
1

”On the Shoulders of Giants”
A brief excursion into the history of mathematical programming 1

R. Tichatschke
Department of Mathematics, University Trier, Germany

Similar to many mathematical fields also the topic of mathematical programming has
its origin in applied problems. But, in contrast to other branches of mathematics, we
don’t have to dig too deeply into the past centuries to find their roots. The historical tree
of mathematical programming, starting from its conceptual roots to its present shape,
is remarkably short, and to quote ISAAK NEWTON, we can say:

”We are standing on the shoulders of giants”.

The goal of this paper is to describe briefly the historical growth of mathematical pro-
gramming from its beginnings to the seventies of the last century and to review its basic
ideas for a broad audience. During this process we will demonstrate that optimization
is a natural way of thinking which follows some extremal principles.

1 The Giants
Let us start with LEONHARD EULER.'
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Leonhard Euler (1707-1783)

1727: Euler has been appointed professor (by Daniel Bernoul-
li) at the University of Saint Petersburg, Russia.

Member of St. Petersburg’s Academy of Science and since
1741 member of the Prussian Academy of Science, Berlin.

1744: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio proble-
matis isoperimetrici latissimo sensu accepti.
(Method to find curves, possessing some property in the most or smallest degree or the resolution of the
Isoperimetric problem considered in the broadest sense.)
In this work he has established the variational analysis in a systematic way.

1Part of a lecture held at the University of Trier on the occasion of the Year of Mathematics 2008 in
Germany; published in: Discussiones Mathematicae, vol. 32, 2012.
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He is the most productive mathematician of all times (his oeuvre consists of 72 volu-
mes) and as one of the first he captured the importance of the optimization. He wrote
[33]: ”Whatever human paradigm is manifest, it usually reflects the behavior of maxi-
mization or minimization. Hence, there are no doubts at all that natural phenomena can
be explained by means of the methods of maximization or minimization.”

It is not surprising why optimization appears as a natural thought pattern. Thousands of
years human beings have sought solutions for problems which require a minimal effort
and/or a maximal revenue. This approach has contributed to the growth of all branches
of mathematics. Moreover, the thought of optimizing something has entered nowadays
many disciplines of science.

Back to EULER. He has delivered important contributions on the field of optimization
in both theory and methods. His characterization of optimal solutions, i.e. the des-
cription of necessary optimality conditions, has founded the variational analysis. This
topic treats problems, where one or more unknown functions are sought such that some
definite integral, depending on the chosen function, attains its largest or smallest value.∫ t1

t0

L(y(t), y′(t), t)dt→ min!, y(t0) = a, y(t1) = b. (1)

A famous example is the Brachistochrone problem:�

�

�
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Problem: Find the path (curve) of a mass point, which moves in shortest time under the influence of
the gravity from point A = (0, 0) to point B = (a, b):

J (y) :=

∫ a

0

√
1 + y′2(x)

2gy(x)
dx → min!, y(0) = 0, y(a) = b.

This problem had been formulated already in 1696 by JOHANN BERNOULLI, and it is
known that he always quarreled with his brother JACOB BERNOULLI, who found the
correct solution to this problem, but was unable to prove it. In 1744 Euler answered
this question by proving the following theorem.

Theorem Suppose y = y(t), t0 ≤ t ≤ t1, is a C2-solution of the minimization
problem (1), then the (Euler)-equation holds:

d

dt
Ly′ − Ly = 0.

In the case of the Brachistochrone this equation has the particular form (because L does
not depend on time t):

d

dt
(y′Ly′ − L) = 0.

Solving this differential equation one gets the sought solution as arc of a cycloid.
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Solution: Cycloid
x(t) = c1 + c(t− sin t); y(t) = c(1− cos t).
0 ≤ t ≤ t∗.
The constants c, c1 and t∗ are determined by the
boundary conditions.
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The cycloid describes the behavior of a tautochrone, meaning that a mass point (x(t), y(t))
sliding down a tautochrone-shaped frictionless wire will take the same amount of time
to reach the bottom no matter how high or low the release point is. In fact, since a tau-
tochrone is also a brachistochrone, the mass point will take the shortest possible time
to reach the bottom out of all possible shapes of the wire.
EULER is also one of the first who used methods of discrete approximation for solving
variational problems. With this method he has solved, for instance, the well-known
Isoperimetric problem:'
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Problem: Under all closed curves K of length L, enclosing
the area F , find the one which maximizes the area F .
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Solution: K - circle with circumference L.

In today’s language of optimization this problem can be considered as a maximization
problem subject to a constraint, because the length L is understood as a restriction.
More than 200 years later C. CARATHÉODORY (1873-1950) has described Euler’s va-
riational analysis as ”one of the most beautiful mathematical works, which has been
ever written” [13].'
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Joseph Louis Lagrange (1736-1813)

1755: Professor for mathematics at the Royal Artillery School
in Turin.

1757: He is one of the founders of the Academy of Science in
Turin.

1766: Director of the Prussian Academy of Science in Berlin
and successor of Euler.

Accomplisher of the building of Newton’s mechanics, worked also in selestical mechanics, Algebra
and number theory.

1762: Multivariable Variational Analysis,
1788: Méchanique analytique.

In 1762 LAGRANGE simplified Euler’s deduction of the necessary optimality conditi-
ons and was able to generalize these conditions (so called Euler-Lagrange-equation)
for multivariate functions [70], [71]. His starting point has been the equations of mo-
tions in the mechanics. Dealing with the movement of mass points on curves or areas,
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one has to add to Newton’s equation so-called forces of pressure to keep the points
at the curve or area. This apparatus is rather clumsy. Following the ingenious idea of
Lagrange it became much more elegant – by inserting a suitable system of coordinates
– to eliminate all the constraints completely. Newton’s equation of mechanics (second
law: a = F/m, i.e. acceleration a of a body is parallel and directly proportional to
the net force F and inversely proportional to the mass m) cannot be translated to more
sophisticated physical theories like electrodynamics, universal relativity theory, theory
of elementary particles etc. But the Lagrange approach can be generalized to all field
theories in physics. The corresponding variational description is Hamilton’s principle
of stationarity, named after WILLIAM ROWAN HAMILTON (1805-1865). It proves to
be an extremal principle and describes a generalization of different physical observa-
tions. In 1746 PIERRE LOUIS MAUPERTUIS was the first who discussed a universal
valid principle of nature behaving extremal or optimal. For instance, a rolling ball is
locally always following the steepest descent; the difference of the temperature in a
body is creating a thermal stream in the direction of the lowest temperature or a ray of
light shining through different media is always taking the path with the shortest time.
(Fermat’s principle).
EULER AND LAGRANGE contributed essentially to the mathematical formulation of
these thoughts. CARL GUSTAV JAKOB JACOBI (1804-1851) wrote in this respect:
”While Lagrange was going to generalize Euler’s method of variational analysis, he
observed how one can describe in one line the basic equation for all problems of ana-
lytical mechanics.”[49].'
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Lagrange principle:

min {f(x) : g(x) = 0}  L(x, λ) := f(x) + λg(x)→ min(x,λ)∈Rn+1

x∗

K

∇ f (x∗) = ∇g(x∗)

By crossing of the level lines f(x) = const the value of the objective function f is chan-
ging; it becomes (locally) extremal if curve K touches at x∗ tangentially such a level line,
i.e., the tangents of both curves coincide at x∗, hence their normal vectors ∇f and ∇g are
co-linear at x∗:
Euler-Lagrange formalism: x∗ is solution ⇒ ∃ λ∗ such that

Lx(x∗, λ∗) = 0 ⇔ ∇f(x∗) + λ∗∇g(x∗) = 0
Lλ(x∗, λ∗) = 0 ⇔ g(x∗) = 0

The description of many physical problems has been simplified by LAGRANGE’S for-
malism. Today it is a classical tool in optimization and finds its application wherever
extrema subject to equality constraints have to be calculated.
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Probably, this is the right place to mention that the Euler-Lagrange-equations are neces-
sary conditions for a curve or a point to be optimal. However, in using these conditions,
historically many errors were made which gave rise to mistakes for decades.
It is as in PERRON’S paradoxon:�
�

�
�

Let N be the largest positive integer. Then for N 6= 1 it holds N2 > N , contradicting that N is the

largest integer.

Conclusion: N = 1 is the largest integer.

Implications as above are devastating, nonetheless they were made often. For instance,
in elementary algebra in old Greece, where problems were solved beginning with the
phrase: ”Let x be the sought quantity”.

In variational analysis the Euler equation belongs to the so-called necessary conditions.
It has been obtained by the same pattern of argumentation as in Perron’s paradoxon.
The basic assumption that there exists a solution is used for calculating a solution who-
se existence is only postulated. However, in the class of problems, where this basic
assumption holds true, there is no wrongdoing. But, from where do we know that a
concrete problem belongs exactly to this class? The so-called necessary condition does
not answer this question. Therefore, a ”solution”, obtained by these necessary Euler
conditions, is still not a solution, but only a candidate for being a solution.
It is surprising that such an elementary point of logic went unnoticed for a long ti-
me. The first who criticized the Euler-Lagrange method was KARL WEIERSTRASS
(1815-1897) almost one century later. Even GEORG FRIEDRICH BERNHARD RIE-
MANN (1826-1866) made the same unjust assumption in his famous Dirichlet principle
(cf. [39]).

While at that time the resolution of several types of equations was a central topic in
mathematics, one was mainly interested in finding unique solutions. Solving of inequa-
lities arose a marginal interest only. Especially solving of inequalities by algorithmic
methods wasn’t playing almost any role.
FOURIER [38] was one of the first who described a systematic elimination method for
solving linear inequalities, similar – but in its realization much more complicated – to
Gauss elimination, which was already known by the Chinese people 300 years earlier,
of course without CARL FRIEDRICH GAUSS’s (1777-1855) knowing.'
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Jean Baptiste Joseph de Fourier (1768-1830)

1797: Professor for analysis and mechanics at the
École Polytechnique Paris, successor of Lagrange.
1832: Théorie analytique de la chaleur.
(Analytic theory of the heat).

First systematic foundation of (Fourier) series and (Fourier) integrals for solving differential equations.
A memorial plaque of him can be found at the Eiffel tower in Paris.

He was a very practical-minded man. In 1802 Napoleon appointed him prefect of the
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department Isère in the south of France. In this position he had to drain the marshes
near Lyon. In 1815 Napoleon (after his return from island Elba) installed him as prefect
of the department Rhône. He was working lifelong as secretary of the French Academy
of Science.
Among the few who worked with inequality systems was FARKAS, born near Klausen-
burg (nowadays Cluj-Napoca, Romania). He investigated linear inequalities in mecha-
nics and studied theorems of the alternative [34].
Probably 40 years later these results proved to be very helpful in the geometry of poly-
hedra and in the duality theory of linear programming.'
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Julius Farkas (1847-1930)

1887: Professor in Kolozsvár (Romania)
1902: Grundsatz der einfachen Unglei- chungen, J. f.
Reine und Angew. Math. 124, 1-27.

Theorem: Given A ∈ Rm×n, b ∈ Rm.

{x ∈ Rn : Ax ≤ b, x ≥ 0} 6= ∅ ⇔ {u ∈ Rm : u ≥ 0, ATu ≥ 0, uT b < 0} = ∅,

i.e., of these two linear inequality systems always exactly one is solvable.

In connection with linear inequality systems also MINKOWSKI has to be named, who
used linear inequalities for his remarkable geometry of numbers and developed together
with HERMANN WEYL (1885-1955) the structural assembling of polyhedra [81].'
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Herman Minkowski (1864-1909)

1892: Assistance professor at the University Bonn,

1894: Professor at the University Königsberg and sin-
ce 1896 at the Polytechnikum Zürich, where Albert
Einstein was one of his students.

• Geometry of numbers,

• Geometrization of the special relativity theory,

• Theory of convex bodies.

Theorem: Let P be a polyhedral set, LP its lineality space and P 0 = P ∩ L⊥P .
Denote S = {x1, ..., xq} the extremal points and T = {y1, ..., yr} the extremal rays of P 0.
Then

P = LP + conv(S) + cone(T ).

To the roots of the theory of optimization belong also the works of CHEBYSHEV, better
known from his contributions to approximation theory.
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Pafnuti Lvovich Chebyshev (1821-1894)

1850: Associate professor at St. Petersburg’s Univer-
sity,

1860: Professor, there.

Basic contributions to probability theory, theory of
numbers and approximation theory.

Chebyshev-problem:
min
x

max
t∈T
|a(t)−

∑
i

xifi(t)|.

In the simplest version of such a continuous approximation problem one is looking for
the uniform approximation of a given continuous curve a(t) by a system of linearly
independent functions fi(t). In today’s terminology one would say we are dealing with
a non-smooth convex minimization problem, ore more exactly with a semi-infinite pro-
blem. Hence, CHEBYSHEV can be regarded as one of the first who considered this kind
of optimization problems. For some special cases he found analytic solutions, known
as Chebyshev polynomials.
Similar to EULER he also understood the significance of extremal problems. He wrote
[115]: ”In all practical human activities we find the same problem: How to allocate our
ressources such that as most as possible profit can be attained?”

In Russia two students of CHEBYSHEV, namely MARKOV and LYAPUNOV, carried on
with the investigations of extremal problems.
MARKOV is mainly known for theory of stochastic processes.'
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Andrey Andreyevich Markov (1856-1922)

1886: Assistance professor at St. Petersburg’s Uni-
versity,

member of the Russian Academy of Science.

Famous for his works on number theory and probability theory (Markov chains, Markov processes etc).

Problem of moments:

min

∫ b

a
tnf(t)dt,

s.t. 0 ≤ f(t) ≤ t, ∀ t ∈ [a, b],∫ b

a
tif(t)dt = ci, i = 1, ..., n− 1.

In 1913 he studied sequences of letters in novels to detect the necessity of independence
of the law of large numbers. According to that law, the average of the results obtained
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from a large number of trials should be close to the expected value, and would tend to
become closer as more trials are performed.
The so-called stochastic Markov process became a general statistical tool, from which
future developments can be determined by current knowledge. But MARKOV studied
also so-called moment problems for optimizing the moments of a distribution function
or stochastic variables [1], [67]. This kind of problems can be formulated as constrai-
ned optimization problems with integral functions, where, in distinction to a variational
problem, no derivatives appear.

At the first glance LYAPUNOV’s investigations are not connected with optimization,
because he studied stability theory for differential equations [99].'
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Aleksandr Mikhailovich Lyapunov (1857-1918)

1895: Associate professor at the University of Khar-
kov,

founder of stability theory for differential equations.

Theorem: Solution x(t) of the equation ẋ = f(x) is stable if there exists a function V (x) such that

〈∇V (x), f(x)〉 < 0.

We can take an inverse point of view and interpret the result as follows: The diffe-
rential equation in Lyapunov’s theorem is a time-continuous method for minimizing
the (Lyapunov-) function V (x). Today the Lypunov method is a systematical tool for
investigating convergence and stability of numerical methods in optimization.

2 The Pioneers in Linear Optimization
There exist two isolated roots of linear optimization, which can be traced back to GAS-
PARD MONGE [82] and CHARLES-JEAN DE LA VALLÉE POUSSIN [95].'
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Gaspard Monge (1746-1818)

1765: Professor for mathematics and 1771 for physics
in Mézières,
1780: Professor for hydrodynamics in Paris,
1794: Founder of the École Polytechnique in Paris.

1782: Continuous mass transport under minimal costs, Application de l’analyse à la géometrie, Paris.

In 1780 MONGE became member of the French Academy of Science. In the days when
1789 the French Revolution began, he was a supporter of it and at the moment of



9

proclamation of the French Republic in 1792 he was appointed Minister of navy. In
this position he was jointly responsible for the death sentence of King Ludwig XVI.
Among several physical discoveries, for instance theory of mirage, he rendered out-
standing services to the creation of the descriptive geometry, to which also belongs
his work on continuous mass transport. His idea is seen as an early contribution to the
linear transport problem, a particular case of the linear programming problem.

The second root is attributed to VALLÉE POUSSIN.'

&

$

%

Charles-Jean de La Vallée Poussin (1866-1962)

1892: Professor for mathematics an der Université
Louvain

1911: Sure la méthode de l’approximation minimum,
Anales de la Societé Scientifique de Bruxelles, No 35, pp. 1-16.

1920: First president of the International Mathematical Union.

In the years 1892 - 1894 he attended lectures of CAMILLE JORDAN, HENRI POIN-
CARÉ, ÉMILE PICARD in Paris and of AMANDUS SCHWARZ, FERDINAND FROBE-
NIUS in Berlin. With his paper, published in the Anales of Brussels Society of Science,
he is rated as one of the founders of linear optimization.

By the way, concerning the contributions of MONGE and VALLÉE POUSSIN, in 1991
DANTZIG wrote disparagingly [75] (page 19): ”Their works had as much influence on
the development of Linear Programming in the forties, as one would find in an Egypti-
an pyramid an electronic computer built in 3000 BC”.

In the forties of the last century, as a matter of fact, optimization – as we understand
this topic today – was developed seriously and again practical problems influenced the
directions of its outcome. Doubtless, time was ripe for establishing such rapid develop-
ment.

In the community of the optimizers are to name three forceful pioneers: L.V. KANTO-
ROVICH, T.C. KOOPMANS and G.B. DANTZIG.
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In 1939, for the first time, KANTOROVICH solved a problem of linear optimization.
Shortly afterwards, F.L. HITCHCOCK published a paper about a transportation pro-
blem. However at that time the importance of these papers was not recognized entirely.

1926 - 1930 KANTOROVICH studied mathematics at the University of Leningrad. At
the age of 18 he obtained a doctorate in mathematics. However, the doctor degree was
awarded to him only in 1935, at that time the academic titles had been re-introduced
in the Soviet society [73]. In the forties a rapid development of the functional analysis
was set up. Here we have to mention the names of HILBERT, BANACH, STEINHAUS
and MAZUR, but also KANTOROVICH.'
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Leonid Vitalevich Kantorovich (1912-1986)

1934: Professor at the University of Leningrad

• Linear Optimization (1939),

• Optimality conditions for extremal problems in topological vector spaces (1940),

• Functional analytic foundation of descent methods,
Convergence of Newton’s method for functional equations (1939-1948).

1939: Mathematical Methods for Production Organization and Planning, Leningrad, 66 pages.
1940: On an efficient method for solving some classes of extremum problems, DAN SSSR 28.
1959: Functional Analysis, Moscow, Nauka.

Before he attained his majority of twenty-one years, he had published fifteen papers in
major mathematical journals and became a full professor at Leningrad University. He
was a mathematician in the classical mold whose contributions were mainly centered
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on functional analysis, descriptive and constructive function theory and set theory as
well as on computational and approximate methods and mathematical programming.
So he made significant contributions to the building of bridges between functional ana-
lysis, optimization and numerical methods.
At the end of the thirties he was concerned with the mathematical modeling of the
production in some timber company and developed a method, which later on was reco-
gnized as equivalent to the dual simplex method. In 1939 he published a small paper-
back (only 66 pages) [52], with the exact title (in English translation): ”A mathematical
method of the production planning and organization and the best use of economic ope-
rating funds”. Neither the notions Linejnaja Optimizacija (Linear Optimization) nor
simplex method were ever mentioned in this booklet.
In contrast to the publicity of DANTZIG’s results in the western countries, KANTORO-
VICH’s booklet received only a small echo within mathematicians and economists in
the East. The western world, caused by the iron curtain, didn’t have any knowledge
of that publication and in the Soviet Union there were probably two reasons for igno-
ring it. First, there was no real need for mathematical methods in a totalitarian system.
Although the central planning of the national economy stood theoretically in the fore-
ground of all social processes, the system was founded essentially on administration.
Second, it should be mentioned that this booklet was not written in the usual mathema-
tical language, therefore mathematicians had no reason to read it.
What is really known is his book on Economical Calculation of the Best Utilization of
Resources [56], published in 1960 (with an appendix by G.S. RUBINSTEIN), but at that
time in the West the essential developments were almost finished. In this monograph
one can find two appendices about the mathematical theory of Linear Programming
and their numerical methods. Curiously, in doing justice to the Marxist terminology,
therein the dual variables are denoted by objectively substantiated estimates but not as
prices, because in the Soviet thinking prices had not to be imposed by the market but
by the Politburo.
As already mentioned, KANTOROVICH contributed significantly to functional analysis
[54], [55]. His functional-analytic methods in optimization are well-known and con-
tain ideas and techniques, which have been in the progress of development thirty years
before the preparation of the theory of convex analysis.
As already mentioned, in 1975 he was honored, together with KOOPMANS, with the
Nobel price for economics. Quotation of the Nobel committee: ”For contributions to
the theory of the optimal allocation of operating capital”.

KOOPMANS was an US-American economist and physicist with roots in the Nether-
lands, who tackled the problems of resource allocations.
Koopmans was highly annoyed that DANTZIG could not participate in that price.
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Tjalling Charles Koopmans (1910-1985)

1948: Professor at the Yale University,

1968: Professor at the Stanford University.

1942: Exchange Ratios between Cargoes on Various Routes (Non-Refrigerated Dry Cargoes),
Memorandum for the Combined Shipping Adjustment Board, Washington, D.C.

1951: Activity Analysis of Production and Allocation, Wiley, New York.
1971: On the Description and Comparison of Economic Systems, (with J. Michael Montias)

in: Comparison of Economic Systems, Univ. of California Press, 1971, pp. 27-78.

In the mid-forties DANTZIG became aware of the fact that in many practical modeling
problems the economic restrictions could be described by linear inequalities. Moreo-
ver, replacing the ”rule of thumb” by a goal function, for the first time he formulated
deliberately a problem, consisting explicitly of a (linear) objective function and (linear)
restrictions in form of equalities and/or inequalities. In particular, hereby he establis-
hed a clear separation between the goal of the optimization, the set of feasible solutions
and, by suggesting the simplex method, the method of solving such problems.'
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DANTZIG studied mathematics at the universities of Maryland and Michigan, because
his parents could not afford a study at a more distinguished university. In 1936 he got
his B.A. in mathematics and physics and switched to the University of Michigan in
order to earn a doctorate. In 1937 he finished advanced studies, receiving a M.A. in
mathematics.
After working two years as a statistician at the RAND Corporation in Washington, in
1939 he started his PhD-study at the University of California, Berkeley, which he in-
terrupted when the USA was joining the Second World War. He entered the Air Force
and became (1941 – 1946) leader of the Combat Analysis Branch at the headquarter of
the US-Air Force. In 1946 he continued with his PhD-studies and obtained a doctorate
under the supervision of JERZY NEYMAN. Thereafter he was working as a mathemati-
cal consultant at the Ministry of Defense.
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Georg B. Dantzig (1914-2005)

1960: Professor at the University of California,
Berkeley,

1966: Professor at the Stanford University.

1966: Linear Programming and Extensions, Springer-Verlag, Berlin.
1966: Linear Inequalities and Related Systems, Princeton Univ. Press, Princeton, NJ.
1969: Lectures in Differential Equations, Van Nostrand, Reinhold Co., New York.

The breakthrough in Linear Programming was made in 1947 with DANTZIG’s paper:
Programming in a Linear Structure. One can read by DANTZIG [75] page 29, that du-
ring the summer of 1948 KOOPMANS suggested him to make use of a shorter title,
namely Linear Programming. The notion simplex method goes back to a discussion
between DANTZIG and MOTZKIN, the latter held the opinion that simplex method de-
scribes most excellently the geometry of changing from one vertex of the polyhedra of
the feasible solutions to another.

In 1949, exactly two years after the first publication of the simplex algorithm, KO-
OPMANS organized the first Conference on Mathematical Programming in Chicago,
which was later counted as number ”zero-conference” in a sequence of Mathematical
Programming Conferences, taking place up today. Besides, well-known economists li-
ke ARROW, SAMUELSON, HURWICZ AND DORFMAN, also mathematicians like AL-
BERT TUCKER, HAROLD KUHN, DAVID GALE, JOHANN VON NEUMANN, THEO-
DORE S. MOTZKIN and others attended this event.

In 1960 DANTZIG became professor at the University of California at Berkeley and in
1966 he switched to a chair for Operations Research and Computer Science at Stanford-
University. In 1973 he was one of the founders and the first president of the Mathemati-
cal Programming Society (MPS). Also by MPS the Dantzig price has been created and
awarded to colleagues for outstanding contributions in mathematical programming. In
1991 the first edition of the SIAM Journal on Optimization was dedicated to George B.
Dantzig.

Back to the Nobel price awarded to KOOPMANS and KANTOROVICH. In 1975 the
Royal Swedish Academy of Science granted the price for economy to equal parts to
KANTOROVICH and to KOOPMANS for their contributions to optimal resource alloca-
tion. The prize money at that year amounted to 240.000 US-dollars. Immediately after
this ceremony KOOPMANS traveled to IIASA (The International Institute for Applied
Systems Analysis) in Laxenburg, Austria. One can read in MICHEL BALINSKI [75],
page 12, at that time director of the IIASA, that on the occasion of a ceremonial mee-
ting KOOPMANS submitted 40.000 $ of the prize money as a present to the IIASA.
Therefore, he indeed accepted only one third of the whole amount of the prize money
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for himself.

By the way, for a long time it was unclear whether it would be permitted that KAN-
TOROVICH could accept the Nobel price of economy, because some years before when
BORIS PASTERNAK (known for his novel ”Doctor Shiwago”) had the honor to get the
Nobel price for literature, the Soviet authorities forced him to reject. Also the Nobel
price award to the physicist ANDREJ SACHAROV, one of the leading Soviet dissidents
at that time, had been seen as an unfriendly act. But because one was unable to change
SACHAROV’s mind to accept this recognition, one refused his journey to Stockholm
and expelled him as a member from the Soviet Academy of Sciences. It is known that
KANTOROVICH, together with some physicists, voted against this expulsion.

It is worth mentioning that in the framework of ”Linear Programming” and ”Opera-
tions Research” in its widest sense five more scientists have been awarded with the
Nobel price: in 1976 WASILIJ LEONTIEV (Input-Output-Analysis), in 1990 HARRY
MARKOWITZ (Development of the theory of portfolio selection), in 1994 REINHARD
SELTEN and JOHN NASH (Analysis of the equilibrium in non-cooperative game theo-
ry) and in 2007 LEONID HURWICZ (Development of the basics of economic design).
HURWICZ turned at the time of his awarding 90 years and has been the oldest price
winner up to now.
An historical overview about the development of Operations Research can be found in
[40].'
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Wasilij Leontiev Harry Markowitz Reinhard Selten
(1976) (1990) (1994)

John F. Nash Leonid Hurwicz
(1994) (2007)

Now, let us sidestep to game theory and his founder JOHANN VON NEUMANN . He
achieved outstanding results on several mathematical fields.
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Johann von Neumann (1903-1957)

1926-1929: Associate professor at the Humboldt Uni-
versity, Berlin,
1933-1957: Professor at the Institute for Advanced
Studies, Princeton,
1943: Collaborator at the Manhattan project in Los
Alamos.

• Quantum mechanics,

• Theory of linear operators in Hilbert spaces,

• Theory of shock waves,

• Computer architecture.

1928: Zur Theorie der Gesellschaftsspiele, Math. Ann. 100, 295-320.
1944: The Theory of Games and Economic Behavior, Springer.

Already in 1928 a paper of the mathematician ÉMILE BOREL (1871-1956) on min-
max properties inspired him to ideas, which led to one of the most original design later
on, the game theory. In the same year he proved the min-max theorem [85] on the
existence of optimal strategies in a zero-sum game. Together with the economist OS-
KAR MORGENSTERN he wrote in 1944 the famous book ”The Theory of Games and
Economic Behavior” [86], dealing also with n-person games (n > 2), which are im-
portant generalizations in economy. These contributions made him the founder of game
theory, which he applied less to classical salon games, rather than to situations of con-
flict and decision with incomplete knowledge of the intensions of the opposing players.

When on December 12, 1941, in Pearl Harbor the Japanese Air Force scuttled most of
the American Pacific Fleet, it was the time of birth of the application of game theory
for military purposes. Later, from the analysis of the debacle it became clear that the
recommendations, given by experts and founded on game theoretical considerations,
were dismissed by the Pentagon. This gave game theory an extraordinary impetus and
up to now the mathematical research on game theory is subject of secrecy in a great
extent.

3 The Beginnings of Nonlinear Optimization
In the fifties, apart from Linear Programming, several new research directions in the
area of extremal problems have been developed, which are summarized today under
the keyword Mathematical Programming.

Concerning optimization problems subject to equality constraints we mentioned alrea-
dy that the optimality conditions are going back to EULER and LAGRANGE. Nonlinear
inequality constraints have been considered first in 1914 by BOLZA [11] and in 1939
by KARUSH [59]. Unfortunately, these results have been forgotten for a long time.
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O. Bolza:
1914: Über Variationsprobleme mit Ungleichungen als Nebenbedingungen,

Mathem. Abhandlungen 1-18.
W. Karush:
1939: Minima of functions of several variables with inequalities as side conditions,

MSc Thesis, Univ. of Chicago.
F. John:
1948: Extremum problems with inequalities as subsidiary conditions,

Studies and Essays, Presented to R. Courant on his 60th Birthday, Jan. 1948,
Interscience, New York, 187-204.

M. Slater:
1950: Lagrange Multipliers Revisited, Cowles Commisssion Discussion Paper, No 403.

In 1948 FRITZ JOHN [50] considered problems with inequality constraints, too. He
did not assume any constraint qualifications, up to the fact that all functions should be
continuously differentiable.
The term constraint qualification can be traced back to KUHN AND TUCKER [69] and
says (and this makes the treatment of problems under nonlinear inequalities so difficult)
that a suitable local approximation of the feasible domain is guaranteed (mathemati-
cally speaking: linearization cone and tangential cone have to coincide).
A discussion here about the historical development of the constraint qualification would
go to far. But we refer to an earlier paper of MORTON SLATER [103]. He found a use-
ful sufficient condition for the existence of a saddle point, without assuming that the
saddle function is differentiable.

In developing the theory of nonlinear optimization ALBERT W. TUCKER played an
outstanding role.'
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Albert W. Tucker (1905-1995)

1933: Professor at the Princeton University.

• Topology,

• Mathematical programming (duality theory),

• Game theory (prisoner’s dilemma).

Afternoon tea club:
J. Alexander, A. Church, A. Einstein, L. Eisenhart, S. Lefschetz, J.v. Neumann,
O. Veblen, H. Weyl, E. Wigner, A. Turing, u.a.

TUCKER graduated in 1932 and since 1933 he was a fellow of the Mathematical De-
partment at the Princeton University. Actually in the fifties and sixties he became a
successful chairman of the department. He is known for his work in duality theory for
linear and nonlinear optimization, but also in game theory. He introduced the well-
known prisoner’s dilemma which is a bi-matrix game with non-constant profit sum.
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His famous students were MICHEL BALINSKI, DAVID GALE, JOHN NASH (Nobel
price 1994), LLOYD SHAPLEY (Nobel price 2012) and ALAN GOLDMAN. Every year
the Mathematical Programming Society grants the Tucker price for outstanding student
achievements.

In the thirties the department in Princeton was famous for its tea afternoon sessions,
bringing together scientists and giving reason for inspiring discussions. Members of
this club were ALBERT EINSTEIN, JOHANN V. NEUMANN, HERMANN WEYL and
at the beginning also ALAN TURING, a student of the logician ALONZO CHURCH.
During the Second Wold War TURING developed the ideas of Polish mathematicians
and was able to crack a highly complicated German radio code ENIGMA2 and later on,
working at the University of Manchester, he invented the Turing machine.

Starting in 1948 until about 1972 at Princeton, under the leadership of TUCKER, a pro-
ject was sponsored by the Naval Research Office, drawing up optimality conditions
for different classes of non-linear optimization problems and formulating the duality
theory for convex problems. In this project among others HAROLD KUHN, a student of
Ralph Fox, DAVID GALE AND LLOYD SHAPLEY were involved.

Due to ALBERT TUCKER and HAROLD KUHN Lagrange’s multiplier rule has been
generalized to problems with inequality constraints [68].'
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Harold W. Kuhn and Albert W. Tucker:
1951: Nonlinear programming, Proceedings of the Second Berkeley Symposium on

Mathem. Statistics and Probability,
Univ. of California Press, Berkeley, 481-492.

(P )

{
f(x)→ min, x ∈ Rn
gi(x) ≤ 0, (i = 1, · · · ,m)

(S) ∃ x̃ with gi(x̃) < 0 ∀ i = 1, · · · ,m

Theorem: (necessary and sufficient optimality conditions)
In (P ) let f, gi, (i = 1, · · · ,m) be convex functions and Slater’s condition (S) be satisfied.
Then:

x∗ is a global minimizer of (P ) ⇔ ∃ λ∗i ≥ 0 (i = 1, · · · ,m), such that
λ∗i gi(x

∗) = 0 (i = 1, · · · ,m),
L(x, λ∗) ≥ L(x∗, λ∗) ∀ x ∈ Rn,

where λ∗ ∈ Rm+ - (Lagrange multiplier to x∗);
g(x) = [g1(x), · · · , gm(x)]T ;
L(x, λ) = f(x) + 〈λ, g(x)〉 - (Lagrange function of (P)).

1957: Linear and nonlinear programming, Oper. Res. 5, 244-257.

What about Linear Programming at that time? Particular attention was payed to its

2Marian Rejewski together with two fellow Poznan’ University mathematics graduates, Henryk Zygalski
and Jerzy Róžycki, solved 1932 the logical structure of one of the first military versions of Enigma.
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commercial applications, although no efficient computers were at hand. One of the first
documented applications of the simplex method was a diet problem by G.J. STIEGLER
[105], with the goal of modeling a possibly economical food composition for the US-
Army, guaranteeing certain minimum and maximum quantities of vitamins and other
ingredients. The solution of this linear program with 9 inequalities and 77 variables
kept busy 9 persons, and required computational work of approximately 120 man days.'
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Historic overview on LP-computations by means of simplex algorithms on computers: (cf. [88])

Year Constraints Remarks
1951 10
1954 30
1957 120
1960 600
1963 2 500
1966 10 000 structured
1970 30 000 structured

Nowadays structured problems with Millions of constraints are solved, for instance in
aviation industries.
In this context one can read the following curiosity in LILLY LANCASTER [72]: It is
well known that the simplex algorithm carries out the pivoting in dependence of the
reduced costs. However, the prices for spices, as a rule, are higher as those for other
commodities. Therefore, the spice-variables appeared mostly as nonbasic variables,
hence they got the values zero. The result was that the optimized food was terrible
tasteless. In this paper it is described how the LP-model was changed stepwise by alte-
ring the constraints in order to get tasty food.

In 1952 CHARNES, COOPER AND MELLON [14] successfully used the simplex me-
thod in the oil industry for optimal cracking of crude oil into petrol and high quality oil.

The first publication on solving linearly constrained systems iteratively can be traced
back to HESTENES AND STIEFEL [46]. In 1952 they suggested a conjugate gradient
method to determine a feasible point of a system of linear equations and inequalities.

In the fifties in the US the development of network flow problems has been started.
The contribution of FORD AND FULKERSON [37] consisted in connecting flow pro-
blems with graph theory. Until now combinatorial optimization is benefiting from this
approach.

1959-60 DANTZIG AND WOLFE [23] were working on decomposition principles, i.e.,
the decomposition of structured large scale LP’s into master and (several) subproblems.
Nowadays these ideas allow parallelization of computational work on the level of the
subproblems and enable a fast resolution of such problems with hundreds of thousands
of variables and constraints.
The dual variant of this decomposition method was used in 1962 by BENDERS [5] for
solving mixed integer problems.
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M. R. Hestenes; E. Stiefel:
1952: Methods of conjugate gradients for solving linear systems,

J. Res. Natl. Bur. Stand. 49, 409-436.

R. Gomory:
1958: Outline of an algorithm for integer solutions to linear programs,

Bull. Amer. Math. Soc. 64, 275-278.

G.B. Dantzig; Ph. Wolfe:
1960: Decomposition principle for linear programs, Oper. Res. 8, 101-111.

J.F. Benders:
1962: Partitioning procedures for solving mixed-variables programming problems,

Numer. Math. 4, 238-252.

L.R. Ford; D.R. Fulkerson:
1962: Flows in Networks, Princeton University Press, Princeton, N. J., 194 p.

The study of integer programming problems has been started in 1958 by RALPH GO-
MORY [44]. Unlike the earlier work on the traveling salesman problem by FULKER-
SON, JOHNSON AND DANTZIG on the usage of cutting planes for cutting off non-
optimal tours in the traveling salesman problem, GOMORY showed how to generate
”cutting planes” systematically. These are extra conditions which, when added to an
existing system of inequalities, guarantee that the optimal solution consists of integers.
Today such techniques, combining cutting planes with branch-and-bound-methods, be-
long to the most efficient algorithms for solving applied problems in integer program-
ming.

In the Soviet Union first results on matrix games have been published by VENTZEL
[111] and VOROBYEV [112] and a very popular Russian textbook on Linear Program-
ming has been written by YUDIN AND GOLSTEIN [113].'
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S.I. Zukhovitzkij:
1956: On the approximation of real functions in the sense of Chebyshev (in Russian),

Uspekhi Matem. Nauk, 11(2), 125-159.

E.S. Ventzel; N.N. Vorobyev:
1959: Elements of Game Theory (in Russian), Moscow, Fizmatgiz.

D. B. Yudin; E.G. Golstein:
1961: Problems and Methods of Linear Programming (in Russian), Moscow, Sov. Radio.

E. Ya. Remez:
1969: Foundation of Numerical Methods for Chebyshev Approximation (in Russian), Kiev, Naukova
Dumka.

Approximately at the same time, papers of two Ukrainian mathematicians, ZUKHO-
VITSKIJ [116] and REMEZ [96], became known. They suggested numerical methods
for solving best-approximation problems in the sense of Chebyshev. These are simplex-
like algorithms for solving the underlying linear semi-infinite optimization problem.



20

The initial works about this topic are essentially older than mentioned here. For in-
stance, REMEZ’s algorithm for the numerical solution of Chebyshev’s approximation
problem was presented by REMEZ in 1935 on the occasion of a meeting of the Mathe-
matical Department of the Ukrainian Academy of Sciences.

Important results in the field of control theory, i.e. optimization under constraints de-
scribed by differential equations, were initiated with the beginnings of space travel.
1957 was the year when the Soviets were shooting the first rocket, the Sputnik, in the
outer space.
One of the basic problems in optimal control consists in the transfer of the state x(t)
of some system, described by differential equations, from a given start into some target
domain T . Hereby the controlling is carried out by some control function u(t) which
belongs to a certain class of functions and minimizes a given objective functional.
A typical problem of that kind can be found in space travel: Transfer of a controllable
object to some planet in shortest time or with smallest costs.'
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Terminal control problem:

min

∫ T

0
f0(x(t), u(t))dt;

dx

dt
= f(x, u), x(0) = x0, x(T ) ∈ T (T );

u(t) ∈ Uad = {u(·) : measurable , u(t) ∈ Ψ for t0 ≤ t ≤ t1}.

(x - state vector, u - control vector, f = (f1, ..., fn)).

Hence, again the question about necessary optimality conditions arises, which have to
be satisfied by an optimal control function, i.e. we are dealing with a strong analogue
to variational analysis. In the latter theory the Euler-Lagrange-equations were necessa-
ry showing that certain functions prove to be candidates for optimal functions; here in
control theory the analogous necessary optimality conditions for a control problem are
described by Pontryagin’s maximum principle.

PONTRYAGIN lost his eyesight at the age of 14 years. Thanks to his mother, who read
mathematical books to him, he became a mathematician despite of his blindness.
We have to thank him for a series of basic results, first of all in topology. His excursus
into applied mathematics by investigating control problems has to be valued merely as
a side effect of his research program.

In 1954 the maximum principle was formulated as a thesis by PONTRYAGIN and pro-
ved in 1956 in a joint monograph with BOLTYANSKIJ AND GAMKRELIDZE [91]. Still
it proves to be fundamental for modern control theory.
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Lev Semenovich Pontryagin (1908 - 1988)

1934: Steklov Institute, Moscow,

1935: Head of the Department of Topology and Functional Analy-
sis at the Steklov Institute.

• Geometric aspects of the topology,

• Duality theory of the homology,

• Co-cycle theory in topology (Pontryagin classes),

• Maximum principle.

1956: L.S. Pontryagin, V.G. Boltyanskij, R. V. Gamkrelidze:
Mathematical Theory of Optimal Processes, Moscow, Nauka.

GAMKRELIDZE, one of the coauthors of the mentioned monograph, indicated later on
PONTRYAGIN’s proof of the maximum principle as ”in some sense sensational”. Ex-
ceptional on this proof is the usage of topological arguments, namely the cut theory,
which goes back to the American S. LEFSCHETZ.

BOLTYANSKIJ [9], in his extensive widening of the maximum principle to other clas-
ses of control problems, has shown that topological methods, in particular homotopy
results, are very useful in control theory. Meanwhile there exist proof techniques be-
longing to convex analysis and establishing the maximum principle, too. One of the
first authors in this area was PSHENICHNYJ [93].'
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Maximum principle of a terminal control problem:

Consider dual state variables (Lagrange multipliers) λ0(t), ..., λn(t), the Hamiltonian function

H(λ, x, u) =
n∑
i=0

λi(t)f
i(x(t), u(t))

and the adjoint system (for some feasible process (x(t), u(t)), 0 ≤ t ≤ T )

dλi

dt
= −

∂H

∂xj
= −

n∑
i=0

λi
∂f i(x, u)

∂xj
, j = 1, ..., n,

λ0 = −1, λ1(T ) = λ2(T ) = ... = λn(T ) = 0.

Theorem: If the process (x∗(t), u∗(t)) is optimal, then there exist absolutely continuous functions
λ∗i (t), solving the adjoint system almost all on [0, T ] and at each time τ ∈ [0, T ] the following
maximum condition is satisfied:

H(λ∗(τ), x∗(τ), u∗(τ)) = max
u∈Uad

H(λ∗(τ), x∗(τ), u).

The transfer of the maximum principle into a discrete setting made some difficulties.
Among the numerous papers, dealing at that time with this questions, there are more
than a few which are incorrect (see references in [10]).
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Another important principle, which found its application mainly in the theory of dis-
crete optimal processes, is the principle of dynamic programming and can be traced
back to BELLMAN [6].'
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Richard Bellman (1920 - 1984)

1947: Collaborator in the area of theoretical physics
in Los Alamos,
1952: Switch to the Rand Corporation, development
of dynamical programming,
1965: Professor for mathematics, electro-technique
and medicine at the University of Southern California.

• Bellmann’s optimality principle,

• Algorithm of Bellman and Ford (shortest path in graphs),

• Bio-informatics.

1957: Dynamic Programming, Princeton Univ. Press.

In physics this principle was known for a long time, but under another name: Legendre
transformation. There, the transition from a global (at all times simultaneously) to a
time-dependent (dynamical) way of looking at things corresponds to the transition of
the Lagrange-functional into the Hamilton-functional by means of the Legendre trans-
formation.
In control theory and similar areas this approach can be used, for instance, to derive an
equation (Hamilton-Jacobi-Bellman equation) where its solution amounts in the opti-
mal objective value of the optimal process.
Hereby the argumentation is more or less as follows: If a problem is time-dependent,
one can consider the optimal value of the objective functional at a certain time. Then
one is asking, which equation has to be fulfilled at the optimal solution such that the
objective functional is staying optimal also at a later date. This consideration leads
to the Hamilton-Jacobi-Bellman equation. That way one can divide the problem into
time-steps instead of solving it at the whole.
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Bellmann’s optimality principle for a discrete process:

The value of the objective functional at the k-th level is optimal if for each at the k-th level chosen xk
the objective value of the (k − 1)-th level is optimal.
Denote

ξ state vector, descibing the state of the k-level process,
Λk(ξ) optimal value of the k-level process, in dependence of the state k,
ξ, xk variables (or vectors of variables) which have to be determined at k-th level.

Assumption: After choosing xk and ξ let the vector of state-variables, corresponding to the (k−1)-th
level, be given by some transformation T (ξ, xk).

Λk(ξ) = max
xk
{fk(ξ, xk) + Λk−1[T (ξ, xk)], k = 1, 2, ..., n}.

System of recurrent formulas, in which Λk(ξ) can be determined for (k = 1, · · · , n) if Λk−1(η) is
known for the problem at the (k − 1)-th level.

About five years later an intensive study of control problems has started, beginning
with the papers of ROXIN [100], NEUSTADT [87], BALAKRISHNAN [3], HESTENES
[47], HALKIN [45], BUTKOVSKIJ [12], BERKOVITZ [7] and others.'
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E. Roxin:
1962: The existence of optimal controls, Michigan Math. J. 9, 109-119.
L.W. Neustadt:
1963: The existence of the optimal control in the absence of convexity conditions,

J. Math. Anal. Appl. 7, 110-117.
A. V. Balakrishnan:
1965: Optimal control problem in Banach spaces,

J. Soc. Ind. Appl. Math., Ser. A, Control 3, 152-180.
M.R. Hestenes:
1966: Calculus of Variations and Optimal Control Theory, Wiley, New York.
H. Halkin:
1966: A maximum principle of Pontryagin’s type for nonlinear differential equations,

SIAM J. Control 4, 90-112.
A. G. Butkovskij:
1969: Distributed Control Systems, Isd. Nauka, Moscow.
L.D. Berkovitz:
1969: An existence theorem for optimal control, JOTA 4, 77-86.

The beginnings of stochastic optimization can be found in the literature from 1955 on.
At that time the application of observed coincidences (in some parts) of data in LP’s
has been discussed, for instance, by DANTZIG [21] and G. TINTNER [110].
One was investigating several problems: Compensation problems (recourse), distribu-
ted problems (among others also distribution of the optimal value under given common
distribution of LP-data) or problems with probability restrictions (chance-constraints).

Under special structural assumptions (with respect to the data and their given distri-
bution) first applications were considered by VAN DE PANNE AND POPP [89] and
TINTNER [110]. Also there can be found first solution techniques for stochastic pro-
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blems by means of quadratic optimization, for instance, by BEALE [4]. DANTZIG AND
MADANSKY [22] described techniques which use two-stage stochastic programs and
in CHARNES AND COOPER [15] one can find programs with constraints, which have
to be satisfied with certain probabilities.

The state of the art in stochastic programming till the mid-seventies has been described
in the monographs by KALL [51] and ERMOLIEV [32].'
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G. B. Dantzig:
1955: Linear programming under uncertainty, Management Sci., 1: 197-206.
G. Tintner:
1955: Stochastic linear programming with applications to agricultural economics, in: 2nd Symp. Li-
near Programming, vol.2: 197-228.
A. Charnes and W.W. Cooper:
1959: Chance-constrained programming, Management Sci., 5:73-79.
E.M.L. Beale:
1961: The use of quadratic programming in stochastic linear programming, RAND Report P-2404,
The RAND Corporation.
G.B. Dantzig and A. Madansky:
1961: On the solution of two-stage linear programs under uncertainty, in: Proc. 4th Berkeley Symp.
Math. Stat. Prob., Berkeley, pp. 165-176.
C. van de Panne and W. Poop:
1963: Minimum-cost cattle feed under probabilistic problem constraint, Management Sci., 9:405-430.
P. Kall:
1976: Stochastic Linear Programming, Springer-Verlag, Berlin.
Y.M. Ermoliev:
1976: Stochastic Programming Methods, Nauka, Moscow.

As we can see there was a time of great activities, but the results in essence were still
isolated and could not be understood as a part of an uniquely united branch. The si-
tuation changed dramatically in the sixties and seventies. Time was ripe to create a
complete picture of Mathematical Programming, which immediately led to a kaleidos-
cope of new contributions.

4 The 60s and 70s
The main directions of the investigation in these years were: General theory of nonline-
ar optimization, numerical methods for nonlinear optimization problems, non-smooth
optimization, global optimization, discrete optimization, optimization on graphs, sto-
chastic optimization, dynamic optimization, and variational inequalities.
The understanding of the common nature of different optimization problems was the
first breakthrough in this period. Although in different papers there existed different
approaches for analyzing specific nonlinear problems, still these did not lead to a com-
mon technique for obtaining optimality criteria. Moreover, the mentioned papers were
dealing exclusively with the finite dimensional case, with the exception of the paper of
BOLZA [11].

The transition to infinite-dimensional settings was forced essentially by the papers of



25

DUBOVITZKIJ AND MILYUTIN [31] and PSHENICNYIJ [94]. At the latest at that time
it became clear that the functional analytical foundation of duality theory in mathema-
tical programming in general spaces can be deduced from the geometric form of the
HAHN-BANACH theorem.'
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Abram Ya. Dubovitzkij, Aleksej A. Milyutin:

1963: Extremum problems under constraints,
Doklady AN SSSR, 149(4), 759-762.

Theorem: Let C1, · · · , Cm be convex cones in a Hilbert space H , Ci (i = 1, · · · k ≤ m) be
polyhedral and C = C1 ∩ · · · ∩ Cm. If(

∩ki=1Ci

)
∩
(
∩mi=k+1int Ci

)
6= ∅,

then it holds for the dual cone of C:

C∗ = C∗1 + · · ·+ C∗m.

Dubovitzkij-Milyutin’s formalism delivered the breakthrough: The characterization of
the dual cone of the intersection of finitely many cones is an efficient tool for a uni-
fied approach to necessary optimality conditions. Till today this formalism is com-
monly used for treating different classes of optimization problems as well as in finite-
dimensional and in infinite-dimensional spaces. In particular, it delivered new criteria
for some difficult problems, for instance, control problems with phase constraints [8].
In the process of working out the theory of convex analysis, see for instance the mo-
nographs of ROCKAFELLAR [97] (for finite-dimensional spaces) and IOFFE AND TI-
CHOMIROV [48] (for Banach spaces), these investigations were pushed on and became
deeper.'
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R. Tyrrel Rockafellar:
1970: Convex Analysis, Princeton Univ. Press, Prin-
ceton.

Alexander D. Ioffe, Vladimir M. Tichomirov:
1974: Theory of Extremum Problems, Nauka,
Moscow.
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Parallel to the development of a general theory in nonlinear optimization it became
clear that numerical methods can be handled in an united framework, too.

Publications of FLETCHER AND REEVES [36] concerning conjugate gradient methods
or papers of LEVITIN AND POLYAK [77] describe several gradient- and Newton-like
methods for unconstraint optimization problems and their expansion to constraint pro-
blems. FIACCO AND MCCORMICK [35] published first results for penalty-methods.
In the seventies and eighties the books and papers of DENNIS AND SCHNABEL [29],
GOLDFARB [42], POWELL [92], DAVIDON [24], only to mention a few, are based on
these numerical developments.

General theorems about convergence and rates of convergence for numerical algo-
rithms in finite-dimensional and infinite-dimensional spaces have been proved and a
great number of applications of nonlinear (especially global optimization problems),
control problems, semi-infinite problems etc. have been considered. These analytic-
numeric developments prolonged successfully over many years and numerous mono-
graphs appeared.'
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Robert Fletcher, C.M. Reeves:
1964: Function minimization by conjugate
gradient, Computer Journal, 7, 149-154.

Evgenij S. Levitin, Boris T. Polyak:
1966: Minimization methods under constraints,
Zhurn. Vychisl. Matem. i Matem. Fiz. 6, 787-
823.

Polyak

Smooth optimization problems, involving differentiable functions, allow to apply de-
scent methods with the help of gradient- and Newton-approximations. The Ukraini-
an mathematician NAUM SHOR [102] was the first who transferred this approach to
non-smooth problems. In his PhD-thesis he suggested a subgradient method for non-
differentiable functions and used it for numerically solving of a program, which is dual
to a transport-like problem. Later this approach, named bundle-methods, was develo-
ped further by SCHRAMM AND ZOWE [101], LEMARECHAL[74] and KIWIEL [62].

In the seventies non-smooth analysis (this notion is due to F. CLARKE [16]) became
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a well-developed branch of analysis. Now some parts of this theory are more or less
complete. Subdifferential calculus for a class of convex functions and minimax-theory
belong to these parts and the latter was decisively developed by CLARKE, DEMYANOV
AND GIANESSI [17] and DEMYANOV AND RUBINOV (see, for instance, [25] – [28]).'
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Naum Z. Shor:
1962: Application of the subgradient method for the solution of network transport problems,

Notes of Sc. Seminar, Ukrainian Acad. of Science, Kiew.

Vladimir F. Demyanov, Alexander M. Rubinov:
1968: Approximate Methods for Solving Extremum Problems, Leningrad, State University

For a long time it was unknown whether linear programs belong to the class of pro-
blems which are difficult to solve (in non-polynomial time) or to the class of more
easily solvable problems (in polynomial time).'

&

$

%

Victor Klee (1925–2007)

1957: Professor at University of Washington, Seattle,

1995: Honorary doctor at the University Trier.

• Convex sets,

• Functional analysis (Kadec-Klee-Theorem),

• Analysis of algorithms, Optimization, Combinatorics.



28

In 1970 KLEE, who is also well-known in Functional Analysis, constructed some ex-
amples together with GEORG MINTY [63] showing that the classical simplex algorithm
needs in the worst case an exponential number of steps. Because the number of vertices
will grow exponentially if the dimension of a certain distorted standard cube increases
exponentially, in the worst case all vertices of the cube must be visited in order to go
to the optimal vertex.'

&

$

%

Construction of the Klee-Minty cube for n = 3. Now there exists an unique path along the edges of the
cube, which hits all vertices and increases monotonously with respect to the objective function 〈c, x〉
with cT = (0, 0,−1).

In 1979 LEONID KHACHIYAN [60] published the ellipsoid method, a method for de-
termining a feasible point of a polytope.'

&

$

%

Leonid Khachiyan:

1979: A polynomial algorithm in linear programming, Dokl. Akad. Nauk SSSR 244, 1093-1096.

This method was initially proposed in 1976 and 1977 by YUDIN AND NEMIROVS-
KIJ [114] and independently of those by NAUM SHOR for solving convex optimization
problems.
In 1979 KHACHIYAN modified this method and in doing so he developed the first po-
lynomial algorithm for solving linear programs. It is a matter of fact that, by means of
the optimality conditions, a linear program can be transformed into a system of linear
equations and inequalities, hence one is dealing with the finding of a feasible point of
a polyhedral set. However, for practical purposes this algorithm was not suitable.
The basic idea of the algorithm is the following: Construct some ellipsoid containing
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all vertices of the polyhedron. Afterwards check whether the middle point of the el-
lipsoid belongs the polyhedron. If so, one has found a point of the polyhedron and
the algorithm stops. Otherwise, construct the half-ellipsoid, in which the polyhedron
should be included and put some smaller, new ellipsoid around the polyhedron. After
a number of steps, depending polynomially on the code-length of the linear program,
one has found a feasible point of the polyhedron or the polyhedron is empty.

In the mid-eighties, precisely in 1984, NARENDRA KARMARKAR [58] and others star-
ted developing interior point methods for solving linear programs.
In this connection we should mention the fate of a paper by DIKIN [30]. He was a
student of KANTOROVICH and in his PhD thesis, at the advice of his supervisor, he
suggested some procedure for solving linear programs numerically, although he failed
to prove convergence estimates. This work did not find an interest and was forgotten
until the late eighties. At that time it became clear that KARMAKAR’s algorithm was
very similar to DIKIN’s method.'
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Narendra Karmarkar:
1984: A new polynomial-time algorithm for linear programming, Combinatorica 4, 373-395.

Simplex-method interior point method

Interior point methods approach an optimal vertex right through the interior of a po-
lyhedron, whereas the simplex method is running along the edges and vertices of the
polyhedron. The significance of the interior-point approach consisted mainly in the fact
that it was the first polynomial algorithm for solving linear programs having the poten-
tial to be useful also in practice. But the essential breakthroughs, making the interior
point methods competitive to the simplex algorithm, took place in the nineties.
Advantages of these methods consist, in contrast to simplex methods, in their easy
adaption for solving quadratic or certain nonlinear programs, so-called semi-definite
programs, and their application to large-scale, sparse problems. One disadvantage is
that, by adding a constraint or variable into the linear program, a so-called ”warm-
start” cannot carried out as efficiently as in simplex methods.

Now, let us once more come back to variational analysis. Also variational problems,
in particular variational inequalities, have their origin in the calculus of variations
associated with the minimization of functionals in infinite-dimensional spaces. The
systematic study of this subject began in the early 1960s with the seminal work of the
Italian mathematician GUIDO STAMPACCHIA and his collaborators, who used variatio-
nal inequalities (VI’s) as analytic tool for studying free boundary problems defined by
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nonlinear partial differential operators arising from unilateral problems in elasticity and
plasticity theory and in mechanics. Some of the earliest books and papers in variational
inequalities are LIONS AND STAMPACCHIA [78], MANCINO AND STAMPACCHIA [79]
and STAMPACCHIA [104]. In particular, the first theorem of existence and uniqueness
of the solutions of a VI was proved in [104]. The books by BAIOCCHI AND CAPELO
[2] and KINDERLEHRER AND STAMPACCHIA [61] provide a thorough introduction to
the application of VI’s in infinite-dimensional function spaces. The book by GLOWIN-
SKI, LIONS AND TRÉMOLIÈRE [41] is among the earliest references to give a detailed
numerical treatment of such VI’s. Nowadays there is a huge literature on the subject of
infinite-dimensional VI’s and related problems.

The development of mathematical programming and control theory has proceeded al-
most contemporarily with the systematical investigation of ill-posed problems and their
numerical treatment. It was clear from the very beginning that the main classes of ex-
tremal problems include ill-posed problems. Among the variational inequalities, ha-
ving important applications in different fields of physics, there are ill-posed problems,
too. Nevertheless, up to now, in the development of numerical methods for finite- and
infinite-dimensional extremal problems, ill-posedness has not been a major point of
consideration. As a rule, conditions ensuring convergence of a method include assump-
tions on the problem which warrant its well-posedness in a certain sense. Moreover, in
many papers exact input data and exact intermediate calculations are assumed. There-
fore, the usage of standard optimization and discretization methods often proves to be
unsuccessful for the treatment of ill-posed problems.
In the first methods dealing with ill-posed linear programming and optimal control pro-
blems, suggested by TIKHONOV [107, 108, 109], the problem under consideration was
regularized by means of a sequence of well-posed problems involving a regularized
objective and preserving the constraints from the original problem.
Essential progress in the development of solution methods for ill-posed variational in-
equalities was initiated by a paper of MOSCO [84]. Based on TIKHONOV’s principle,
he investigated a stable scheme for the sequential approximation of variational inequa-
lities, where the regularization is performed simultaneously with an approximation of
the objective functional and the feasible set. Later on analogous approaches became
known as iterative regularization.
A method using the stabilizing properties of the proximal-mapping (see MOREAU [83])
was introduced by MARTINET [80] for the unconstrained minimization of a convex
functional in a Hilbert space. ROCKAFELLAR [98] created the theoretical foundation
to the further advances in iterative proximal point regularization for ill-posed VI’s with
monotone operators and convex optimization problems. These results attracted the at-
tention of numerical analysts, and the number of papers in this field was increasing
rapidly during the last decades (cf. [106]).

5 Conclusion
Meanwhile optimization has spread out to a powerful stream fed by ideas and works
of thousands of mathematicians. New directions of the development were opened up
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like robust programming, variational inequalities and complementarity problems, ma-
thematical programming with equilibrium constraints, PDE constrained optimization,
shape optimization and much more.
Likewise the area of applications in mathematical programming has widened conti-
nuously, new optimization models in medicine and neurology, drug design, biomedi-
cine, to name only a few, appeared besides classical application areas in economy and
natural sciences. At the 21-th International Symposium on Mathematical Programming
2012 in Berlin one could count 40 parallel sessions with approximately 1700 talks and
about 2000 participants. Remember, at the congress in Chicago 1949 there were at
most two dozens of talks. In the face of these figures it becomes clear that it is almost
impossible to name all new developments and one has to restrict oneself in displaying
the available results.

This paper is an attempt to describe the early beginnings and some selected mathema-
tical ideas in optimization. Hereby mainly the progress in the American and Russian
schools is pointed out. In my opinion these schools have distinctly influenced the deve-
lopment of mathematical programming. However, I am aware that the selected material
and topics reflect mostly my personal view. It is completely obvious that other import-
ant trends in mathematical optimization have been neglected and substantial contribu-
tions of other nations are unmentioned.
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