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Reminder

Definition

A function c : V (G )→ P is called vertex coloring of the graph G .
c(v) is called the color of vertex v .

The set P is called palette, its elements are colors. Examples are
P = {red, blue} or P = N+.

Definition

A coloring is called proper iff for each e = uv ∈ E (G ) one has
c(u) 6= c(v).

In this unit we always assume that G denotes a SIMPLE graph.
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Reminder(con’t)

Definition

c is a k-coloring of G , if the palette has size k .

Definition

The chromatic number of G is

χ(G ) = min {k : G has a proper k-coloring} .
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Colorings and independent sets

Definition

F ⊂ V (G ) is an independent vertex set in the graph G if there is
no edge e = uv ∈ E (G ) with u, v ∈ F .

Definition

α(G ) = max {|F | : F independent vertex set in G} .

A coloring is proper iff for any color the set of vertices with the
given color form an independent set.

So a proper coloring of G can be interpreted as a partition of the
vertex set into independent vertex sets.
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Colorings and cliques

Definition

K ⊂ V (G ) vertex set of G is called clique iff any two vertices of K
are adjacent.

Definition

ω(G ) = max {|K | : K is a clique in G} .

Observation

For any graph G one has

χ(G ) ≥ ω(G ).

The Observation is obvious since any proper coloring must color
the vertices of an arbitrary clique with different colors.
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Break
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Reminder

Triviality

G is non-1-colorable ⇐⇒ G has an edge.

Lemma

G is non-2-colorable ⇐⇒ G has an odd cycle.

Observation

G is non-3-colorable ⇐= G has a subgraph K4 (K4 is the complete
graph on four vertices).

The reveres (=⇒) of the last claim is not true.

Exhibiting a 4-clique is a transparent method. Unfortunately the
method is NOT COMPLETE.
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Operations

Definition

(Op1) Extension: Adding a new edge or vertex to our graph.

(Op2) Identifying two non-adjacent vertices: Let (x , x ′) two
non-adjacent vertices in G . Let N(x) be denote the set of
neighbors of x . The operation substitute the two vertices x and x ′

with one new vertex [xx ′] with neighborhood N(x) ∪ N(x ′). G̃
denotes the graph we obtained.

(Op3) Hajós operation: Let e ∈ E (G ), e ′ ∈ E (G ′), −→e = xy ,
−→
e ′ = x ′y ′ be two edges. We produce the new graph H as follows
H = Hajós−→e ,

−→
e′

(G ,G ′), where

V (H) = (V (G )− {x})∪̇(V (G ′)− {x ′})∪̇{[xx ′]},
E (H) = (E (G )− {e})∪̇(E (G ′)− {e ′})∪̇{yy ′}, and incidence is the
natural one.
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Example
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Observation

Lemma

If G and G ′ are non-k-colorable, then neither G+, nor G̃ , nor
Hajós(G ,G ′) are k-colorable.

Lemma

If G+ or G̃ is k-colorable, then G is k-colorable too. If
Hajós(G ,G ′) is k-colorable, then G OR G ′ is k-colorable too.

For G+ the Lemma is obvious. For G̃ and Hajós(G ,G ′) the
Lemma is straight forward.
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The effective usage of the Observation

Definition

The graph G is Hajós constructible from Kk+1’s iff there exists a
sequence of graphs G1,G2, . . .Gl such that for each Gi is a Kk+1,
or can be constructed from previous elements of our sequence
using one of our operations.

Corollary

If G is Hajós constructible, then G is non-k-colorable.
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Example: 5-wheel is non-3-colorable

Figure: First we apply (Op3) for G1 and G2 (two K4’s’), G3 is the result
of the Hajós operation. We apply (Op2) on it and we obtain G4. The
result is a 5-wheel, a non-3-colorable graph.
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The main Theorem

Theorem (György Hajós)

G is non-k-colorable iff G is Hajós constructible from Kk+1’s.

We already have proven one direction.

We will prove the other direction by contradiction.
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The proof: The first steps

• Assume that there is a counterexample, i.e. there is a graph G
that is non-k-colorable and non-Hajós-constructible.

• We can saturate G : i.e. we add edges till the ”counterexample”
property remains true. G satur denotes the output of the saturation
property.

• The saturation process preserves non-k-colorability. The key
property of G satur is that if we add any edge to it we must obtain
a Hajós constructible graph.
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Multipartite graphs

Definition

G is a complete r -partite graph, iff V (G ) is partitioned into r parts
and its edge set E (G ) contains all ”cross edges” (uv edges where
u and v are in different parts).

Example
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Lemma

Definition: An alternative definition of the complete r -partite
graphs

A graph G where
”

to be equal or non-adjacent” is an equivalence
relation on V (G ), furthermore the number of equivalence classes is
r .

Lemma

G satur is a complete r -partite graph.
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The proof of Lemma

We prove by contradiction.

Assume that in G satur

”
to be equal or non-adjacent” is not an

equivalence relation.

The only way that can happen is that there are x , y , z ∈ V (G satur )
three different vertices, that xy , xz /∈ E (G satur ), but
yz ∈ E (G satur ).

The saturation property of G satur ensures the G satur + xy and
G satur + xz are both are Hajós constructible.

Peter Hajnal Vertex coloring of graphs, University of Szeged, 2023



The proof of Lemma (cont’d)
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The proof of Lemma (cont’d)

Hajósxy ,x ′z ′(G
satur + xy ,G ′satur + x ′z ′):
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The end of the proof of Hajós’ Theorem

Now we now that G satur is a counter example and a complete
r -partite graph.

We consider two cases.

(1) If r ≥ k + 1: G satur has a Kk+1 as a subgraph. This implies
that G satur is Hajós constructible, a contradiction.

(2) If r ≤ k : G satur is k-colorable, a contradiction.
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Break
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Reminder

Theorem (BSc)

There exists a sequence of graphs {Gn} such that ω(Gn) = 2 (in
other words G is triangle-free), furthermore χ(Gn)→∞, assuming
n→∞.

Figure: A triangle-free graphPeter Hajnal Vertex coloring of graphs, University of Szeged, 2023



Local vs global

Take a triangle-free graph and think about it as a universe. We
can be any vertex and see the vertex, its neighbors and all the edge
between. The local information: We don’t see any obstruction for
coloring.

In spite of the local simplicity, the global coloring problem can be
hard.

We try to extend this example.
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The extension: A ball

Definition: A ball in a graph

Let G be an arbitrary graph, o ∈ V (G ), and r ∈ N+.

B(o, r) = G |{v∈V :dist(o,v)≤r},

where dist(o, v) denotes the length of the shortest ov path/walk.

B(o, 1) is the subgraph spanned by o and its neighbors.
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The extension: The problem

Instead of B(o, 1)’s we consider a local person in G with a farther
horizon.

There are several ways to formalize the extension.

(1) For each o the ball B(o, r) is bipartite. Equivalently, in G
there is no cycle of odd length at most 2r + 1.

(2) For each o the ball B(o, r) is a tree. Equivalently, in G there
is no cycle of length at most 2r + 1.

Definition

The girth of a graph G is

g(G ) = min {` : there is cycle of length ` in G} .
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Theorem of Paul Erdős

Theorem (Paul Erdős)

For any γ, τ ∈ N+ there is a graph G , with g(G ) ≥ γ and
χ(G ) ≥ τ .

Our proof won’t be constructive.

The proof will be a characteristic example for the probabilistic
method.
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Random graphs

Let V be an n element vertex set. We will fix the value of n later.
Till then we will say ”n is large enough”

For any pair of vertices we connect then with an edge with
probability p. (Hence with probability 1− p the chosen two
vertices are not adjacent.) For different pairs the probabilistic
decisions are independent.

The value of p (0 < p < 1) will be given later, depending on
n, τ, γ.

We just described a random model of graphs. This model is the so
called Erdős-Rényi model for random graph. It is denoted by Gn,p.

We have several unfixed parameters. During the proof we need to
make some promises in order to be able to advance. At the end of
the proof we will make our choices and check that our promises are
fulfilled.
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Independent sets instead of chromatic number

Observation

χ(G ) · α(G ) ≥ |V (G )| = n.

”If α(G ) is small, then χ(G ) is great”. Or ”assuming that color
classes can’t be small, we got to use many colors”.
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The event At

Let At be the event that ”α(G ) < t”. Equivalently there are no
independent set of size t.

Let FR be the event, that R is an independent set in G . We have

P(FR) = (1− p)(|R|2 ) .

Furthermore:

P(At) = 1− P

 ⋃
R⊆V
|R|=t

FR

 .

In other words the event At is the complement of ∪R⊆V ,|R|=tFR .
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Bounding the probability of the event At

Using the obvious fact P(∪ni=1Ei ) ≤
∑n

i=1 P(Ei ) we obtain

P(At) ≥ 1−
(
n

t

)
(1− p)(t

2) .

We can simplify the bound by the rude upper bound
(n
t

)
< nt and

the not so rude upper bound 1− p < e−p (p is positive and close
to 0)

P(At) ≥ 1− nte−p(t
2) = 1− et log ne−p

t(t−1)
2 = 1− et log n−p

t(t−1)
2 .
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The choice of t

We assume that n/2t ≥ τ and the lower bound on the
probability At is at least 2/3.
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Number of short cycle instead of girth

Let ξ≤γ be the random variable that enumerates the cycles not
longer than γ. We will be interested in the expected value of ξ≤γ .

We introduce the random variable

ξC =

{
1, if C ⊆ Gn,p

0, otherwise
,

where C is a possible cycle.

We have

E (ξ≤γ) = E

 ∑
length of C≤γ

ξC

 =

γ∑
l=3

 ∑
length of C=l

E (ξC )

 .
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Bounding the expected value of the number of short cycles

If the length of C is `, then E (ξC ) = p`. How many possible

cycles of length `? The answer is
(n
`

) (`−1)!
2 , since the vertex set of

the cycle can be chosen
(n
l

)
ways, and chosen ` vertices can be

ordered (`−1)!
2 ways.

Using the inequality(
n

`

)
(`− 1)!

2
=

n (n − 1) . . . (n − `+ 1)

2`
≤ n`

2`
≤ n`

6
,

we can give an upper bound on E (ξ≤γ):

E (ξ≤γ) ≤
γ∑
`=3

n`

6
p` =

γ∑
`=3

n`p`

6

(!)

≤
γ∑
`=3

(np)γ

6
≤ γ (np)γ

6
.
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Further promises

We assume that np ≥ 1.

Our choice of parameters are such that γ(np)γ/6 ≤ n/6 is true.
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The final conclusion

Based on the promises and Markov’s inequality we obtain

P
(
ξ≤γ >

n

2

)
< P (ξ≤γ > 3Eξ≤γ) <

1

3
,

P
(
ξ≤γ ≤

n

2

)
>

2

3
.

After these we have

P
(
At ∧

(
ξ≤γ ≤

n

2

))
> 0

since the two events connected by ∧ have probability at least 2
3 .
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The graph, we are looking for, exists!

We know that there is a graph G , on vertex set of size n and the
following two properties:

◦ In G the number of cycles of length at most γ is smaller then
n
2 , hence after deleting suitable n/2 vertices we obtain a graph
G0 such that g(G0) ≥ γ.

◦ Any independent set in G0 has site at most t. Hence
χ(G0) ≥ |V (G0)|/t ≥ τ .

G0 proves the theorem.
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The consistency of our promises

We have to fix the value p, t such a way that:

0 < et log n−p
t(t−1)

2 <
1

3
, np > 1, γ(np)γ ≤ n,

and n ≥ 2tτ .

A possible choice: Let p be satisfying γ(np)γ = n. So the third
promise ”defines” p.

In this case np = (n/γ)1/γ , i.e. the second assumption is
automatically true (n is large enough).

p =
1

n
· (n/γ)1/γ = c(γ)n−(1−1/γ),

where c(γ) is a constant only depending on γ.
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The consistency of our promises (cont’d)

The exponent in the first promise

t log n − c(γ)n
−
(
1− 1

γ

)
t(t − 1)/2.

This should be negative with big absolute value.

This is satisfied if
t = 3(log n)n1−

1
γ

(n is large enough).

n ≥ 2tτ is obviously true.
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This is the end!

Thank you for your attention!
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