^* \neq -\infty$.
- Let o be an optimal point: $o \in \mathcal{P} = \mathcal{T} + \mathcal{C}$, i.e., o = t + k, where $t \in \mathcal{T}$ and $k \in \mathcal{C}$.
- Firstly, $c^{\mathsf{T}}k \geq 0$.
- Indeed.

- (i) We know that P = T + C, where T is a polytope and C is a cone.
- Assume $p^* \neq -\infty$.
- Let o be an optimal point: $o \in \mathcal{P} = \mathcal{T} + \mathcal{C}$, i.e., o = t + k, where $t \in \mathcal{T}$ and $k \in \mathcal{C}$.
- Firstly, $c^{\mathsf{T}}k \geq 0$.
- Indeed. For $\alpha \geq 0$, $\alpha k \in \mathcal{C}$, so $t + \alpha k \in \mathcal{P}$.

Geometric Background of LP

- (i) We know that $P = \mathcal{T} + \mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.
- Assume $p^* \neq -\infty$.
- Let o be an optimal point: $o \in \mathcal{P} = \mathcal{T} + \mathcal{C}$, i.e., o = t + k. where $t \in \mathcal{T}$ and $k \in \mathcal{C}$.
- Firstly, $c^T k > 0$.
- Indeed. For $\alpha \geq 0$, $\alpha k \in \mathcal{C}$, so $t + \alpha k \in \mathcal{P}$. If $c^{\mathsf{T}}k < 0$, then the objective function can take arbitrarily small values.

- (i) We know that $P = \mathcal{T} + \mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.
- Assume $p^* \neq -\infty$.
- Let o be an optimal point: $o \in \mathcal{P} = \mathcal{T} + \mathcal{C}$, i.e., o = t + k, where $t \in \mathcal{T}$ and $k \in \mathcal{C}$.
- Firstly, $c^{\mathsf{T}}k \geq 0$.
- Indeed. For $\alpha \geq 0$, $\alpha k \in \mathcal{C}$, so $t + \alpha k \in \mathcal{P}$. If $c^{\mathsf{T}}k < 0$, then the objective function can take arbitrarily small values.
- If $c^T k \ge 0$, we can assume k = 0, i.e., o falls into the polytope part of our polyhedron.

Proof (continued)

Proof (continued)

• Then o is a convex combination of $ext(\mathcal{T})$ points.

Proof (continued)

- ullet Then o is a convex combination of $ext(\mathcal{T})$ points.
- Thus $c^{\mathsf{T}}o$ is a convex combination of $c^{\mathsf{T}}e$ values $(e \in ext(\mathcal{C}))$.

- Then o is a convex combination of $ext(\mathcal{T})$ points.
- Thus $c^{\mathsf{T}}o$ is a convex combination of $c^{\mathsf{T}}e$ values $(e \in ext(\mathcal{C}))$. In particular,

$$c^{\mathsf{T}}o \geq \min\{c^{\mathsf{T}}e : e \in \mathsf{ext}(\mathcal{T})\}.$$

Proof (continued)

- ullet Then o is a convex combination of $ext(\mathcal{T})$ points.
- Thus $c^{\mathsf{T}}o$ is a convex combination of $c^{\mathsf{T}}e$ values $(e \in ext(\mathcal{C}))$. In particular,

$$c^{\mathsf{T}}o \geq \min\{c^{\mathsf{T}}e : e \in \mathsf{ext}(\mathcal{T})\}.$$

This proves the statement.

Proof (continued)

- Then o is a convex combination of $ext(\mathcal{T})$ points.
- Thus $c^{\mathsf{T}}o$ is a convex combination of $c^{\mathsf{T}}e$ values $(e \in ext(\mathcal{C}))$. In particular,

$$c^{\mathsf{T}}o \geq \min\{c^{\mathsf{T}}e : e \in \mathsf{ext}(\mathcal{T})\}.$$

This proves the statement.

(ii)

Proof (continued)

- Then o is a convex combination of $ext(\mathcal{T})$ points.
- Thus $c^{\mathsf{T}}o$ is a convex combination of $c^{\mathsf{T}}e$ values $(e \in ext(\mathcal{C}))$. In particular, $c^{\mathsf{T}}o > \min\{c^{\mathsf{T}}e : e \in ext(\mathcal{T})\}.$

This proves the statement.

(ii) Consider a supporting hyperplane ($\{x : \nu^T x \ge b\}$), where $\{x : \nu^T x = b\} \cap \mathcal{P} = \{x\}$.

Proof (continued)

- Then o is a convex combination of ext(T) points.
- Thus $c^{\mathsf{T}}o$ is a convex combination of $c^{\mathsf{T}}e$ values $(e \in ext(\mathcal{C}))$. In particular, $c^{\mathsf{T}}o > \min\{c^{\mathsf{T}}e : e \in ext(\mathcal{T})\}.$

This proves the statement.

- (ii) Consider a supporting hyperplane ($\{x : \nu^T x \ge b\}$), where $\{x : \nu^T x = b\} \cap \mathcal{P} = \{x\}$.
- \bullet Obviously, $c = \nu$ is a good choice.

Rational Optimal Points

Structure of Polyhedra

Rational Optimal Points

Theorem

For the

Minimize
$$c^{\mathsf{T}}x$$
-t subject to $Ax \leq b$

LP problem, assume that $A \in \mathbb{Q}^{k \times n}$, $b \in \mathbb{Q}^k$.

Rational Optimal Points

Theorem

For the

Minimize
$$c^{\mathsf{T}}x$$
-t subject to $Ax \leq b$

LP problem, assume that $A \in \mathbb{Q}^{k \times n}$, $b \in \mathbb{Q}^k$. Moreover, assume that $\{x : Ax \leq b\}$ is a nice polyhedron.

Rational Optimal Points

Theorem

For the

Minimize
$$c^{\mathsf{T}}x$$
-t subject to $Ax \leq b$

LP problem, assume that $A \in \mathbb{Q}^{k \times n}$, $b \in \mathbb{Q}^k$. Moreover, assume that $\{x : Ax \leq b\}$ is a nice polyhedron.

If $p^* \in \mathbb{R}$, then there exists $x \in \mathbb{Q}^n$ as an optimal point.

Structure of Polyhedra

• If $p^* \in \mathbb{R}$, then we can choose $e \in \text{ext}(\mathcal{P})$ as an optimal point.

- ullet If $p^*\in\mathbb{R}$, then we can choose $e\in\mathsf{ext}(\mathcal{P})$ as an optimal point.
- Then the inequalities $a_i^T x \leq b_i$ satisfied by e are such that the corresponding a_i vectors span \mathbb{R}^n .

- ullet If $p^* \in \mathbb{R}$, then we can choose $e \in \mathsf{ext}(\mathcal{P})$ as an optimal point.
- Then the inequalities $a_i^T x \leq b_i$ satisfied by e are such that the corresponding a_i vectors span \mathbb{R}^n .
- Specifically, we can write a system of n equations, whose matrix is a submatrix of A, constants are the components of b, and e is the unique solution.

- If $p^* \in \mathbb{R}$, then we can choose $e \in \text{ext}(\mathcal{P})$ as an optimal point.
- Then the inequalities $a_i^\mathsf{T} x \leq b_i$ satisfied by e are such that the corresponding a_i vectors span \mathbb{R}^n .
- \bullet Specifically, we can write a system of n equations, whose matrix is a submatrix of A, constants are the components of b, and e is the unique solution.
- By Cramer's rule, the components of e are the ratio of the determinants of two matrices containing rational numbers,

Geometric Background of LP

- If $p^* \in \mathbb{R}$, then we can choose $e \in \text{ext}(\mathcal{P})$ as an optimal point.
- Then the inequalities $a_i^T x \leq b_i$ satisfied by e are such that the corresponding a_i vectors span \mathbb{R}^n .
- Specifically, we can write a system of n equations, whose matrix is a submatrix of A, constants are the components of b, and e is the unique solution.
- By Cramer's rule, the components of e are the ratio of the determinants of two matrices containing rational numbers, specifically rational.

Geometric Background of LP Structure of Polyhedra Polyhedra and Optimization

Proofs

Break Time

Farkas' Lemma: First Alternative Form

Farkas' Lemma, First Alternative Form

Let $Ax \leq b$ be a system of equations, where $A \in \mathbb{R}^{k \times n}$,

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
, and $b \in \mathbb{R}^k$. Then exactly one of the following two

statements holds:

- (i) The system of equations is solvable, i.e., there exists $x_0 \in \mathbb{R}^n$ such that $Ax_0 \leq b$.
- (ii) There exists $0 \le \lambda \in \mathbb{R}^k$ such that $\lambda^\mathsf{T} A = 0^\mathsf{T}$ and $\lambda^\mathsf{T} b = -1$.

Second Alternative Form

Farkas' Lemma, Second Alternative Form

Consider the system of equations $\begin{cases} Ax = b \\ x \succeq 0 \end{cases}$, where $A \in \mathbb{R}^{\ell \times n}$,

$$x=egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}$$
, and $b\in\mathbb{R}^\ell$. Then exactly one of the following two

statements holds:

- (i) The system of equations is solvable, i.e., there exists $0 \le x_0 \in \mathbb{R}^n$ such that $Ax_0 = b$.
- (ii) There exists $\lambda \in \mathbb{R}^\ell$ such that $\lambda^\mathsf{T} A \succeq 0^\mathsf{T}$ and $\lambda^\mathsf{T} b = -1$.

Polyhedra and Optimization

Let $\mathcal{C} \subset \mathbb{R}^n$ be a finitely generated cone. That is, there exists a matrix $G \in \mathbb{R}^{n \times k}$ such that

$$\mathcal{C} = \{G\lambda : 0 \leq \lambda \in \mathbb{R}^k\}.$$

Let $\mathcal{C} \subset \mathbb{R}^n$ be a finitely generated cone. That is, there exists a matrix $G \in \mathbb{R}^{n \times k}$ such that

$$\mathcal{C} = \{G\lambda : 0 \leq \lambda \in \mathbb{R}^k\}.$$

The columns of G are the generators of the cone.

Let $\mathcal{C} \subset \mathbb{R}^n$ be a finitely generated cone. That is, there exists a matrix $G \in \mathbb{R}^{n \times k}$ such that

$$\mathcal{C} = \{G\lambda : 0 \leq \lambda \in \mathbb{R}^k\}.$$

The columns of G are the generators of the cone.

• Alternatively, $b \in \mathcal{C}_G$ if and only if $\begin{cases} Gx = b, \\ 0 \leq x \end{cases}$ is solvable.

Farkas' Lemma: Geometric Form

Let $\mathcal{C} \subset \mathbb{R}^n$ be a finitely generated cone. That is, there exists a matrix $G \in \mathbb{R}^{n \times k}$ such that

$$\mathcal{C} = \{G\lambda : 0 \leq \lambda \in \mathbb{R}^k\}.$$

The columns of G are the generators of the cone.

- Alternatively, $b \in \mathcal{C}_G$ if and only if $\begin{cases} Gx = b, \\ 0 \leq x \end{cases}$ is solvable.
- The infeasibility of such a system of inequalities is precisely one alternative of Farkas' Lemma.

Let $\mathcal{C} \subset \mathbb{R}^n$ be a finitely generated cone. That is, there exists a matrix $G \in \mathbb{R}^{n \times k}$ such that

$$\mathcal{C} = \{G\lambda : 0 \leq \lambda \in \mathbb{R}^k\}.$$

The columns of G are the generators of the cone.

- Alternatively, $b \in \mathcal{C}_G$ if and only if $\begin{cases} Gx = b, \\ 0 \leq x \end{cases}$ is solvable.
- The infeasibility of such a system of inequalities is precisely one alternative of Farkas' Lemma. What is the other alternative?

Farkas' Lemma: Geometric Form (continued)

Structure of Polyhedra

• According to Farkas' Lemma, the infeasibility of $\begin{cases} Gx = b, \\ 0 < x \end{cases}$ equivalent to the existence of a vector $\lambda \in \mathbb{R}^n$ such that

$$\lambda^{\mathsf{T}} G \succeq 0 \text{ and } \lambda^{\mathsf{T}} b = -1.$$

Farkas' Lemma: Geometric Form (continued)

Structure of Polyhedra

• According to Farkas' Lemma, the infeasibility of $\begin{cases} Gx = b, \\ 0 \leq x \end{cases}$ is equivalent to the existence of a vector $\lambda \in \mathbb{R}^n$ such that

$$\lambda^{\mathsf{T}} G \succeq 0 \text{ and } \lambda^{\mathsf{T}} b = -1.$$

• In other words, the hyperplane $\mathcal{H}: \lambda^T x = 0$ passing through the origin separates the cone and the point b, where one side $\mathcal{F}^{\geq}: \lambda^T x \geq 0$ contains the cone \mathcal{C} , while the other side $\mathcal{F}^{\leq}: \lambda^T x \leq 0$ contains b.

Farkas' Lemma: Geometric Form (continued)

• According to Farkas' Lemma, the infeasibility of $\begin{cases} Gx = b, \\ 0 \leq x \end{cases}$ is equivalent to the existence of a vector $\lambda \in \mathbb{R}^n$ such that

$$\lambda^{\mathsf{T}} G \succeq 0 \text{ and } \lambda^{\mathsf{T}} b = -1.$$

• In other words, the hyperplane $\mathcal{H}: \lambda^\mathsf{T} x = 0$ passing through the origin separates the cone and the point b, where one side $\mathcal{F}^\geq: \lambda^\mathsf{T} x \geq 0$ contains the cone \mathcal{C} , while the other side $\mathcal{F}^\leq: \lambda^\mathsf{T} x < 0$ contains b.

Farkas' Lemma: Geometric Form

Let $\mathcal{C} \subset \mathbb{R}^n$ be a finitely generated cone, $b \notin \mathcal{C}$. Then there exists a hyperplane $\mathcal{H} : \lambda^T x = 0$ that separates the cone and b.

Let $\mathcal{G} = \{G\lambda : 0 \leq \lambda\}$ be a finitely generated cone.

Let $\mathcal{G} = \{G\lambda : 0 \leq \lambda\}$ be a finitely generated cone.

Let

$$\widehat{\mathcal{G}} = \left\{ \begin{pmatrix} \lambda \\ y \end{pmatrix} : y = G\lambda, 0 \le \lambda \right\}.$$

Let $\mathcal{G} = \{G\lambda : 0 \leq \lambda\}$ be a finitely generated cone.

Let

$$\widehat{\mathcal{G}} = \left\{ \begin{pmatrix} \lambda \\ y \end{pmatrix} : y = G\lambda, 0 \leq \lambda \right\}.$$

Clearly, $\widehat{\mathcal{G}}$ is a polyhedron.

Let $\mathcal{G} = \{G\lambda : 0 \leq \lambda\}$ be a finitely generated cone.

Let

$$\widehat{\mathcal{G}} = \left\{ \begin{pmatrix} \lambda \\ y \end{pmatrix} : y = G\lambda, 0 \le \lambda \right\}.$$

Clearly, $\widehat{\mathcal{G}}$ is a polyhedron.

Obviously, $\mathcal G$ can be obtained from the projections of $\widehat{\mathcal G}$.

Let $\mathcal{G} = \{G\lambda : 0 \leq \lambda\}$ be a finitely generated cone.

Let

$$\widehat{\mathcal{G}} = \left\{ \begin{pmatrix} \lambda \\ y \end{pmatrix} : y = G\lambda, 0 \le \lambda \right\}.$$

Clearly, $\widehat{\mathcal{G}}$ is a polyhedron.

Obviously, $\mathcal G$ can be obtained from the projections of $\widehat{\mathcal G}$.

$\mathsf{Theorem}$

The projection of a polyhedron is also a polyhedron.

Let $\mathcal{G} = \{G\lambda : 0 \leq \lambda\}$ be a finitely generated cone.

Let

$$\widehat{\mathcal{G}} = \left\{ \begin{pmatrix} \lambda \\ y \end{pmatrix} : y = G\lambda, 0 \leq \lambda \right\}.$$

Clearly, $\widehat{\mathcal{G}}$ is a polyhedron.

Obviously, $\mathcal G$ can be obtained from the projections of $\widehat{\mathcal G}$.

$\mathsf{Theorem}$

The projection of a polyhedron is also a polyhedron.

We know that \mathcal{G} is both a polyhedron and a cone.

Let $\mathcal{G} = \{G\lambda : 0 \leq \lambda\}$ be a finitely generated cone.

Let

$$\widehat{\mathcal{G}} = \left\{ \begin{pmatrix} \lambda \\ y \end{pmatrix} : y = G\lambda, 0 \le \lambda \right\}.$$

Clearly, $\widehat{\mathcal{G}}$ is a polyhedron.

Obviously, \mathcal{G} can be obtained from the projections of $\widehat{\mathcal{G}}$.

$\mathsf{Theorem}$

The projection of a polyhedron is also a polyhedron.

We know that \mathcal{G} is both a polyhedron and a cone.

Lemma

We know that C is both a polyhedron and a cone.

Let $\mathcal{G} = \{G\lambda : 0 \leq \lambda\}$ be a finitely generated cone.

Structure of Polyhedra

Let

$$\widehat{\mathcal{G}} = \left\{ \begin{pmatrix} \lambda \\ y \end{pmatrix} : y = G\lambda, 0 \leq \lambda \right\}.$$

Clearly, $\widehat{\mathcal{G}}$ is a polyhedron.

Obviously, \mathcal{G} can be obtained from the projections of $\widehat{\mathcal{G}}$.

$\mathsf{Theorem}$

The projection of a polyhedron is also a polyhedron.

We know that \mathcal{G} is both a polyhedron and a cone.

Lemma

We know that $\mathcal C$ is both a polyhedron and a cone. Then $\mathcal C$ is a polyhedral cone.

Polyhedra and Optimization

Lemma

Suppose that

$$\{x: Ax \leq 0\} = \{G\lambda: 0 \leq \lambda\}.$$

Lemma

Suppose that

$$\{x: Ax \leq 0\} = \{G\lambda: 0 \leq \lambda\}.$$

Then

$$\{x: G^{\mathsf{T}}x \leq 0\} = \{A^{\mathsf{T}}\lambda: 0 \leq \lambda\}.$$

Lemma

Suppose that

$$\{x: Ax \leq 0\} = \{G\lambda: 0 \leq \lambda\}.$$

Then

$$\{x: G^{\mathsf{T}}x \leq 0\} = \{A^{\mathsf{T}}\lambda: 0 \leq \lambda\}.$$

• We can interpret the condition of the lemma as two containment relations:

Lemma

Suppose that

$$\{x: Ax \leq 0\} = \{G\lambda: 0 \leq \lambda\}.$$

Then

$$\{x: G^{\mathsf{T}}x \leq 0\} = \{A^{\mathsf{T}}\lambda: 0 \leq \lambda\}.$$

• We can interpret the condition of the lemma as two containment relations:

$$\{x: Ax \prec 0\} \supset \{G\lambda: 0 \prec \lambda\}.$$

Lemma

Suppose that

$$\{x: Ax \leq 0\} = \{G\lambda: 0 \leq \lambda\}.$$

Then

$$\{x: G^{\mathsf{T}}x \leq 0\} = \{A^{\mathsf{T}}\lambda: 0 \leq \lambda\}.$$

• We can interpret the condition of the lemma as two containment relations:

$$\{x: Ax \prec 0\} \supset \{G\lambda: 0 \prec \lambda\}.$$

$$\{x: Ax \leq 0\} \subset \{G\lambda: 0 \leq \lambda\}.$$

$$\{x: Ax \leq 0\} \supset \{G\lambda: 0 \leq \lambda\}.$$

$$\{x: Ax \leq 0\} \supset \{G\lambda: 0 \leq \lambda\}.$$

 \bullet The elements on the left side are cone combinations of the columns of G.

$$\{x: Ax \leq 0\} \supset \{G\lambda: 0 \leq \lambda\}.$$

• The elements on the left side are cone combinations of the columns of G. By containment, each of these vectors is contained in the left-hand set.

$$\{x: Ax \leq 0\} \supset \{G\lambda: 0 \leq \lambda\}.$$

- The elements on the left side are cone combinations of the columns of *G*. By containment, each of these vectors is contained in the left-hand set.
- This is equivalent to saying that the columns of *G* are contained in the left-hand set.

$$\{x: Ax \leq 0\} \supset \{G\lambda: 0 \leq \lambda\}.$$

- The elements on the left side are cone combinations of the columns of *G*. By containment, each of these vectors is contained in the left-hand set.
- This is equivalent to saying that the columns of *G* are contained in the left-hand set.
- This is equivalent to saying that

the elements of AG are all non-positive.

Structure of Polyhedra

$$\{x: Ax \leq 0\} \subset \{G\lambda: 0 \leq \lambda\}.$$

$${x: Ax \leq 0} \subset {G\lambda : 0 \leq \lambda}.$$

• An element b from the left side is also in the right side.

$$\{x: Ax \leq 0\} \subset \{G\lambda: 0 \leq \lambda\}.$$

ullet An element b from the left side is also in the right side. That is, if $Ab \preceq 0$, then the system $\begin{cases} G\lambda = b \\ 0 \preceq \lambda \end{cases}$ is solvable.

$${x: Ax \leq 0} \subset {G\lambda : 0 \leq \lambda}.$$

- An element b from the left side is also in the right side. That is, if $Ab \leq 0$, then the system $\begin{cases} G\lambda = b \\ 0 \leq \lambda \end{cases}$ is solvable.
- By Farkas' Lemma, this can be reformulated as:

$$\{x: Ax \leq 0\} \subset \{G\lambda: 0 \leq \lambda\}.$$

- An element b from the left side is also in the right side. That is, if $Ab \leq 0$, then the system $\begin{cases} G\lambda = b \\ 0 \leq \lambda \end{cases}$ is solvable.
- By Farkas' Lemma, this can be reformulated as: The system $\begin{cases} Ab \leq 0 \\ \mu^{\mathsf{T}}G \leq 0 \end{cases}$ has no solution. $\mu^{\mathsf{T}}b = 1$

Polyhedra and Optimization

Based on the above, the conditions are

the elements of
$$AG$$
 are all non-positive and
$$\begin{cases} Ab \leq 0 \\ \mu^{\mathsf{T}}G \leq 0 \end{cases} \text{ has no solution}$$
 has no solution $\mu^{\mathsf{T}}b = 1$

• Based on the above, the conditions are

the elements of AG are all non-positive and $\begin{cases} AB \leq 0 \\ \mu^{\mathsf{T}}G \leq 0 \end{cases}$ has no solution has no solution $\mu^{\mathsf{T}}b = 1$

Alternatively,

the elements of $G^\mathsf{T} A^\mathsf{T}$ are all non-positive and $\begin{cases} G^\mathsf{T} \mu \preceq 0 \\ b^\mathsf{T} A^\mathsf{T} \preceq 0 \end{cases}$ has no $b^\mathsf{T} \mu = 1$

• Based on the above, the conditions are

the elements of
$$AG$$
 are all non-positive and
$$\begin{cases} Ab \leq 0 \\ \mu^{\mathsf{T}}G \leq 0 \end{cases}$$
 has no solution has no solution and
$$\begin{cases} Ab \leq 0 \\ \mu^{\mathsf{T}}B \leq 1 \end{cases}$$

Alternatively,

the elements of
$$G^\mathsf{T} A^\mathsf{T}$$
 are all non-positive and
$$\begin{cases} G^\mathsf{T} \mu \preceq 0 \\ b^\mathsf{T} A^\mathsf{T} \preceq 0 \end{cases}$$
 has no $b^\mathsf{T} \mu = 1$

• These are equivalent to the proposition to be proven.

Polyhedra and Optimization

Polyhedra and Optimization

Polytopes

Definition

A polyhedron $\mathcal{P} \subset \mathbb{R}^n$ is called a polytope if it is bounded.

Definition

A polyhedron $\mathcal{P} \subset \mathbb{R}^n$ is called a polytope if it is bounded.

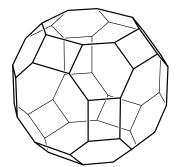
• Bounded polyhedra/polytopes play an important role in understanding polyhedra.

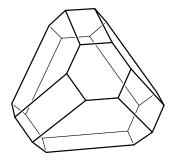
Polytopes

Definition

A polyhedron $\mathcal{P} \subset \mathbb{R}^n$ is called a polytope if it is bounded.

• Bounded polyhedra/polytopes play an important role in understanding polyhedra.





Proofs

Fundamental Theorem of Convex Polytopes

Theorem

Let $\mathcal{P} \subset \mathbb{R}^d$. Then the following are equivalent:

- (i) \mathcal{P} is a bounded polyhedron.
- (ii) \mathcal{P} is the convex hull of finitely many points in \mathbb{R}^d .

Structure of Polyhedra

Let \mathcal{P} be a polyhedron, i.e.,

$$\mathcal{P} = \{x : Ax \leq b\} \subset \mathbb{R}^d.$$

Let \mathcal{P} be a polyhedron, i.e.,

$$\mathcal{P} = \{x : Ax \leq b\} \subset \mathbb{R}^d.$$

Define

$$\widehat{\mathcal{P}} = \left\{ \begin{pmatrix} x \\ \lambda \end{pmatrix} : x \in \mathbb{R}^d, \lambda \in \mathbb{R}, Ax \leq \lambda b, 0 \leq \lambda \right\} \subset \mathbb{R}^d \times \mathbb{R}_+ \subset \mathbb{R}^{d+1}.$$

Let \mathcal{P} be a polyhedron, i.e.,

$$\mathcal{P} = \{x : Ax \leq b\} \subset \mathbb{R}^d.$$

Define

$$\widehat{\mathcal{P}} = \left\{ \begin{pmatrix} x \\ \lambda \end{pmatrix} : x \in \mathbb{R}^d, \lambda \in \mathbb{R}, Ax \leq \lambda b, 0 \leq \lambda \right\} \subset \mathbb{R}^d \times \mathbb{R}_+ \subset \mathbb{R}^{d+1}.$$

Example

$$\mathcal{P} = \{(x, y)^{\mathsf{T}} : x \leq 0, y \leq 0\} \subset \mathbb{R}^2.$$

Let \mathcal{P} be a polyhedron, i.e.,

$$\mathcal{P} = \{x : Ax \leq b\} \subset \mathbb{R}^d.$$

Define

$$\widehat{\mathcal{P}} = \left\{ \begin{pmatrix} x \\ \lambda \end{pmatrix} : x \in \mathbb{R}^d, \lambda \in \mathbb{R}, Ax \leq \lambda b, 0 \leq \lambda \right\} \subset \mathbb{R}^d \times \mathbb{R}_+ \subset \mathbb{R}^{d+1}.$$

Example

$$\mathcal{P} = \{(x,y)^{\mathsf{T}} : x \leq 0, y \leq 0\} \subset \mathbb{R}^2.$$

$$\widehat{\mathcal{P}} = \{(x, y, \lambda)^{\mathsf{T}} : x \le 0, y \le 0, \lambda \ge 0\} \subset \mathbb{R}^2 \times \mathbb{R}_+ \subset \mathbb{R}^3.$$

◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶</

Coning of Polyhedra: The Observation

Observation

- (i) $x \in \mathcal{P}$ if and only if $\begin{pmatrix} x \\ 1 \end{pmatrix} \in \widehat{\mathcal{P}}$.
- (ii) $\widehat{\mathcal{P}}$ is a polyhedral cone.

Fundamental Theorem of Convex Polytopes: Proof

 \bullet Since ${\mathcal P}$ is bounded, the polyhedral cone $\widehat{{\mathcal P}}$ contains only 0 from the hyperplane $\lambda=0.$

Fundamental Theorem of Convex Polytopes: Proof (i)⇒(ii)

- \bullet Since ${\mathcal P}$ is bounded, the polyhedral cone $\widehat{{\mathcal P}}$ contains only 0 from the hyperplane $\lambda=0.$
- By Weyl's theorem,

$$\widehat{\mathcal{P}} = \langle \widehat{g}_1, \widehat{g}_2, \dots, \widehat{g}_k \rangle_{\mathsf{cone}} = \left\langle \begin{pmatrix} g_1 \\ 1 \end{pmatrix}, \begin{pmatrix} g_2 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} g_k \\ 1 \end{pmatrix} \right\rangle_{\mathsf{cone}}$$

Fundamental Theorem of Convex Polytopes: Proof $(i) \Rightarrow (ii)$

- ullet Since ${\mathcal P}$ is bounded, the polyhedral cone $\widehat{{\mathcal P}}$ contains only 0 from the hyperplane $\lambda = 0$.
- By Weyl's theorem,

$$\widehat{\mathcal{P}} = \langle \widehat{g}_1, \widehat{g}_2, \dots, \widehat{g}_k \rangle_{\mathsf{cone}} = \left\langle \begin{pmatrix} g_1 \\ 1 \end{pmatrix}, \begin{pmatrix} g_2 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} g_k \\ 1 \end{pmatrix} \right\rangle_{\mathsf{cone}}$$

• Thus,

$$\begin{pmatrix} g \\ 1 \end{pmatrix} \in \widehat{\mathcal{P}}$$

if and only if

$$g \in \langle g_1, g_2, \dots, g_k \rangle_{\text{convex}}$$

Fundamental Theorem of Convex Polytopes: Proof $(ii) \Rightarrow (i)$

Assume $\mathcal{P} = \langle g_1, g_2, \dots, g_k \rangle_{convex}$.

Fundamental Theorem of Convex Polytopes: Proof

Let

Assume $\mathcal{P} = \langle g_1, g_2, \dots, g_k \rangle_{\mathsf{convex}}$. Clearly, \mathcal{P} is bounded.

$$\widehat{\mathcal{P}} = \left\langle \begin{pmatrix} g_1 \\ 1 \end{pmatrix}, \begin{pmatrix} g_2 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} g_k \\ 1 \end{pmatrix} \right\rangle_{cone},$$

a finitely generated polyhedral cone.

Fundamental Theorem of Convex Polytopes: Proof $(ii)\Rightarrow(i)$

Assume $\mathcal{P}=\langle g_1,g_2,\ldots,g_k \rangle_{\mathsf{convex}}.$ Clearly, \mathcal{P} is bounded. Let

$$\widehat{\mathcal{P}} = \left\langle \begin{pmatrix} g_1 \\ 1 \end{pmatrix}, \begin{pmatrix} g_2 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} g_k \\ 1 \end{pmatrix} \right\rangle_{cone},$$

a finitely generated polyhedral cone.

By Weyl's theorem, there exists a matrix (A|-b) such that

$$\widehat{\mathcal{P}} = \left\{ \begin{pmatrix} x \\ \lambda \end{pmatrix} : (A|-b) \begin{pmatrix} x \\ \lambda \end{pmatrix} \leq 0 \right\}.$$

Fundamental Theorem of Convex Polytopes: Proof $(ii)\Rightarrow(i)$

Assume $\mathcal{P}=\langle g_1,g_2,\ldots,g_k \rangle_{\mathsf{convex}}.$ Clearly, \mathcal{P} is bounded. Let

$$\widehat{\mathcal{P}} = \left\langle \begin{pmatrix} g_1 \\ 1 \end{pmatrix}, \begin{pmatrix} g_2 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} g_k \\ 1 \end{pmatrix} \right\rangle_{cone},$$

a finitely generated polyhedral cone.

By Weyl's theorem, there exists a matrix (A|-b) such that

$$\widehat{\mathcal{P}} = \left\{ \begin{pmatrix} x \\ \lambda \end{pmatrix} : (A|-b) \begin{pmatrix} x \\ \lambda \end{pmatrix} \leq 0 \right\}.$$

Then

$$\mathcal{P} = \{x : Ax \prec b\}.$$

i.e., \mathcal{P} is a polyhedron.

Polyhedra and Optimization

Combining Geometric Sets

Definition

Let $A, B \subset \mathbb{R}^d$. Then

$$A + B = \{a + b : a \in A, b \in B\}$$

is called the direct or Minkowski sum of sets A and B.

Minkowski-Weyl Theorem

Structure of Polyhedra

Minkowski-Weyl Theorem

Minkowski–Weyl Theorem

(i) Let \mathcal{P} be any polyhedron. Then there exist finitely generated convex sets/polytopes ${\mathcal T}$ and ${\mathcal C}$

$$\mathcal{P} = \mathcal{T} + \mathcal{C}.$$

Minkowski-Weyl Theorem

Minkowski-Weyl Theorem

(i) Let ${\cal P}$ be any polyhedron. Then there exist finitely generated convex sets/polytopes ${\cal T}$ and ${\cal C}$

$$\mathcal{P} = \mathcal{T} + \mathcal{C}$$
.

(ii) Let \mathcal{T} be a finitely generated convex set/polytope and \mathcal{C} be a finitely generated cone. Then $\mathcal{T} + \mathcal{C}$ is a polyhedron.

ullet For ${\mathcal P}$, we defined a $\widehat{{\mathcal P}}$ polyhedral cone.

Minkowski-Weyl Theorem: Proof: (i)

- ullet For ${\mathcal P}$, we defined a $\widehat{{\mathcal P}}$ polyhedral cone.
- By Weyl's theorem,

$$\widehat{\mathcal{P}} = \left\langle \begin{pmatrix} g_1 \\ 1 \end{pmatrix}, \begin{pmatrix} g_2 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} g_k \\ 1 \end{pmatrix}, \begin{pmatrix} h_1 \\ 0 \end{pmatrix}, \begin{pmatrix} h_2 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} h_\ell \\ 0 \end{pmatrix} \right\rangle_{cone},$$

Minkowski-Weyl Theorem: Proof: (i)

- ullet For ${\mathcal P}$, we defined a $\widehat{{\mathcal P}}$ polyhedral cone.
- By Weyl's theorem,

$$\widehat{\mathcal{P}} = \left\langle \begin{pmatrix} g_1 \\ 1 \end{pmatrix}, \begin{pmatrix} g_2 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} g_k \\ 1 \end{pmatrix}, \begin{pmatrix} h_1 \\ 0 \end{pmatrix}, \begin{pmatrix} h_2 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} h_\ell \\ 0 \end{pmatrix} \right\rangle_{cone},$$

• Then

$$\mathcal{P} = \langle g_1, g_2, \dots, g_k \rangle_{\text{convex}} + \langle h_1, h_2, \dots, h_\ell \rangle_{\text{cone}},$$

Polyhedra and Optimization

Minkowski-Weyl Theorem: Proof: (ii)

Assume $\mathcal{P}=\langle g_1,g_2,\ldots,g_k
angle_{\mathsf{convex}}+\langle h_1,h_2,\ldots,h_\ell
angle_{\mathsf{cone}}.$ Let

$$\widehat{\mathcal{P}} = \left\langle \begin{pmatrix} g_1 \\ 1 \end{pmatrix}, \begin{pmatrix} g_2 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} g_k \\ 1 \end{pmatrix}, \begin{pmatrix} h_1 \\ 0 \end{pmatrix}, \begin{pmatrix} h_2 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} h_\ell \\ 0 \end{pmatrix} \right\rangle_{cone},$$

a finitely generated cone.

Minkowski-Weyl Theorem: Proof: (ii)

Assume $\mathcal{P}=\langle g_1,g_2,\ldots,g_k
angle_{\mathsf{convex}}+\langle h_1,h_2,\ldots,h_\ell
angle_{\mathsf{cone}}.$ Let

$$\widehat{\mathcal{P}} = \left\langle \begin{pmatrix} g_1 \\ 1 \end{pmatrix}, \begin{pmatrix} g_2 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} g_k \\ 1 \end{pmatrix}, \begin{pmatrix} h_1 \\ 0 \end{pmatrix}, \begin{pmatrix} h_2 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} h_\ell \\ 0 \end{pmatrix} \right\rangle_{cone},$$

a finitely generated cone.

By Weyl's theorem, there exists a matrix (A|-b) such that

$$\widehat{\mathcal{P}} = \left\{ \begin{pmatrix} x \\ \lambda \end{pmatrix} : (A|-b) \begin{pmatrix} x \\ \lambda \end{pmatrix} \leq 0 \right\}.$$

Minkowski-Weyl Theorem: Proof: (ii)

Assume $\mathcal{P} = \langle g_1, g_2, \dots, g_k \rangle_{\mathsf{convex}} + \langle h_1, h_2, \dots, h_\ell \rangle_{\mathsf{cone}}.$ Let

$$\widehat{\mathcal{P}} = \left\langle \begin{pmatrix} g_1 \\ 1 \end{pmatrix}, \begin{pmatrix} g_2 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} g_k \\ 1 \end{pmatrix}, \begin{pmatrix} h_1 \\ 0 \end{pmatrix}, \begin{pmatrix} h_2 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} h_\ell \\ 0 \end{pmatrix} \right\rangle_{cone},$$

a finitely generated cone.

By Weyl's theorem, there exists a matrix (A|-b) such that

$$\widehat{\mathcal{P}} = \left\{ \begin{pmatrix} x \\ \lambda \end{pmatrix} : (A|-b) \begin{pmatrix} x \\ \lambda \end{pmatrix} \leq 0 \right\}.$$

Then

$$\mathcal{P} = \{x : Ax \prec b\},\$$

i.e., \mathcal{P} is a polyhedron.

Polyhedra and Optimization

Thank you for your attention!