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Faces with short boundary

Observation

Let v be an isolated node in a nicely drawn graph.
The vertex-point Pv , corresponding to v is an inner point of a face
τ0 in the (induced) nice drawing of G − v . There is a corresponding
face, τ in the nice drawing of G . One might include Pv in the
boundary of τ , but it does not contribute to the lemgth of it.

If E (G ) = ∅, then the drawing of G contains one face of length 0.

Now on we assume that we have no isolated nodes.
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Faces with short boundary (continued)

Observation

If the boundary of a face is a length 1 walk, then there is only one
bounding edge, a loop. The edge-curve of the bounding edge is a
closed Jordan curve.

Observation

Ha egy tartomány határa egy 2 hosszú séta, akkor az vagy egy
párhuzamos élpár, vagy egy él oda-vissza bejárása. A második
esetben az egész gráf két pont és egy összekötő él által alkotott
gráf.

Peter Hajnal PLanar graphs, SzTE, 2023



Faces in bipartite plane graph

It is staright forward, that in a planar bipartite each face has an
even length.

Furthermore, in a bipartite graőh any closed walk has even length.
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Observation

Observation

(i) If G is a simple connected plane graph on at least 3 nodes
then each of its face-boundary has length at least 3.

(ii) If G is a simple connected, bipartite, plane graph on at least 3
nodes then each of its face-boundary has length at least 4.
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Euler’s theorem

Euler’s theorem

Let G be a connected plane graph (λ is a nice drawing). Then

|T (G , λ)| − |E (G )|+ |V (G )| = 2,

where T (G , λ) is the set of faces.
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1st proof: Induction

G is connected, so we can think about it as a spanning tree and
some extra edges added to it.

Let h be the number of extra edges (h = |E | − (|V | − 1)). We use
induction on h.

If h = 0, then G is a tree: |T (G , λ) = 1| and |E (G )| = |V (G )| − 1.

Let G → G+ := G + e:

|V (G+)| = |V (G )|, |E (G+)| = |E (G )|+1, |T (G+, λ+)| = |T (G , λ)|+1,

where λ+ is the original drawing extended by the new edge.

Peter Hajnal PLanar graphs, SzTE, 2023



2nd Proof: Dualization

Introduce the dual G ∗ graph (λ∗ is its nice drawing).

G is connected, hence it has a spanning tree, T .

Let

F = {e ∈ E (G ) : e ∈ E (T )} = E (T ), F ∗ = {e∗ ∈ E (G ) : e 6∈ E (T )}.

It os obvious that |F |+ |F ∗| = |E (G )| and |F | = |V (G )| − 1.

Theorem

F ∗ is the edge set of a spanning tree in G ∗.

From the Theorem we know that
|F ∗| = |V (G ∗)| − 1 = |T (G , λ)| − 1 and Euler’s theorem is proven.
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Euler’s theorem: Second form

The Theorem is a little bit ’eclectic’: It mixes topology/geometry
and combinatorics.

Corollary

Let G be a simple planar graph, and assume |V (G )| ≥ 3. Then

(i) |E (G )| ≤ 3|V (G )| − 6,

(ii) furthermore if G is bipartite, then |E (G )| ≤ 2|V (G )| − 4.
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Proof: (i)

We can assume that G is connected! Let λ be a nice drawing of G .

Add up the lengths of the faces.

First, we get 2|E |.

Second, we have |T (G , λ)| terms, eacg is at least 3.

The two arguments are consistent:

2|E (G )| ≥ 3|T (G , λ)|.

From Euler’s theorem

3|T (G , λ)| = 3|E (G )| − 3|V (G )|+ 6.

The rest is simple algebra.
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Proof: (ii)

The same proof works. The only difference that each face has a
boundary at least 4. The rest is an exercise.
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Corollary of Euler’s Theorem

Theorem

K5 and K3,3 are non-planar graphs.
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1st proof

We start with a partial drawing of our graphs.

The red cycles and their drawings are unique. The red edge-curves divide
the plane into an inner and an outer face. The missing/black edges are in
one of those faces.

Without the loss of generality we can assume that the majority of
the black edges are drawn in the inner face.

We get contradiction.
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2nd proof

Proof by contradiction.

K5: Apply the second form of Euler’s theorem. We obtain
contradiction: |E | = 10 and 3|V | − 6 = 3 · 5− 6 = 9.

K3,3: Apply the second form of Euler’s theorem. We obtain
contradiction: |E | = 9 and 2|V | − 4 = 2 · 6− 4 = 8.
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Break
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Operation: Deleting an edge

Definition

Let G be a graph, e = xy ∈ E is an edge of it.

G − e (or G\e) denotes the graph, that we obtain from G by
deleting e.
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Operation: Merging two edges

Definition: G (e o f )

Let G be a graph, and e = xa, f = ay two edges of it, that meet in
a, a vertex of degree 2.
When merging e and f we obtain a graph by deleting e, f , a and
adding a new edge: xy .
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Operation contraction

Definition

Let G/e denote the graph we obtain by contracting e in the graph
G :

• V (G/e) = (V (G )− {x , y}
·
∪{[e]},

• E (G/e) = E (G )\{e},
• I (G/e) is the natural incidence.
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The operations in pictures

We emphasize an edge in G by coloring it red. We show the graphs we
obtain by deleting the red edge and the graph we obtain by contracting it.
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Duality and the operations

The next two figures show two operations described above:
deleting and contracting an edge. These two operations are
illustrated on the graph G and its dual G ∗.

G e-

G e-( )
?

G e
? ?6
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Relations between the operations

Claim

(i) (G − e)∗ = G ∗/e∗,

(ii) (G/e)∗ = G ∗ − e∗.

Observation

G (e o e ′) ' G/e ' G/e ′.
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Subgraphs, topological subgraphs, minors

Definition

Let G be a graph.

a) If R can be obtained from G by deleting edges/vertices, then
R is referred as a subgraph of G : R ⊆ G .

b) If T can be obtained from G by deleting edges/vertices and
merging edges, then T is referred as a topological subgraph of
G : R ⊆ G : T ≤ G .

c) If M can be obtained from G by deleting edges/vertices and
contacting edges, then M is referred as a minor of G : M � G .
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Subgraph: example

[
The red graph R is a subgraph of the graph G , since by deleting the
green edges and vertices we get the graph R.
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Topological subgraph: example

<

The red graph T is a topological subgraph of the graph G , since deleting
the green edges and vertices, and merging the edges marked in red we
get the graph T .
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Minor: example

The red graph M is a minor of the graph G , since deleting the green
edges and vertices, and contracting the edges marked in blue we get the
graph M.
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Relations

A subgraph is a topological subgraph too.

A topological subgraph is a miner too.

Formally
G ⊇ R ⇒ G ≥ R ⇒ G � R.

The reverese directions are false.
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Example for topological subgraph that is not a subgraph

[

C3 can be obtained from C4 by merging e and e′, i.e. C3 is the
topological subgraph of C4.
C4 has more vertices than C3. In the case of a subgraph one would have
to use vertex deletion, which would result in a graph with a vertex if
degree less than 2. So C3 is not a subgraph of C4.
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Example for a minor that is not a topological subgraph

K5 can be obtained from the Petersen graph by contracting the edges
marked in blue, so K5 is minor in the Petersen graph.
K5 is not a topological subgraph of the Petersen graph, since the Petersen
graph graph has degree 3, but the degree of the vertices of K5 is 4.
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An important observation

Observation

If G is a planar graph, furthermore R ⊆ G ;T � G ;M � G , then
R,T ,M are planar too.

Corollary

If G is planar, then

(i) K5 and K3,3 cannot be a subgraph of G ,

(ii) K5 and K3,3 cannot be a topological subgraph of G ,

(iii) K5 and K3,3 cannot be a minor of G ,

Many further examples of non-planar graphs.
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Break
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Theorems of Kuratowski and Wagner

Theorem

The following three properties are equivalent:

(i) G is planar.

(ii) G doesn’t contain K5 or K3,3 as a topological subgraph
(G 6≥ K5;K3,3).

(iii) G doesn’t contain K5 or K3,3 as a minor (G � K5;K3,3).

(i)⇔(ii) is Kuratowski’s Theorem, and (i)⇔(iii) is Wagner’s
Theorem.
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Proof of Wagner’s theorem (sketch)

Proof by contradiction: Assume that there exista a G non-planar
graph, that has neither K5, nor K3,3 minor. Assume that G is
counterexample, where |V |+ |E | is minimal. If ”we make G
smaller”, that it won’t be a counterexample. The rest of the proof
is ”contradiction hunting”.

Lemma

G is 3-connected simple graph.

Lemma

If H is 3-connected and |V (H)| > 4, the for a suitable edge e the
graph H/e remains 3-connected.

We do not prove these technical tools.
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Corollaries of the Lemmas

Corollary

Let H be a simple, 3-connected graph with at least 5 vertices.
Then we can find an edge xy ∈ E (H), that the graph H − {x , y} is
2-connected.

Corollary

Let G be the minimal counterexample. Then we can find an edge
xy ∈ E (G ), that the graph G/e is 3-connected, and the graph
G − {x , y} is 2-connected.

We know that G/e is not a counterexample, it can be drawn
nicely. [e] is a vertex-point in a face of the plane graph G − {x , y},
that is bounded by a cycle C .
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Corollaries of the Lemmas (continued)

Let P = N(x) ∩ V (C ), K = N(y) ∩ V (C ), where N(x)/N(y) is
the neighborhood of x/y in G − e.

We refer to the elements of P as red vertices and the elements of
K as blue vertices.

It is important to see that P ∩ K 6= ∅ can also occur, i.e. the two
colors are not two exclusive categories.

The following two notions and a lemma help us to arrive at the to
end of the proof.
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Arcs, separability

Definition: Arc of a cycle

Let C be a cycle with two vertices u and v . The two vertices
define two closed arcs: [u, v ]y and [v , u]y. The two arcs can be
considered as the vertex sets of the two uv paths. The intersection
of the two arcs (sets of vertices) is {u, v}. Let (u, v)y be
[u, v ]y − {u, v}.

Definition: Separability on a cycle

Let A and B be two subsets of the vertex set of the cycle C . We
say that A and B are separable iff there exist u, v ∈ V (C ) for
which A ⊆ [u, v ]y and B ⊆ [v , u]y.
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The Main Lemma

The Main Lemma

Let C be a circle and A and B be two finite subsets of the circle.
A and B are not separable if and only if one of the following two
possibilities is satisfied.

(i) There exist a, a′ ∈ A and b, b′ ∈ B four different vertices
alternating on the cycle, i.e the arcs (a, a′)y contains exactly
one of the two points b and b′.

(ii) A = B and |A| = |B| = 3.

Peter Hajnal PLanar graphs, SzTE, 2023



The two obstructions of separability on picure

The proof of the Main Lemma is elementary, the interested
students can prove it.
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Proof of Wagner’s Tehorem: The end I

1st case: P and K are non-separable. By the Main Lemma we
must see one of the obstructions.
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Proof of Wagner’s Tehorem: The end II

We see that on the left hand side K3,3, and on the right hand side
K5 appears as a minor. A contradiction.
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Proof of Wagner’s Tehorem: The end III

2nd case: P and K are separable along the circle C .

In this case a nice drawing of G/e and later a nice drawing of G
can be easily constructed, contraction.
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Break
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Theorems on drawings of graphs

Finally, some theorems are stated without proof.

Theorem (Fáry’s theorem)

If G is a simple plane graph, then it can be drawn such that every
edge curve is a straight segment.

Theorem (Tutte’s theorem)

If G is a simple 3-connected plane graph, then can be drawn such
that every curve is a straight line segment, and every bounded face
is a convex polygon.

Theorem (Steinitz’s theorem)

A graph G is an edge graph of a convex polyhedron if amd only if
G is 3-connected simple graph.
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Wagner’s sturcture theorem

Wagner’s sturcture theorem

A graph G doesn’t contain K5 as a minor iff it can be constructed
from planar graphs and W , the Wagner graph with operations
vertex/edge deletion and gluing along a clique of size at most 3.
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Wagner’s Theorem, 4CT and Hadwiger’s conjecture

Corollary, Wagner’s coloring theorem

If G doesn’t contain a K5 as minor, then its chromatic numer is at
most 4.

Hadwiger’s conjecture

If the graph G does not contain Kk+1 as a minor, then G has a
chromatic number at most k .

An equivalent formulation is:

Hadwiger’s Conjecture

If the graph G is not k-colorable, then it contains a Kk+1 minor.
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Results toward Hadwiger’s conjecture

Hadwiger’s conjecture is straight forward if k = 2.

The case k = 3 is not complicated.

The case k = 4 is proven (Wagner’s structure theorem and 4CT).

As k increases the conjecture is getting harder.

The case k = 5 is proven.

The proof is based on 4CT, but still it is very complicated.
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This is the end!

Thank you for your attention!
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