
Sets systems and their fundamental extremal
problems

Peter Hajnal

Bolyai Institute, SZTE, Szeged

2023 Fall

Peter Hajnal Set systems, SzTE, 2023



Sperner System

Definition

S is a Sperner system over V (n := |V |) if for any two different
edges E ,E ′ ∈ S, E 6⊂ E ′.

The main question in this topic is: What is the largest possible size
of a Sperner system over V ?
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Sperner’s Theorem

Example

For any 0 ≤ k ≤ n = |V |, S =
(V
k

)
= {R ⊂ V : |R| = k} is a

Sperner system. It has
(n
k

)
elements.

For k = bn/2c, we get the largest possible system of these
examples.

Sperner’s Theorem

The maximum size of Sperner systems over V is
( n
bn/2c

)
.
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I. Proof

Definition

Let H be a family of subsets of V with n elements. The f -vector
of H is the (f0, f1, . . . , fn) vector, where fi component indicates
how many i-element sets are in H.

(LYM Inequality)

Let S be a Sperner system over V . Then, for the f -vector f ,

|V |∑
i=0

fi(n
i

) ≤ 1.

The lemma is named after Lubell, Yamamoto, and Meshalkin, who
independently proved it. It is also often associated with Béla
Bollobás, who proved a related statement using a similar method.
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Proof of LYM Inequality

Let π be an arbitrary bijection V → [n], and E ∈ S be arbitrary.
Count the pairs (π,E ) where π(E ) is an initial segment of [n].

If we count, for each E ∈ S , all valid π orderings, then we get∑
E∈S |E |! · (n − |E |)! such pairs.

Now, let π be an arbitrary ordering. Since the inclusion relation is
a total order on the initial segments of [n], if π(E1), π(E2) are
initial segments of [n], then either E1 ⊂ E2 or E2 ⊂ E1. So, for any
ordering π, there can be at most one E such that π(E ) is an initial
segment of [n].
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Completion of LYM Inequality Proof

Compare the two counts.

∑
E∈S
|E |! · (n − |E |)! ≤ n!

Dividing both sides by n!, we get the statement of the lemma.

1 ≥
|V |∑
i=0

fi(n
i

) ≥ |V |∑
i=0

fi( n
[n/2]

) =
|S|( n
[n/2]

) .
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Partially Ordered Sets

Definition

Let (P,≤) be a partially ordered set. A subset L ⊂ P is a chain if
any two elements in L are comparable.

Definition

Let (P,≤) be a partially ordered set. A subset A ⊂ P is an
antichain if the elements of A are pairwise incomparable.

The antichains over (P(V ),⊂) precisely correspond to Sperner
systems over V .
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II. Proof of Sperner’s Theorem

Observation

For any chain L and antichain A in P, |L ∩ A| ≤ 1.

Claim

If we have chains L1, L2, . . . , Lk covering P, then any antichain in
P has at most k elements.

Corollary

max
A antichain

(|A|) ≤ min
L1, L2, . . . , Lk is a chain cover

k

Peter Hajnal Set systems, SzTE, 2023



Lemma

Lemma

(P(V ),⊂) has a chain cover with
( n
bn/2c

)
chains.

Definition

L ⊂ P(V ), L : L1 ⊂ L2 ⊂ ... ⊂ Lt is a symmetric chain if there
exists an i such that |L1| = i , |L2| = i + 1, . . . , |Lt | = |V | − i .

Lemma

(P(V ),⊂) has a cover with disjoint symmetric chains.

Due to symmetry, each chain must contain a set of size bn/2c.
Therefore, the number of chains used must be

( n
bn/2c

)
.
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Proof of the Lemma

For |V | = 1, 2, 3, the statement is trivially true. For the induction
step, let |V | > 1. Then, consider V = V0∪̇{u}, where P(V0)
already has a covering.

P(V ) = P(V0)∪̇{R ⊂ V : u ∈ R}. Let P(V0) = L1∪̇L2∪̇ . . . ∪̇Lk
be the covering from the induction hypothesis. Now, we construct
chains from the chains in Lt as follows:

L′t : L1 ∪ {u} ⊂ L2 ∪ {u} ⊂ . . . ⊂ Lj−1 ∪ {u},

and
L′′t : L1 ⊂ L2 ⊂ . . . ⊂ Lj ⊂ Lj ∪ {u}.

It can be observed that these chains are symmetric to the base set
V0 ∪ {u} and pairwise disjoint. Thus, they prove the lemma, and
consequently, Sperner’s theorem.
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Note

It might seem as if our inductive/recurrent construction always
doubled the number of our chains. However, the number of chains
does not increase as a power of two; rather, it remains

( n
bn/2c

)
.

The resolution of this apparent contradiction lies in the fact that
L′i can be empty.
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Theorem

At the heart of the second proof lies the mathematical theory of
partially ordered sets. Our goal is to understand that the proof
scheme based on this observation is

”
complete”.

Theorem

Let (P,≤) be a partially ordered set.

(i)
max
L chain

(|L|) = min
A1,A2, . . . ,Ak antichain cover

k

(ii) (Dilworth’s Theorem)

max
A antichain

(|A|) = min
L1, L2, . . . , Lk chain cover

k

In both cases, we only need to prove that the optimum of the
maximization problem is larger than the optimum of the
minimization problem. Peter Hajnal Set systems, SzTE, 2023



Proof (i)

Let M = maxL chain(|L|)

Associate each x ∈ P with the largest size among chains
containing x as the maximal element. (This is well-defined since
{x} is always a chain containing x as the maximal element.)

The range of the assignment is {1, 2, . . . ,M}. Let Ai

(i = 1, 2, . . . ,M) be the set of elements in P to which we assign
the value i .

This way, we cover P with M sets. If we can show that each Ai is
an antichain, we are done.

This follows indirectly, if x < y and x , y ∈ Ai , then giving y to the
chain demonstrating x ∈ Ai produces a chain of size i + 1,
contradicting the assumption y ∈ Ai .
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Proof (ii): The Plan

Let M = max{|A| : A antichain} and
m = min{k : L1, L2, . . . , Lk covering chains}.

Define a bipartite graph B based on (P,≤).

V The two color classes are F = {p+ : p ∈ P} and
A = {p− : p ∈ P}.

E p+ and q− are connected if and only if p > q.

Our goal is to show that ν(B) = |P| −m and τ(B) = |P| −M.

Then, the statement follows directly from Kőnig’s theorem.

Peter Hajnal Set systems, SzTE, 2023



ν(B) = |P | −m

Associate each chain in the covering with the edges
`+1 `
−
2 , `

+
2 `
−
3 , . . . , `

+
s−1`

−
s .

Doing this for all chains gives |P| −m edges, forming a matching.

The construction is reversible: given an M-matching, construct the
edges pq on the set P from the p+q− edges.

The resulting paths form a system.

The point sets of the components are chains that cover P. This
implies ν(B) = |P| −m.
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τ(B) = |P | −M

Let A be a maximal antichain.

Divide the elements of P − A into two parts: L− consists of the
elements that are smaller than some element in A, L+ consists of
the elements that are larger than some element in A.

Clearly, L+ and L− are disjoint and together they cover P − A.

Let R = {p+ : p ∈ L+}∪̇{p− : p ∈ L−} be a covering set of size
|P| −M.
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τ(B) = |P | −M (Continuation)

The reasoning is reversible: For every R ⊂ V (B), it determines a
partition of P into four parts

P = P+(R)∪̇P−(R)∪̇P±(R)∪̇P0(R)

according to how {p+, p−} relates to R.

Then

R = {p− : p ∈ P+(R)}∪̇{p+ : p ∈ P−(R)}∪̇{p−, p+ : p ∈ P±(R)}.

If R is a covering set, then P0(R) must be an antichain.

For |R| to be minimal, the optimal choice for P±(R) is ∅.
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Partially Ordered Sets and Graphs

For a partially ordered set (P,≤), we associate a comparison graph
GP : This simple graph has vertex set P, and two vertices are
connected if and only if they are comparable.

Observation

max
L chain

(|L|) = ω(GP),

min
A1,A2, . . . ,Ak antichain cover

k = χ(GP),

max
A antichain

(|A|) = α(GP) = ω(GP),

min
L1, L2, . . . , Lk chain cover

k = χ(GP).
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Graph Theory

The connections established in the previous theorem lead to the
following graph theoretical concept:

Definition

A graph G is perfect if for every induced subgraph F obtained by
deleting some vertices (i.e., a vertex set), we have

ω(F ) = χ(F ).

Theorem

Let GP be a comparison graph over a partially ordered set (P,≤).
Then

(i) GP is perfect,

(ii) GP is perfect.
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Intersecting Set Systems

Definition

A set system is called intersecting if any two of its edges intersect.

In other words, a set system is intersecting if it doesn’t contain
disjoint pairs of edges.

The basic extremal question is about the maximum number of
edges in an intersecting set system over an n-element vertex set.
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Intersecting Set Systems: Examples

Example

Let x ∈ V . H consists of all sets containing x . H is obviously
intersecting, and |H| = 2|V |−1 = 2n−1.

Example

Let V be an n-element set, where n is odd, n = 2k + 1. H consists
of all sets with at least k + 1 elements. H is intersecting, and
|H| = 2|V |−1 = 2n−1.

Example

If the base set has an even number of elements, and we include
only one of the complementary pairs of exactly |V |/2-sized sets in
H, along with more than |V |/2-sized sets.
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A High School Problem

Observation

An intersecting set system over an n-element V can have at most
2n−1 edges. The provided examples are extremal.

Indeed, we can divide the 2n subsets of V into 2n−1

complementary pairs, and each pair can contribute to at most one
intersecting set system.
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The Real Problem

A much more challenging question arises when we work with k
uniform set systems.

For k > |V |/2, there is no issue: all k-sets form an intersecting
system.

For k ≤ |V |/2, a fundamental theorem answers our question.

Theorem (Erdős—Ko—Rado Theorem)

Let k ≤ n/2. Let H be a k-uniform intersecting set system over an
n-element V . Then

|H| ≤
(
n − 1

k − 1

)

Our estimate is the best possible, achieved by considering all k-sets
containing a fixed element.
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Circularly Ordered Sets, Arcs

Let K be the vertex set of a cycle with n points. There exists a
clockwise order among these points, resulting in the sequence
v0, v1, . . . , vn−1, where indices are taken modulo n.

For I ⊂ K = {v0, v1, . . . , vn−1}, we say that I is the arc [a, z ] if I
contains a and the following points up to z inclusively, that is,
there exist i ∈ {0, 1, . . . , n − 1} and ` ∈ {1, . . . , n} such that
I = {vi , vi+1, . . . , vi+`−1}.

` = |I | is the length of the arc I .

How many k-length arcs can be selected to form an intersecting
system?
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Solution

Claim

k arcs can be chosen (for example,
[a1, ak ], [a2, ak+1], . . . , [ak , a2k−1]), no more.

Indeed: If I = [ai , ai+k−1] = (ai , . . . , ai+k−1) is an arc in our
system, then every other arc intersects I .

There are two types of arcs intersecting I : ending in I , and starting
in I .

There are 2(k − 1) arcs, forming k − 1 complementary pairs:
typical pairs consist of arcs ending in aj and starting in aj+1. (Here
we use 2k ≤ n.)

Thus, there cannot be more than 1 + (k − 1) arcs.
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Proof by Gyula Katona

Let H be a k-uniform intersecting set system.

Let π be a bijection between V (a subset of H’s base set) and the
cyclically ordered set K introduced earlier.

Count the pairs (π,E ), where E ∈ H and π(E ) is an arc. Perform
the counting in two different ways.

First, given E , consider how many ways π can be chosen such that
the corresponding pair is counted. It is easy to see that π(E ) is a
k-length arc, and there are n possibilities. Once fixed, there are
k! · (n − k)! good bijections.

For all pairs, ∑
E∈H

n · k!(n − k)! = |H|n · k!(n − k)!

is obtained.
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End of the Proof

Second, given π, consider how many edges lead to counting the
pair.

Here, the earlier simplification is useful. At most k can be
obtained, so

kn!

at most for all pairs.

Comparing the two results yields the theorem.
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Sunflowers

Definition

H1, . . . ,Hs form a s-petal sunflower (or ∆-system) if for every

i 6= j (i , j ∈ {1, . . . , s}), Hi ∩ Hj =
s⋂

k=1

Hk . The set T =
⋂s

k=1Hk

is called the plate of the sunflower.

For example, a collection of s pairwise disjoint set systems forms
an s-petal sunflower.

The fundamental question in the topic of sunflowers is: given a
k-uniform set system with no s-petal sunflower, what is the
maximum number of edges it can have?
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Erdős—Rado Theorem

Erdős—Rado Theorem

Let H be a k-uniform set system that does not contain an s-petal
sunflower. Then

|H| ≤ (s − 1)kk!.
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Proof: Start of Induction

We prove the theorem by complete induction on k , specifically in
the form: If H is a k-uniform set system and |H| > (s − 1)kk!,
then H contains an s-petal sunflower.

The base case k = 1 is trivial, considering that a 1-uniform set
system’s elements are disjoint singletons and form an s-petal
sunflower for any s.

Assume that we have established the statement for k − 1. To
prove it for k , we will need the following lemma.

Peter Hajnal Set systems, SzTE, 2023



Proof: The Lemma

Lemma

Let H be a k-uniform set system, and t ∈ {2, 3, . . .}. Then one of
the following is true:

(i) there exist t pairwise disjoint edges,

(ii) there exists a vertex v ∈ V such that v is incident with at

least |H|
(t−1)k edges.
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Proof: Deriving the Theorem from the Lemma

Apply the lemma for t = s.

If (i) holds, then there are s pairwise disjoint edges, forming an
s-petal sunflower.

If (ii) holds, let H̃ = {E\{v} : v ∈ E ∈ H}. (In other words,
remove v from the edges containing it.)

Obviously, H̃ is (k − 1)-uniform, and

H̃ ≥ |H|
k(t − 1)

>
(s − 1)kk!

k(s − 1)
= (s − 1)k−1(k − 1)!

By the induction hypothesis, H̃ contains an s-petal sunflower,
denoted as S1, . . . ,Ss . Then S1 ∪ {v}, . . . ,Ss ∪ {v} form an
s-petal sunflower in H.
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Remarks
The theorem gives an upper bound of (s − 1)kk! on the number of
edges in a set system that does not contain an s-petal sunflower.
This bound grows faster than exponential.

Construction: No three-petal sunflower

Let V = {a1, a2, . . . , ak}∪̇{b1, b2, . . . , bk}. H contains edges such
that each {ai , bi} (i = 1, 2, . . . , k) pair intersects it in exactly one
element. It is easy to see that H is a 2k -edge k-uniform set system.

The imaginary sunflower’s plate is included in every edge of it, The
plate consists of either zero or one element from each {ai , bi} pair.

On the other hand, it cannot be k-sized. There must exist an i
such that the plate is disjoint from {ai , bi}.

How do the three petals intersect with the set {ai , bi}? They must
intersect disjointly and each must have exactly one element in
common. Thus, the imaginary sunflower cannot exist.
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A recent breakthrough

Rao, Alweiss—Lovett—Wu—Zhang 2019

Let H be a k-uniform set system that does not contain an s-petal
sunflower. Then

|H| ≤ O((s log(sk))k).
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λ-Intersecting Set Systems

Definition

A set system H over the base set V is λ-intersecting if, for any
distinct A,B ∈ H, |A ∩ B| = λ.

Naturally, the fundamental question is: what is the maximum
number of edges in a λ-intersecting set system?
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Case of λ = 0

Example

Let λ = 0 and H = {∅, {v1}, . . . , {vn}}.

It is easy to see that for |V | = n and λ = 0, this is the largest set
system that is 0-intersecting.

From now on, we assume λ ≥ 1.
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Examples

Example

λ = 1,
V = {{v1, . . . , vn−1}, {v1, vn}, {v2, vn}, {v3, vn}, . . . {vn−1, vn}}

Example: λ = 1 and the Fano Plane

Seven points V = {P1,P2,P3,P4,P5,P7}, and set system
H = {{P1,P2,P3}, {P3,P4,P5}, {P1,P5,P6}, {P1,P4,P7},
{P3,P6,P7}, {P2,P5,P7}, {P2,P4,P6}}.
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The Fundamental Theorem

Theorem

Let λ ≥ 1 and F be a λ-intersecting set system over a base set V .
Then

|F| ≤ |V |.
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Start of the Proof

If there is an edge in F with cardinality less than λ, then no other
edge in F is possible, and the statement is trivial.

If there is an edge F with exactly λ elements, then every other
edge must contain F . For the other edges E , the sets E \ F are
pairwise disjoint, non-empty subsets of V \ F . Therefore, there can
be at most |V | − |F | such sets. This implies that the total number
of edges is at most 1 + (|V | − λ) ≤ |V |.

From now on, we assume that every edge has more than λ (at
least λ+ 1) elements.
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Linear Algebra

For an edge F ∈ F , let χF be the characteristic vector of the set
F ⊂ V (χF ∈ RV ≡ Rn). We will show that the χF vectors
(F ∈ F) are linearly independent. This implies the theorem.

Let MF be the matrix whose rows are the χF vectors (F ∈ F). Its
size is |F| × |V |.

What does the MF ·MᵀF matrix look like?

The entries are the scalar products χFχF ′ = |F ∩ F ′|. Since F is a
λ-intersecting set system, there are λ’s off the main diagonal. On
the main diagonal, the sizes of our edges are present.
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MF ·MᵀF

Let F = {A1, . . . ,Am} (m = |F|).



|A1| λ λ . . . λ λ
λ |A2| λ . . . λ λ
λ λ |A3| . . . λ λ
...

...
...

. . .
...

...
λ λ λ . . . |Am−1| λ
λ λ λ . . . λ |Am|


We will show that the rows of this matrix are linearly dependent.
This implies the theorem.
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MF ·MᵀF

Indeed, consider a linear combination of the rows (with coefficients
αi ). The jth component of the linear combination:

αj |Aj |+
∑
i :i 6=j

αiλ =αj |Aj | − αjλ+
m∑
i=1

αiλ = αj(|Aj | − λ) +
m∑
i=1

αiλ

=αj(|Aj | − λ) + Λ.

If we set up the linear combination to get the 0 vector, then

αj =
−Λ

|Aj | − λ
.

Hence the signs of the αj ’s are the same.

For the combination to be the 0 vector, we must have Λ = 0. This
implies that every αi is 0. Hence, the rows are linearly independent.
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Linear Algebraic Method

The Erdős-Ko-Rado Theorem and the Fisher Inequality are both
about set systems with intersecting conditions. This area has

flourished, producing many important results.

These theorems have had a significant impact not only in
combinatorics but also beyond.

In combinatorics, this linear algebraic method has become
particularly significant (for example, in proving the Fisher
Inequality). It has become an important proof technique.
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Trace

Definition

Let H be a set system over V , and A be a subset of V . Then
define TrAH = {E ∩ A : E ∈ H} as the trace of H on A.

It is clear that TrAH ⊆ P(A). In the case where TrAH = P(A), we
say that A is saturated.
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Vapnik–Chervonenkis Dimension

Vapnik–Chervonenkis Dimension of H

dimVC H = max{|A| : A ⊂ V is saturated}.

(Vapnik–Chervonenkis)

Let H be a set system over [n] = {1, 2, . . . , n}, and t be a positive
integer such that the inequality |H| > 1 +

(n
1

)
+
(n
2

)
+ . . .+

( n
t−1
)

holds. Then dimVC H ≥ t. In other words, there exists a saturated
set A of size t in [n] for H.
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Tightness of the Bound

Consider the set system defined by

H = {R ⊆ [n] : |R| < t}.

Clearly,

|H| = 1 +

(
n

1

)
+ . . .+

(
n

t − 1

)
,

However, in this system, there is no saturated set A of size t. To
see this, note that for a set A to be saturated, H must contain an
edge containing A.

Peter Hajnal Set systems, SzTE, 2023



Proof 1

We proceed by induction on n.

For n = 1, the statement of the theorem is trivially true.

Using the identity
(n
k

)
=
(n−1

k

)
+
(n−1
k−1
)
, the condition of the

theorem implies

|H| >
[(n − 1

0

)
+. . .+

(
n − 1

t − 2

)]
+
[
1+

(
n − 1

1

)
+. . .+

(
n − 1

t − 1

)]
.

Denote L1 and L2 as the two bracketed expressions.
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Proof 1 (contd)

Introduce the following notations:
H1 = {E ∈ H : n /∈ E ,E ∪ {n} ∈ H}, H2 = H−H1, and let

H̃2 = {E\{n} : E ∈ H2}.

Clearly, H1, H̃2 are set systems over [n − 1].

We know that
|H1|+ |H2| = |H| > L1 + L2

Either (i) |H1| > L1, or (ii) |H2| = |H̃2| > L2 holds.

Peter Hajnal Set systems, SzTE, 2023



Proof 1 (contd)

If (i) is true, then by the induction hypothesis, there exists a
t − 1-sized saturated set A with respect to H1. It is easy to see
(since for E ∈ H1, both E and E ∪ {n} are edges in H) that
A ∪ {n} is saturated with respect to H (and has size t).

If (ii) is true, then by the induction hypothesis, there exists a

t-sized saturated set A with respect to H̃2. This implies that for
every R ⊆ A, there exists E ∈ H̃2 such that E ∩ A = R. However,
for every E ∈ H̃2, there uniquely exists E0 ∈ H2, either E or
E ∪ {n}. In both cases, E0 ∩ A = R, which means A is saturated
with respect to H. �
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Proof 2

A set system is called down-closed if whenever E ∈ H and F ⊆ E ,
then F ∈ H.

If H is down-closed, the statement of the theorem straightforwardly
follows: the conditions ensure the existence of at least t-sized
edges in H, and due to down-closedness, every edge is saturated.

Define the following Si transformation: for i ∈ V , if E ∈ H, then
SiE = E\{i} if E\{i} /∈ H, and SiE = E otherwise. Let
SiH = {SiE : E ∈ H}.
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Proof 2 (contd)

Note that |H| = |SiH| follows directly from the definition.

It is not hard to see that if H is not down-closed, then there exists
an i such that SiH 6= H. (If it is not down-closed, there exist E
and F such that F ⊂ E and E ∈ H but F /∈ H. Then, any
i ∈ E\F will do.)

The third observation is stated as a lemma.

Lemma

|TrAH| ≥ |TrASiH| always holds.
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From Lemma to Theorem

For any H = H1, there exist i1, i2, . . . such that
Hk 6= Hk+1 = SikHk , iterating the S transformation until the set
system stops changing.

Obviously, this chain must terminate in finitely many steps because
the sum of the sizes of edges decreases in each step.

Let the last set system be Hs . By what we have shown so far, Hs

is down-closed, and the number of edges satisfies the condition of
the theorem.

Thus, there exists a t-sized edge A in Hs . Then A is saturated
with respect to Hs , and its trace on A has 2|A| elements. By the
lemma, the trace of A with respect to H1 also has at least 2|A|

elements, which means A is saturated. The proof is complete.
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Proof of the Lemma

If i /∈ A, then TrAH = TrASiH is trivially satisfied.

If i ∈ A, consider the pairs (R,R ∪ {i}) for all subsets R of A
where i /∈ R. If an edge E contributes to one pair, then its
transformation SiE contributes to the same pair.

It suffices to show that every pair contributes at least as much to
TrAH as to TrASiH.

The only potential issue is when R and R ∪ {i} are both in
TrASiH, but only one of them is in TrAH. Clearly, the missing one
must be R ∪ {i}. However, if R ∪ {i} is not in TrAH, then every
edge E for which E ∩ A = R ∪ {i} must satisfy SiE = E\{i}. This
contradicts R ∪ {i} ∈ TrASiH, and thus, the lemma is proven.
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This is the End!

Thank you for your attemtion!
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