Higher order connectivity of graphs

Peter Hajnal

Bolyai Institute SZTE, Szeged

2023 Fall

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Minimal Graphs

Lovász's lifting lemma

Flows: Reminder

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Flows: Reminder

In the course *Algorithms and Their Complexity*, the theory of flows was discussed (the necessary definitions can be found there). The following theorem is the fundamental theorem of flows.

・ 同 ト ・ ヨ ト ・ ヨ ト -

Flows: Reminder

In the course *Algorithms and Their Complexity*, the theory of flows was discussed (the necessary definitions can be found there). The following theorem is the fundamental theorem of flows.

Theorem (the main theorem of flows)

Let \mathcal{H} be a network and f be a flow in it. Then the following are equivalent:

- (i) f is a maximum value flow in the network \mathcal{H} .
- (ii) There is no augmenting path with respect to f in the network \mathcal{H} .
- (iii) There exists a source/sink cut in \mathcal{H} with capacity equal to the value of f.

< ロ > < 同 > < 回 > < 回 > < 回 > <

・ロト ・四ト ・ヨト ・ヨト

```
Consequence: Maximum Flow-Minimum Cut Theorem, MFMC
Theorem
Let \mathcal{H} : (\overrightarrow{G}, c, s, t) be a network. Then
\max\{\operatorname{val}(f) : f \text{ is a flow in } \mathcal{H}\} = \min\{c(\mathcal{V}) : \mathcal{V} \text{ is a source/sink cut in } \mathcal{H}\}.
```

伺 ト イヨ ト イヨ ト

Consequence: Maximum Flow-Minimum Cut Theorem, MFMC Theorem Let $\mathcal{H} : (\overrightarrow{G}, c, s, t)$ be a network. Then $\max\{\operatorname{val}(f) : f \text{ is a flow in } \mathcal{H}\} =$ $\min\{c(\mathcal{V}) : \mathcal{V} \text{ is a source/sink cut in } \mathcal{H}\}.$

Another consequence of the fundamental theorem is the Ford-Fulkerson algorithm.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Consequence: Maximum Flow-Minimum Cut Theorem, MFMC Theorem Let $\mathcal{H}: (\overrightarrow{G}, c, s, t)$ be a network. Then

 $\max\{ \operatorname{val}(f) : f \text{ is a flow in } \mathcal{H} \} = \\ \min\{c(\mathcal{V}) : \mathcal{V} \text{ is a source/sink cut in } \mathcal{H} \}.$

Another consequence of the fundamental theorem is the Ford-Fulkerson algorithm.

Integral Flow Theorem

If every edge in network \mathcal{H} has an integer capacity $(c: E(\overrightarrow{G}) \to \mathbb{Z})$, then there exists an optimal flow in which every edge carries an integer amount of material.

Minimal Graphs

Lovász's lifting lemma

Uniform Networks

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

イロト イポト イヨト イヨト

Uniform Networks

Let \overrightarrow{G} be a directed graph with source/sink nodes s and t.

・ロト ・四ト ・ヨト ・ヨト

Uniform Networks

Let \overrightarrow{G} be a directed graph with source/sink nodes s and t. If we set the capacity of every edge to be 1, we obtain a network $\mathcal{H}_{\overrightarrow{C}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト -

Uniform Networks

Let \vec{G} be a directed graph with source/sink nodes s and t. If we set the capacity of every edge to be 1, we obtain a network $\mathcal{H}_{\vec{G}}$.

Easy observation/exercise

Let \overrightarrow{G} be an arbitrary directed graph with two distinguished nodes s and t. Let $\mathcal{H}_{\overrightarrow{G}}$ be the following network: $(\overrightarrow{G}, c \equiv 1, s, t)$. (i)

 $\max\{\operatorname{val}(f): f \text{ is a flow in } \mathcal{H}_{\overrightarrow{G}}\} = \max\{k: P_1, P_2, \dots, P_k \text{ are edge-disjoint } \overrightarrow{st}\text{-paths in } \overrightarrow{G}\}$

(ii)

$$\begin{split} \min\{c(\mathcal{V}): \ \mathcal{V} \text{ is a source/sink cut in } \mathcal{H}_{\overrightarrow{G}}\} = \\ \min\{|S|: \ S \subset E(G) \text{ is a source} \rightarrow \text{sink separating edge set}\}. \end{split}$$

Minimal Graphs

Lovász's lifting lemma

Menger's First Theorem

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

・ロト ・部ト ・ヨト ・ヨト

Ξ.

Menger's First Theorem

The MFMC theorem and the observation provide a purely graph-theoretical theorem:

・ 同 ト ・ ヨ ト ・ ヨ ト -

Menger's First Theorem

The MFMC theorem and the observation provide a purely graph-theoretical theorem:

Menger's Theorem

Let \overrightarrow{G} be an arbitrary directed graph with two distinguished nodes s and t. Then

$$\max\{k : P_1, P_2, \dots, P_k \text{ are edge-disjoint } \overrightarrow{st} \text{ paths in } \overrightarrow{G}\} = \min\{|S| : S \subset E(G) \text{ is a source/sink separating edge set}\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Menger's Theorems for Directed Graphs

▲□ → ▲ 国 → ▲ 国 → …

Menger's Theorems for Directed Graphs

Menger's Theorems

Let \overrightarrow{G} be an arbitrary directed graph with two distinguished nodes s and t. Then

(i)

$$\max\{k : P_1, P_2, \dots, P_k \text{ edge-disjoint } \overrightarrow{st} \text{ paths in } \overrightarrow{G}\} = \min\{|S| : S \subset E(G) \text{ is a source/sink separating edge set}\}$$

(ii)

 $\max\{k: P_1, P_2, \dots, P_k \text{ internally node-disjoint } \overrightarrow{st} \text{ paths in } \overrightarrow{G}\} = \min\{|U|: U \subset V(\overrightarrow{G}) - \{s, t\} \text{ is a source} \rightarrow \text{sink separating node set} \}$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Menger's Theorems for Undirected Graphs

Menger's Theorems for Undirected Graphs

Let G be an arbitrary undirected graph with two distinguished nodes s and t. Then

(i)

 $\max\{k : P_1, P_2, \dots, P_k \text{ edge-disjoint } st \text{ paths in } G\} = \\ \min\{|S| : S \subset E(G) \text{ is a source/sink separating edge set}\}.$

(ii)

 $\max\{k: P_1, P_2, \dots, P_k \text{ internally node-disjoint } st \text{ paths in } G\} = \min\{|U|: U \subset V(G) - \{s, t\} \text{ is a source/sink separating node set}\}.$

◆□▶ ◆舂▶ ◆産≯ ◆産≯

In the case of internally node-disjoint paths, if there exists an \vec{st} or st edge, then the theorem is uninteresting.

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

▲御▶ ▲理≯ ▲理≯

э

・ 同 ト ・ ヨ ト ・ ヨ ト ・

In the case of internally node-disjoint paths, if there exists an \vec{st} or st edge, then the theorem is uninteresting.

There is no suitable separating set U, and the paths P_i may be the same one-edge path (without internal nodes).

In the case of internally node-disjoint paths, if there exists an \vec{st} or st edge, then the theorem is uninteresting.

There is no suitable separating set U, and the paths P_i may be the same one-edge path (without internal nodes).

That is, the optimum of both optimization problems is ∞ . In this case, it is worthwhile to assume the absence of edges between s and t.

イロト 不得 とくほと くほとう

Minimal Graphs

Lovász's lifting lemma

k-Edge Connectivity

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

・ロト ・部ト ・ヨト ・ヨト

2

k-Edge Connectivity

Definition

Let k be a positive integer. A graph G is k-edge-connected (shortened as k-edge-connected) if removing any set of fewer than k edges results in a connected graph.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

k-Edge Connectivity

Definition

Let k be a positive integer. A graph G is k-edge-connected (shortened as k-edge-connected) if removing any set of fewer than k edges results in a connected graph.

For every set $F \subseteq E(G)$ with |F| < k, the graph G - F is connected.

・ロト ・得ト ・ヨト ・ヨト

k-Edge Connectivity

Definition

Let k be a positive integer. A graph G is k-edge-connected (shortened as k-edge-connected) if removing any set of fewer than k edges results in a connected graph.

For every set $F \subseteq E(G)$ with |F| < k, the graph G - F is connected.

The condition must hold even for $F = \emptyset$, i.e., our base graph must be connected. Connectivity should be preserved when any proper but not *large* set of edges is removed.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Minimal Graphs

Lovász's lifting lemma

k-(Vertex) Connectivity

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

k-(Vertex) Connectivity

Definition

A graph G is k-(vertex) connected (shortened as kvc), if removing any set of fewer than k vertices results in a connected graph and |V(G)| > k.

・ 同 ト ・ ヨ ト ・ ヨ ト -

k-(Vertex) Connectivity

Definition

A graph G is k-(vertex) connected (shortened as kvc), if removing any set of fewer than k vertices results in a connected graph and |V(G)| > k. For every set $U \subseteq V(G)$ with |U| < k, the graph G - U is connected, and |V| > k.

・ 同 ト ・ ヨ ト ・ ヨ ト

k-(Vertex) Connectivity

Definition

A graph G is k-(vertex) connected (shortened as kvc), if removing any set of fewer than k vertices results in a connected graph and |V(G)| > k. For every set $U \subseteq V(G)$ with |U| < k, the graph G - U is connected, and |V| > k.

The technical condition for the vertex count serves to ensure that the graph is sufficiently large: after removing the *not too large* vertex set mentioned in the definition, at least two vertices should remain.

イロト 不得 とくほと くほとう

Minimal Graphs

Lovász's lifting lemma

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Examples

Example

Trees are not 2-edge-connected if they have edges.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Examples

Example

Trees are not 2-edge-connected if they have edges.

Example

Cycles are 2-connected (if they have at least three vertices) and therefore 2-edge-connected, but they are not 3-connected.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Examples

Example

Trees are not 2-edge-connected if they have edges.

Example

Cycles are 2-connected (if they have at least three vertices) and therefore 2-edge-connected, but they are not 3-connected.

Example

Among graphs with k + 1 vertices, only the complete graph is k-connected.

・ロト ・四ト ・ヨト

Connections

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Connections

The following diagram summarizes the relationships between various connectivity concepts. Graph classes not derivable from the diagram are not included.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The following diagram summarizes the relationships between various connectivity concepts. Graph classes not derivable from the diagram are not included.

$$1vc \ \leftarrow \ 2vc \ \leftarrow \ 3vc \ \leftarrow \ \dots \ \leftarrow \ kvc \ \leftarrow \\ \downarrow^* \\ \downarrow^c \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ 1ec \ \leftarrow \ 2ec \ \leftarrow \ 3ec \ \leftarrow \ \dots \ \leftarrow \ kec \ \leftarrow \\ \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The following diagram summarizes the relationships between various connectivity concepts. Graph classes not derivable from the diagram are not included.

The horizontal connections are obvious from the definitions.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

The following diagram summarizes the relationships between various connectivity concepts. Graph classes not derivable from the diagram are not included.

The horizontal connections are obvious from the definitions. The vertical arrows represent a somewhat more challenging relationship.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The following diagram summarizes the relationships between various connectivity concepts. Graph classes not derivable from the diagram are not included.

The horizontal connections are obvious from the definitions. The vertical arrows represent a somewhat more challenging relationship. The starred equivalence is only partially true. In 1-vertex-connectedness, the condition of having at least two vertices is essential; this is not a requirement for connectivity.

< ロ > (同 > (回 > (回 >))

The following diagram summarizes the relationships between various connectivity concepts. Graph classes not derivable from the diagram are not included.

The horizontal connections are obvious from the definitions. The vertical arrows represent a somewhat more challenging relationship. The starred equivalence is only partially true. In 1-vertex-connectedness, the condition of having at least two vertices is essential; this is not a requirement for connectivity. The other vertical implications follow from the lemma below.

Menger

◆□▶ ◆□▶ ◆□▶ ◆□▶

æ

Lemma

Lemma

Let *e* be any edge of graph *G* and *v* be any vertex. Let $k \ge 2$.

- (a) If G is k-edge-connected, then G e is
 - (k-1)-edge-connected.
- (b) If G is k-vertex-connected, then G v is (k-1)-vertex-connected.
- (c) If G is k-edge-connected, then G v can have any number of components.
- (d) If G is k-vertex-connected, then G e is (k 1)-vertex-connected.

< ロ > (同 > (回 > (回 >)))

・ロト ・四ト ・ヨト ・ヨト

æ

Theorem

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

・ロト ・四ト ・ヨト ・ヨト

æ

Theorem

(i) A graph G is k-edge-connected if and only if, for any two of its vertices, there exist k pairwise edge-disjoint paths between them.

A B A A B A

Theorem

- (i) A graph G is k-edge-connected if and only if, for any two of its vertices, there exist k pairwise edge-disjoint paths between them.
- (ii) A graph G is k-vertex-connected if and only if, for any two of its vertices, there exist k paths, whose internal vertices form pairwise disjoint sets (Path system is vertex-independent), and |V(G)| > k.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Menger

Minimal Graphs

Lovász's lifting lemma

Proof: Trivial Direction

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

・ロト ・ 母 ト ・ 国 ト ・ 国 ト …

æ

Proof: Trivial Direction

One direction of each statement is straightforward: the existence of the required paths ensures the corresponding connectivity.

・ 同 ト ・ ヨ ト ・ ヨ ト -

Proof: Trivial Direction

One direction of each statement is straightforward: the existence of the required paths ensures the corresponding connectivity.

Indeed: Suppose that after the appropriate reduction of our graph, we obtain a non-connected graph between two vertices — x and y.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof: Trivial Direction

One direction of each statement is straightforward: the existence of the required paths ensures the corresponding connectivity.

Indeed: Suppose that after the appropriate reduction of our graph, we obtain a non-connected graph between two vertices — x and y.

Applying the condition to x and y, the guaranteed path system between x and y is in our graph. Removing the edges/vertices must eliminate each of them. Due to the independence of the paths, this cannot happen.

イロト 不得 とくほと くほとう

Menger

Proof: Non-trivial Direction (i)

・ロト ・ 母 ト ・ 国 ト ・ 国 ト …

Let G be a graph, and $x, y \in V$ be any two vertices, with k given.

(日) (日) (日)

Let G be a graph, and $x, y \in V$ be any two vertices, with k given.

Assume that G is k-edge-connected, and apply Menger's theorem.

 $k \leq \min\{|L|: L \subseteq E(G), G - L \text{ does not have an } xy \text{ path}\} =$

 $= \max\{I : P_1, \ldots, P_I \text{ pairwise edge-disjoint } xy \text{ paths in } G\}$

Let G be a graph, and $x, y \in V$ be any two vertices, with k given. Assume that G is k-edge-connected, and apply Menger's theorem.

 $k \le \min\{|L|: L \subseteq E(G), G - L \text{ does not have an } xy \text{ path}\} = \max\{I: P_1, \ldots, P_I \text{ pairwise edge-disjoint } xy \text{ paths in } G\}$

Thus, there exist k pairwise edge-disjoint xy paths in G.

Menger

Proof: Non-trivial Direction (ii)

Assume that G is k-vertex-connected.

・ロト ・四ト ・ヨト ・ヨト

æ

Assume that G is k-vertex-connected.

Let P be the set of xy edges, and let p be its cardinality.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Assume that G is k-vertex-connected.

Let P be the set of xy edges, and let p be its cardinality. The edges in P are vertex-independent xy paths.

・ 同 ト ・ ヨ ト ・ ヨ ト

Assume that G is k-vertex-connected.

Let P be the set of xy edges, and let p be its cardinality. The edges in P are vertex-independent xy paths.

If $p \ge k$, then the statement holds.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Proof: Non-trivial Direction (ii)

Assume that G is k-vertex-connected.

Let P be the set of xy edges, and let p be its cardinality. The edges in P are vertex-independent xy paths.

If $p \ge k$, then the statement holds. If $p \le k - 1$, then G - P is (k - p)-vertex-connected.

・ロト ・ 同ト ・ ヨト ・ ヨト …

Assume that G is k-vertex-connected.

Let P be the set of xy edges, and let p be its cardinality. The edges in P are vertex-independent xy paths.

If $p \ge k$, then the statement holds. If $p \le k - 1$, then G - P is (k - p)-vertex-connected.

We show that there exist k - p vertex-independent xy paths in G - P.

Assume that G is k-vertex-connected.

Let P be the set of xy edges, and let p be its cardinality. The edges in P are vertex-independent xy paths.

If $p \ge k$, then the statement holds. If $p \le k - 1$, then G - P is (k - p)-vertex-connected.

We show that there exist k - p vertex-independent xy paths in G - P.

Apply the undirected, vertex-independent version of Menger's theorem (x and y are not connected in G - P):

 $\begin{aligned} k-p \leq \min\{|U|: \ U \subseteq V(G) \setminus \{x, y\}, \ G-P-U \text{ does not have an } xy \\ = \max\{I: \text{ vertex-independent } xy \text{ paths in } G-P\} \end{aligned}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Assume that G is k-vertex-connected.

Let P be the set of xy edges, and let p be its cardinality. The edges in P are vertex-independent xy paths.

If $p \ge k$, then the statement holds. If $p \le k - 1$, then G - P is (k - p)-vertex-connected.

We show that there exist k - p vertex-independent xy paths in G - P.

Apply the undirected, vertex-independent version of Menger's theorem (x and y are not connected in G - P):

 $\begin{aligned} k-p \leq \min\{|U|: \ U \subseteq V(G) \setminus \{x, y\}, \ G-P-U \text{ does not have an } xy \\ = \max\{I: \text{ vertex-independent } xy \text{ paths in } G-P\} \end{aligned}$

Hence, there exist k - p vertex-independent xy paths in G - P.

Assume that G is k-vertex-connected.

Let P be the set of xy edges, and let p be its cardinality. The edges in P are vertex-independent xy paths.

If $p \ge k$, then the statement holds. If $p \le k - 1$, then G - P is (k - p)-vertex-connected.

We show that there exist k - p vertex-independent xy paths in G - P.

Apply the undirected, vertex-independent version of Menger's theorem (x and y are not connected in G - P):

 $\begin{aligned} k-p \leq \min\{|U|: \ U \subseteq V(G) \setminus \{x, y\}, \ G-P-U \text{ does not have an } xy \\ = \max\{I: \text{ vertex-independent } xy \text{ paths in } G-P\} \end{aligned}$

Hence, there exist k - p vertex-independent xy paths in G - P. Adding the elements of P as 1-length xy paths, we obtain k vertex-independent xy paths in G.

Connectivity Parameters

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Ξ.

Connectivity Parameters

Definition

The connectivity parameters of graph G:

$$\kappa_e(G) = \begin{cases} \max\{k : G \text{ is } k \text{-edge-connected}\}, & \text{if } G \text{ is connected} \\ 0, & \text{if } G \text{ is not connected} \end{cases}$$
$$\kappa(G) = \begin{cases} \max\{k : G \text{ is } k \text{-vertex-connected}\}, & \text{if } G \text{ is connected} \\ 0, & \text{if } G \text{ is not connected} \end{cases}$$

▲圖▶ ▲ 国▶ ▲ 国▶ -

Observation

For every graph G, the following hold:

$$\kappa_{e}(G) = \min_{\substack{x,y \in E(G) \\ x,y \in E(G)}} \max\{k : P_{1}, \dots P_{k} \text{ pairwise edge-disjoint } xy \text{ paths in } G\}$$
$$= \min_{\substack{x,y \in E(G) \\ v \text{ xy cut}}} \min_{\substack{v \text{ xy cut}}} |E(\mathcal{V})| = \min_{\substack{v \text{ cut}}} |E(\mathcal{V})|,$$
where $\mathcal{V} = \{S, T\}, S \cup T = V(G), S \cap T = \emptyset, S, T \neq \emptyset.$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Menger

Minimal Graphs

Lovász's lifting lemma

Algorithmic Remarks

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

イロト イポト イヨト イヨト

æ

Algorithmic Remarks

Theorem

 $\kappa_e({\sf G})$ and $\kappa({\sf G})$ can be efficiently calculated with a flow algorithm.

(日) (日) (日)

Algorithmic Remarks

Theorem

 $\kappa_e({\sf G})$ and $\kappa({\sf G})$ can be efficiently calculated with a flow algorithm.

Theorem

Calculating
$$\max_{\mathcal{V} \text{ cut}} |E(\mathcal{V})|$$
 is hard,

イロト 不得 とくほと くほとう

Algorithmic Remarks

Theorem

 $\kappa_e(G)$ and $\kappa(G)$ can be efficiently calculated with a flow algorithm.

Theorem

Calculating $\max_{\mathcal{V} \text{ cut}} |E(\mathcal{V})|$ is *hard*, an \mathcal{NP} -complete problem.

(日) (日) (日)

Break

・ロト ・四ト ・ヨト ・ヨト

Ξ.

Definition

Let G be a graph, k a positive integer. G is called minimal k-edge-connected if

(i) k-edge-connected, and

(ii) for any edge e, G - e is not k-edge-connected.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Definition

Let G be a graph, k a positive integer. G is called minimal k-edge-connected if

(i) k-edge-connected, and

(ii) for any edge e, G - e is not k-edge-connected.

For k = 1, minimal k-edge-connected graphs are trees.

・ロト ・得ト ・ヨト ・ヨト

Definition

Let G be a graph, k a positive integer. G is called minimal k-edge-connected if

(i) k-edge-connected, and

(ii) for any edge e, G - e is not k-edge-connected.

For k = 1, minimal k-edge-connected graphs are trees.

If G is minimal k-edge-connected, then it has no loops.

イロト イポト イヨト イヨト

Definition

Let G be a graph, k a positive integer. G is called minimal k-edge-connected if

(i) k-edge-connected, and

(ii) for any edge e, G - e is not k-edge-connected.

For k = 1, minimal k-edge-connected graphs are trees.

If G is minimal k-edge-connected, then it has no loops.

If G is k-edge-connected and has at least two vertices, then every vertex has degree at least k.

イロト 不得 とくほと くほとう

Boundary of a Vertex Set: Definition

(日) (國) (필) (필) (필)

Boundary of a Vertex Set: Definition

Notation

The boundary of $U \subseteq V(G)$:

 $\partial U = \{xy \in E(G) : x \in U \text{ and } y \notin U, \text{ or } x \notin U \text{ and } y \in U\}$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

・ロト ・四ト ・ヨト ・ヨト

・ロト ・四ト ・ヨト ・ヨト

 $\partial U = \partial \overline{U}$, where $\overline{U} = V(G) \setminus U$.

▲□ → ▲ 国 → ▲ 国 → □

 $\partial U = \partial \overline{U}$, where $\overline{U} = V(G) \setminus U$.

If G has no loops, then for any $x \in V(G)$, $d(x) = |\partial \{x\}|$.

・ 同 ト ・ ヨ ト ・ ヨ ト -

$$\partial U = \partial \overline{U}$$
, where $\overline{U} = V(G) \setminus U$.

If G has no loops, then for any $x \in V(G)$, $d(x) = |\partial \{x\}|$.

G is k-edge-connected if and only if the boundary of any proper, non-empty subset of V(G) contains at least k edges.

・ロト ・ 同ト ・ ヨト ・ ヨト -

Mader's Theorem

Let k be a positive integer, G a minimal k-edge-connected graph with $|V(G)| \ge 2$. Then the following hold:

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Mader's Theorem

Let k be a positive integer, G a minimal k-edge-connected graph with $|V(G)| \ge 2$. Then the following hold:

(i) G has a k-degree vertex.

・ 同 ト ・ ヨ ト ・ ヨ ト -

Mader's Theorem

Let k be a positive integer, G a minimal k-edge-connected graph with $|V(G)| \ge 2$. Then the following hold:

(i) G has a k-degree vertex.

 $(i)^+$ G has at least two k-degree vertices.

・ 同 ト ・ ヨ ト ・ ヨ ト -

Mader's Theorem

Let k be a positive integer, G a minimal k-edge-connected graph with $|V(G)| \ge 2$. Then the following hold:

(i) G has a k-degree vertex.

 $(i)^+$ G has at least two k-degree vertices.

Definition

k a positive integer, G a minimal k-edge-connected graph. A set $P \subseteq V(G)$ is called a precise set if its boundary contains exactly k edges.

イロト 不得 とくほと くほとう

Mader's Theorem

Let k be a positive integer, G a minimal k-edge-connected graph with $|V(G)| \ge 2$. Then the following hold:

(i) G has a k-degree vertex.

 $(i)^+$ G has at least two k-degree vertices.

Definition

k a positive integer, G a minimal k-edge-connected graph. A set $P \subseteq V(G)$ is called a precise set if its boundary contains exactly k edges.

The statement (i) of the theorem is equivalent to the existence of a singleton precise set in G.

Observation

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Observation

Observation

If, for any $e = xy \in E(G)$, G - e is not k-edge-connected, then there exists a separating set $C \subset V(G)$ such that $|\partial_{G-e}C| < k$. In this case, C is a precise set in G and separates x and y.

・ 同 ト ・ ヨ ト ・ ヨ ト -

Observation

Observation

If, for any $e = xy \in E(G)$, G - e is not k-edge-connected, then there exists a separating set $C \subset V(G)$ such that $|\partial_{G-e}C| < k$. In this case, C is a precise set in G and separates x and y.

Menger

Minimal Graphs

Lovász's lifting lemma

Proof of Mader's Theorem (i): Cases

・ロト ・四ト ・ヨト ・ヨト

Let M be a minimal precise set in G, i.e., a precise set such that none of its proper subsets is precise. We claim that M is a singleton set.

・ 同 ト ・ ヨ ト ・ ヨ ト -

Let M be a minimal precise set in G, i.e., a precise set such that none of its proper subsets is precise. We claim that M is a singleton set.

・ 同 ト ・ ヨ ト ・ ヨ ト

Menger

Minimal Graphs

Lovász's lifting lemma

Proof of Mader's Theorem (i): Case 1

・ロト ・四ト ・ヨト ・ヨト

Case 1: No edge crosses within M.

▲御▶ ▲理≯ ▲理≯

Case 1: No edge crosses within M.

In this case, the following equality holds:

$$k = |\partial M| = \sum_{m \in M} |\partial \{m\}| = \sum_{m \in M} d(m)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Case 1: No edge crosses within M.

In this case, the following equality holds:

$$k = |\partial M| = \sum_{m \in M} |\partial \{m\}| = \sum_{m \in M} d(m)$$

Since every vertex in G has degree at least k, M can only be a singleton set.

< 同 > < 回 > < 回 >

Menger

Minimal Graphs

Lovász's lifting lemma

Proof of Mader's Theorem (i): Case 2

・ロト ・四ト ・ヨト ・ヨト

Case 2: At least one edge crosses within M.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Case 2: At least one edge crosses within M.

Let xy be such an edge. Since G has no loops, x and y are distinct vertices.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

э

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proof of Mader's Theorem (i): Case 2

Case 2: At least one edge crosses within M.

Let xy be such an edge. Since G has no loops, x and y are distinct vertices.

M is precise, so $M \neq V(G)$.

э

Proof of Mader's Theorem (i): Case 2

Case 2: At least one edge crosses within M.

Let xy be such an edge. Since G has no loops, x and y are distinct vertices.

M is precise, so $M \neq V(G)$.

Let $z \in V(G) \setminus M$.

Case 2: At least one edge crosses within M.

Let xy be such an edge. Since G has no loops, x and y are distinct vertices.

M is precise, so $M \neq V(G)$.

Let $z \in V(G) \setminus M$.

Due to the observations, there exists a precise set $C \subseteq V(G)$ that separates x and y. Without loss of generality, we can assume $z \notin C$; if z was an element of C, we could replace C with \overline{C} .

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Proof of Mader's Theorem (i): Submodularity

・ロト ・四ト ・ヨト ・ヨト

æ

Menger

Minimal Graphs

Lovász's lifting lemma

Proof of Mader's Theorem (i): Submodularity

Lemma

$|\partial(A \cap B)| + |\partial(A \cup B)| \le |\partial(A)| + |\partial(B)|.$

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

(日本) (日本) (日本)

Menger

Minimal Graphs

Lovász's lifting lemma

Proof of Mader's Theorem (i): Submodularity

Lemma

$|\partial(A \cap B)| + |\partial(A \cup B)| \le |\partial(A)| + |\partial(B)|.$

Both sides count edges.

▲御▶ ▲理≯ ▲理≯ …

Proof of Mader's Theorem (i): Submodularity

Lemma

$|\partial(A \cap B)| + |\partial(A \cup B)| \le |\partial(A)| + |\partial(B)|.$

Both sides count edges.

Let $e = xy \in E(G)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

Proof of Mader's Theorem (i): Submodularity

Lemma

$|\partial(A \cap B)| + |\partial(A \cup B)| \le |\partial(A)| + |\partial(B)|.$

Both sides count edges.

Let $e = xy \in E(G)$.

There are eight cases. In all cases the right hand side counts e at least as many times as the left hand side.

イロト 不得 とくほと くほとう

Menger

Minimal Graphs

Lovász's lifting lemma

Proof of Mader's Theorem (i): Case 2

・ロト ・四ト ・ヨト ・ヨト

æ

Apply the lemma to M and C.

イロト 不得 とくほと くほとう

æ

Apply the lemma to M and C.

By our choices, $M \cap C \neq \emptyset$ and $M \cup C \neq V(G)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Apply the lemma to M and C.

By our choices, $M \cap C \neq \emptyset$ and $M \cup C \neq V(G)$.

 $k + k \leq |\partial(M \cap C)| + |\partial(M \cup C)| \leq |\partial M| + |\partial C| = 2k$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Apply the lemma to M and C.

By our choices, $M \cap C \neq \emptyset$ and $M \cup C \neq V(G)$.

 $k + k \leq |\partial(M \cap C)| + |\partial(M \cup C)| \leq |\partial M| + |\partial C| = 2k$

The first and last terms in the inequality are equal, so all our estimates are tight, in particular, $|\partial(M \cap C)| = k$.

Apply the lemma to M and C.

By our choices, $M \cap C \neq \emptyset$ and $M \cup C \neq V(G)$.

 $k + k \leq |\partial (M \cap C)| + |\partial (M \cup C)| \leq |\partial M| + |\partial C| = 2k$

The first and last terms in the inequality are equal, so all our estimates are tight, in particular, $|\partial(M \cap C)| = k$.

Since x and y belong to different subsets of C, $M \cap C$ is a proper precise subset of M.

Apply the lemma to M and C.

By our choices, $M \cap C \neq \emptyset$ and $M \cup C \neq V(G)$.

 $k + k \leq |\partial (M \cap C)| + |\partial (M \cup C)| \leq |\partial M| + |\partial C| = 2k$

The first and last terms in the inequality are equal, so all our estimates are tight, in particular, $|\partial(M \cap C)| = k$.

Since x and y belong to different subsets of C, $M \cap C$ is a proper precise subset of M.

This contradicts the minimality of M, so the second case is not possible.

Apply the lemma to M and C.

By our choices, $M \cap C \neq \emptyset$ and $M \cup C \neq V(G)$.

 $k + k \leq |\partial (M \cap C)| + |\partial (M \cup C)| \leq |\partial M| + |\partial C| = 2k$

The first and last terms in the inequality are equal, so all our estimates are tight, in particular, $|\partial(M \cap C)| = k$.

Since x and y belong to different subsets of C, $M \cap C$ is a proper precise subset of M.

This contradicts the minimality of M, so the second case is not possible.

(ii) Let P be a precise set in G. In this case, \overline{P} is also precise. P and \overline{P} each have a minimal precise subset for containment, let these be M_1 and M_2 . These are two different singleton precise sets in G.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Example

Let $m \ge 2$ be an integer. If we replace each edge in a tree T with m parallel edges, we obtain a minimal m-edge-connected graph.

・ 同 ト ・ ヨ ト ・ ヨ ト -

э

Example

Let $m \ge 2$ be an integer. If we replace each edge in a tree T with m parallel edges, we obtain a minimal m-edge-connected graph.

In particular, if T is a path of length at least one, then we have exactly two vertices with degree m.

イロト イポト イヨト イヨト

Example

Let $m \ge 2$ be an integer. If we replace each edge in a tree T with m parallel edges, we obtain a minimal m-edge-connected graph.

In particular, if T is a path of length at least one, then we have exactly two vertices with degree m.

The figure below illustrates the case of m = 3.

イロト 不得 とくほと くほとう

Example

Let $m \ge 2$ be an integer. If we replace each edge in a tree T with m parallel edges, we obtain a minimal m-edge-connected graph.

In particular, if T is a path of length at least one, then we have exactly two vertices with degree m.

The figure below illustrates the case of m = 3.

・ 同 ト ・ ヨ ト ・ ヨ ト

Break

Lovász's Lifting Lemma

Lovász's Lifting Lemma

Let G be a graph, $u \in V(G)$, $G_0 = G - u$, $k \ge 2$ an integer.

Suppose that the number of edges between u and G_0 is even and positive, and u satisfies the following condition:

伺 ト イヨト イヨト

Lovász's Lifting Lemma

Lovász's Lifting Lemma

Let G be a graph, $u \in V(G)$, $G_0 = G - u$, $k \ge 2$ an integer.

Suppose that the number of edges between u and G_0 is even and positive, and u satisfies the following condition:

(L) If U is a nontrivial subset of $V(G_0)$, then $|\partial_G U| \ge k$.

Lovász's Lifting Lemma

Lovász's Lifting Lemma

Let G be a graph, $u \in V(G)$, $G_0 = G - u$, $k \ge 2$ an integer.

Suppose that the number of edges between u and G_0 is even and positive, and u satisfies the following condition:

(L) If U is a nontrivial subset of $V(G_0)$, then $|\partial_G U| \ge k$.

Then, there exist two edges e = ux and f = uy incident to u such that the graph $\tilde{G} = G - e - f + xy$ also satisfies condition (L).

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lovász's Lifting Lemma in Pictures

Lovász's Lifting Lemma in Pictures

Figure: In the figure, the red edges are being exchanged. If an edge already exists between x and y, we add a new edge parallel to the existing xy edges.

・ 同 ト ・ ヨ ト ・ ヨ ト

G graph, k positive even integer, two operations

▲御▶ ▲理≯ ▲理≯ …

æ

G graph, k positive even integer, two operations

Edge addition: We add a new edge between two vertices of *G*: $G \rightarrow G^+$.

Contraction of k/2 **edges:** We remove k/2 edges from G, replace their endpoints with new vertices, and then identify the k/2 new vertices: $G \rightarrow \widetilde{G}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

æ

If G is k-edge-connected, then G^+ and \widetilde{G} are also k-edge-connected.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

æ

If G is k-edge-connected, then G^+ and \widetilde{G} are also k-edge-connected.

For G^+ , this is obvious.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

If G is k-edge-connected, then G^+ and \tilde{G} are also k-edge-connected.

For G^+ , this is obvious. For \widetilde{G} , we need to verify that the boundary of any non-empty proper subset of V(G) has at least k elements.

A B A A B A

If G is k-edge-connected, then G^+ and \tilde{G} are also k-edge-connected.

For G^+ , this is obvious. For \widetilde{G} , we need to verify that the boundary of any non-empty proper subset of V(G) has at least k elements. This is sufficient to check for subsets that do not contain the new vertices. This is a straightforward task.

If G is k-edge-connected, then G^+ and \tilde{G} are also k-edge-connected.

For G^+ , this is obvious. For \widetilde{G} , we need to verify that the boundary of any non-empty proper subset of V(G) has at least k elements. This is sufficient to check for subsets that do not contain the new vertices. This is a straightforward task.

Observation

Let G_0 be the graph with one vertex and no edges.

If G is k-edge-connected, then G^+ and \widetilde{G} are also k-edge-connected.

For G^+ , this is obvious. For \widetilde{G} , we need to verify that the boundary of any non-empty proper subset of V(G) has at least k elements. This is sufficient to check for subsets that do not contain the new vertices. This is a straightforward task.

Observation

Let G_0 be the graph with one vertex and no edges.

Assume that G can be built in the following way:

$$G_0 \rightarrow G_1 \rightarrow \ldots \rightarrow G_l = G,$$

where for every i = 0, ..., l - 1, the $G_i \rightarrow G_{i+1}$ operation is either edge addition or contraction of k/2 edges.

If G is k-edge-connected, then G^+ and \widetilde{G} are also k-edge-connected.

For G^+ , this is obvious. For \widetilde{G} , we need to verify that the boundary of any non-empty proper subset of V(G) has at least k elements. This is sufficient to check for subsets that do not contain the new vertices. This is a straightforward task.

Observation

Let G_0 be the graph with one vertex and no edges.

Assume that G can be built in the following way:

$$G_0 \rightarrow G_1 \rightarrow \ldots \rightarrow G_l = G,$$

where for every i = 0, ..., l - 1, the $G_i \rightarrow G_{i+1}$ operation is either edge addition or contraction of k/2 edges.

Then G is k-edge-connected.

Application of the Lifting Lemma: Growth of 2ℓ -edge-connected graphs

・ 同 ト ・ ヨ ト ・ ヨ ト -

Application of the Lifting Lemma: Growth of 2ℓ -edge-connected graphs

Our goal is to prove the converse of the observation above.

▲□▶ ▲ □▶ ▲ □▶ -

Application of the Lifting Lemma: Growth of 2ℓ -edge-connected graphs

Our goal is to prove the converse of the observation above.

Theorem

If k is a positive even number, and G is a k-edge-connected graph, then G can be built from G_0 (see above) using the previous two operations.

Minimal Graphs

Lovász's lifting lemma

Proof of the Enhanced Lifting Lemma

・ロト ・四ト ・ヨト ・ヨト

æ

Let G and k be given. We prove the statement by induction on the number of edges.

(日) (日) (日)

Let G and k be given. We prove the statement by induction on the number of edges.

 G_0 and all graphs with at most one edge can be trivially constructed.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G and k be given. We prove the statement by induction on the number of edges.

 G_0 and all graphs with at most one edge can be trivially constructed.

Let G be a k-edge-connected graph with at least two vertices. Assume that all graphs with at most |E(G)| - 1 edges can be constructed.

・ロト ・得ト ・ヨト ・ヨト

Let G and k be given. We prove the statement by induction on the number of edges.

 G_0 and all graphs with at most one edge can be trivially constructed.

Let G be a k-edge-connected graph with at least two vertices. Assume that all graphs with at most |E(G)| - 1 edges can be constructed.

G is not minimally *k*-edge-connected.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let G and k be given. We prove the statement by induction on the number of edges.

 G_0 and all graphs with at most one edge can be trivially constructed.

Let G be a k-edge-connected graph with at least two vertices. Assume that all graphs with at most |E(G)| - 1 edges can be constructed.

G is not minimally k-edge-connected. Then G has an edge e such that G - e is k-edge-connected.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let G and k be given. We prove the statement by induction on the number of edges.

 G_0 and all graphs with at most one edge can be trivially constructed.

Let G be a k-edge-connected graph with at least two vertices. Assume that all graphs with at most |E(G)| - 1 edges can be constructed.

G is not minimally *k*-edge-connected. Then *G* has an edge *e* such that G - e is *k*-edge-connected. Since |E(G - e)| = |E(G)| - 1, by the induction hypothesis, G - e can be constructed.

Let G and k be given. We prove the statement by induction on the number of edges.

 G_0 and all graphs with at most one edge can be trivially constructed.

Let G be a k-edge-connected graph with at least two vertices. Assume that all graphs with at most |E(G)| - 1 edges can be constructed.

G is not minimally *k*-edge-connected. Then *G* has an edge *e* such that G - e is *k*-edge-connected. Since |E(G - e)| = |E(G)| - 1, by the induction hypothesis, G - e can be constructed. Thus, *G* can be constructed by adding back the edge *e* to G - e.

Let G and k be given. We prove the statement by induction on the number of edges.

 G_0 and all graphs with at most one edge can be trivially constructed.

Let G be a k-edge-connected graph with at least two vertices. Assume that all graphs with at most |E(G)| - 1 edges can be constructed.

G is not minimally *k*-edge-connected. Then *G* has an edge *e* such that G - e is *k*-edge-connected. Since |E(G - e)| = |E(G)| - 1, by the induction hypothesis, G - e can be constructed. Thus, *G* can be constructed by adding back the edge *e* to G - e.

From now on: G is minimally k-edge-connected, $|V(G)| \ge 2$.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(日) (部) (注) (注) (注) (注)

In this case, G has a vertex u with degree k.

・ロト ・四ト ・ヨト ・ヨト

æ

In this case, G has a vertex u with degree k.

By applying the lifting lemma to this vertex k/2 times, we lift the edges, and then remove u.

(日本) (日本) (日本)

In this case, G has a vertex u with degree k.

By applying the lifting lemma to this vertex k/2 times, we lift the edges, and then remove u.

Thus, by the lemma, we obtain a graph H that is k-edge-connected and has fewer edges than G.

イロト イポト イヨト イヨト

In this case, G has a vertex u with degree k.

By applying the lifting lemma to this vertex k/2 times, we lift the edges, and then remove u.

Thus, by the lemma, we obtain a graph H that is k-edge-connected and has fewer edges than G. Therefore, H can be constructed.

イロト イポト イヨト イヨト

In this case, G has a vertex u with degree k.

By applying the lifting lemma to this vertex k/2 times, we lift the edges, and then remove u.

Thus, by the lemma, we obtain a graph H that is k-edge-connected and has fewer edges than G. Therefore, H can be constructed.

If we contract the edges in $E(H) \setminus E(G)$ to a single vertex u, we obtain the graph G.

< ロ > (同 > (回 > (回 >)))

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

We prove the following slightly stronger version of Lovász's lemma:

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We prove the following slightly stronger version of Lovász's lemma:

Lemma⁺

Let G be a graph, $u \in V(G)$, $G_0 = G - u$, $k \ge 2$ an integer. Suppose that the number of edges between u and G_0 is even and positive, and G_0 satisfies

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We prove the following slightly stronger version of Lovász's lemma:

Lemma⁺

Let G be a graph, $u \in V(G)$, $G_0 = G - u$, $k \ge 2$ an integer. Suppose that the number of edges between u and G_0 is even and positive, and G_0 satisfies

(L) If U is a nontrivial subset of $V(G_0)$, then $|\partial_G U| \ge k$.

・ 同 ト ・ ヨ ト ・ ヨ ト

We prove the following slightly stronger version of Lovász's lemma:

Lemma⁺

Let G be a graph, $u \in V(G)$, $G_0 = G - u$, $k \ge 2$ an integer. Suppose that the number of edges between u and G_0 is even and positive, and G_0 satisfies (L) If U is a nontrivial subset of $V(G_0)$, then $|\partial_G U| \ge k$. Then, for any edge e = ux, there exists an edge f = uy such that

the graph $\widetilde{G} = G - e - f + xy$ also satisfies property (L).

< ロ > < 同 > < 回 > < 回 > < 回 > <

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

Let G, u, k, and e = ux be given.

・ロト ・四ト ・ヨト ・ヨト

æ

Let G, u, k, and e = ux be given.

Let's try the edge f = uy.

(日) (日) (日)

Let G, u, k, and e = ux be given. Let's try the edge f = uy. Let $\tilde{G} = G - e - f + xy$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Let G, u, k, and e = ux be given.

Let's try the edge f = uy. Let $\tilde{G} = G - e - f + xy$. Suppose that \tilde{G} does not have property (L).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let G, u, k, and e = ux be given.

Let's try the edge f = uy. Let $\widetilde{G} = G - e - f + xy$. Suppose that \widetilde{G} does not have property (L). Then, there exists a set $C_f \subseteq V(G_0)$ that is a counterexample, meaning $|\partial_{\widetilde{G}}C_f| < k$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Let G, u, k, and e = ux be given.

Let's try the edge f = uy. Let $\widetilde{G} = G - e - f + xy$. Suppose that \widetilde{G} does not have property (L). Then, there exists a set $C_f \subseteq V(G_0)$ that is a counterexample, meaning $|\partial_{\widetilde{G}}C_f| < k$.

If C_f separates x and y, then $|\partial_{\widetilde{G}}C_f| = |\partial_G C_f| \ge k$, which is a contradiction.

・ 同 ト ・ ヨ ト ・ ヨ ト

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

・ロト ・御ト ・ヨト ・ヨト

æ

Assume $u \notin C_f$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

æ

Assume $u \notin C_f$. If C_f separates x and y, or $x, y \notin C_f$, then C_f would not be a counterexample.

・ 同 ト ・ ヨ ト ・ ヨ ト

Assume $u \notin C_f$. If C_f separates x and y, or $x, y \notin C_f$, then C_f would not be a counterexample. Thus, $x, y \in C_f$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Assume $u \notin C_f$. If C_f separates x and y, or $x, y \notin C_f$, then C_f would not be a counterexample. Thus, $x, y \in C_f$.

Then $k > |\partial_{\widetilde{G}} C_f| = |\partial_G C_f| - 2$, so $|\partial_G C_f| \le k + 1$.

< ロ > (同 > (回 > (回 >)))

Assume $u \notin C_f$. If C_f separates x and y, or $x, y \notin C_f$, then C_f would not be a counterexample. Thus, $x, y \in C_f$.

Then $k > |\partial_{\widetilde{G}} C_f| = |\partial_G C_f| - 2$, so $|\partial_G C_f| \le k + 1$. Let $\overline{C_f}$ be $V(G_0) \setminus C_f$.

・ロト ・四ト ・ヨト ・ヨト

Assume $u \notin C_f$. If C_f separates x and y, or $x, y \notin C_f$, then C_f would not be a counterexample. Thus, $x, y \in C_f$.

Then
$$k > |\partial_{\widetilde{G}} C_f| = |\partial_G C_f| - 2$$
, so $|\partial_G C_f| \le k + 1$. Let $\overline{C_f}$ be $V(G_0) \setminus C_f$.

Let *d* be the number of edges between *u* and G_0 , d_1 be the number of edges between *u* and C_f , d_2 be the number of edges between *u* and $\overline{C_f}$, and d_3 be the number of edges between C_f and $\overline{C_f}$.

・ロト ・得ト ・ヨト ・ヨト

Assume $u \notin C_f$. If C_f separates x and y, or $x, y \notin C_f$, then C_f would not be a counterexample. Thus, $x, y \in C_f$.

Then $k > |\partial_{\widetilde{G}} C_f| = |\partial_G C_f| - 2$, so $|\partial_G C_f| \le k + 1$. Let $\overline{C_f}$ be $V(G_0) \setminus C_f$.

Let *d* be the number of edges between *u* and G_0 , d_1 be the number of edges between *u* and C_f , d_2 be the number of edges between *u* and $\overline{C_f}$, and d_3 be the number of edges between C_f and $\overline{C_f}$.

Since G has property (L), we have $d_2 + d_3 = |\partial_G \overline{C_f}| \ge k$,

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Proof

Assume $u \notin C_f$. If C_f separates x and y, or $x, y \notin C_f$, then C_f would not be a counterexample. Thus, $x, y \in C_f$.

Then
$$k > |\partial_{\widetilde{G}} C_f| = |\partial_G C_f| - 2$$
, so $|\partial_G C_f| \le k + 1$. Let $\overline{C_f}$ be $V(G_0) \setminus C_f$.

Let *d* be the number of edges between *u* and G_0 , d_1 be the number of edges between *u* and C_f , d_2 be the number of edges between *u* and $\overline{C_f}$, and d_3 be the number of edges between C_f and $\overline{C_f}$.

Since G has property (L), we have $d_2 + d_3 = |\partial_G \overline{C_f}| \ge k$, and $d_1 + d_3 = |\partial_G C_f| \le k + 1$.

イロト 不得 とくほと くほとう

The Proof

Assume $u \notin C_f$. If C_f separates x and y, or $x, y \notin C_f$, then C_f would not be a counterexample. Thus, $x, y \in C_f$.

Then
$$k > |\partial_{\widetilde{G}} C_f| = |\partial_G C_f| - 2$$
, so $|\partial_G C_f| \le k + 1$. Let $\overline{C_f}$ be $V(G_0) \setminus C_f$.

Let *d* be the number of edges between *u* and G_0 , d_1 be the number of edges between *u* and C_f , d_2 be the number of edges between *u* and $\overline{C_f}$, and d_3 be the number of edges between C_f and $\overline{C_f}$.

Since G has property (L), we have $d_2 + d_3 = |\partial_G \overline{C_f}| \ge k$, and $d_1 + d_3 = |\partial_G C_f| \le k + 1$. Since $d_1 + d_2 = d$ is even, we have

$$d_1 \leq d_2. \tag{1}$$

イロト 不得 とくほと くほとう

The Proof

Assume $u \notin C_f$. If C_f separates x and y, or $x, y \notin C_f$, then C_f would not be a counterexample. Thus, $x, y \in C_f$.

Then
$$k > |\partial_{\widetilde{G}} C_f| = |\partial_G C_f| - 2$$
, so $|\partial_G C_f| \le k + 1$. Let $\overline{C_f}$ be $V(G_0) \setminus C_f$.

Let *d* be the number of edges between *u* and G_0 , d_1 be the number of edges between *u* and C_f , d_2 be the number of edges between *u* and $\overline{C_f}$, and d_3 be the number of edges between C_f and $\overline{C_f}$.

Since G has property (L), we have $d_2 + d_3 = |\partial_G \overline{C_f}| \ge k$, and $d_1 + d_3 = |\partial_G C_f| \le k + 1$. Since $d_1 + d_2 = d$ is even, we have

$$d_1 \leq d_2. \tag{1}$$

Thus, at most half of the edges incident to u can go to the counterexample set C_f .

Iteration

Repeat the procedure for other edges.

▶ < 문 > < 문 >

< 行

æ

・ロト ・四ト ・ヨト ・ヨト

æ

Either we find a suitable edge uy, or we obtain a set of counterexample sets C such that $\bigcup_{C \in C} C$ contains the neighborhood of u.

(日) (日) (日)

Either we find a suitable edge uy, or we obtain a set of counterexample sets C such that $\bigcup_{C \in C} C$ contains the neighborhood of u.

Let's thin out the C system in such a way that this property holds, but with the minimal number of counterexample sets.

イロト 不得 とくほと くほとう

Either we find a suitable edge uy, or we obtain a set of counterexample sets C such that $\bigcup_{C \in C} C$ contains the neighborhood of u.

Let's thin out the C system in such a way that this property holds, but with the minimal number of counterexample sets.

Let C_0 be the obtained system. Due to (1), it cannot be the case that C_0 consists of only two counterexample sets:

< ロ > (同 > (回 > (回 >)))

Either we find a suitable edge uy, or we obtain a set of counterexample sets C such that $\bigcup_{C \in C} C$ contains the neighborhood of u.

Let's thin out the C system in such a way that this property holds, but with the minimal number of counterexample sets.

Let C_0 be the obtained system. Due to (1), it cannot be the case that C_0 consists of only two counterexample sets: Otherwise, at most half of the edges incident to u could extend to both sets in a way that the edge ux is included in both, and the two sets together still cover the neighborhood of u. This is clearly impossible.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

◆□▶ ◆舂▶ ◆≧≯ ◆≧≯

æ

Lemma

For any graph H and sets $A, B, C \subseteq V(H)$, the following inequality holds:

 $\begin{aligned} |\partial(A \cap B \cap C)| + |\partial(A \cap \overline{B} \cap \overline{C})| + |\partial(\overline{A} \cap B \cap \overline{C})| + |\partial(\overline{A} \cap \overline{B} \cap C)| \\ \leq |\partial A| + |\partial B| + |\partial C| \end{aligned}$

(日) (日) (日)

Lemma

For any graph H and sets $A, B, C \subseteq V(H)$, the following inequality holds:

 $\begin{aligned} |\partial(A \cap B \cap C)| + |\partial(A \cap \overline{B} \cap \overline{C})| + |\partial(\overline{A} \cap B \cap \overline{C})| + |\partial(\overline{A} \cap \overline{B} \cap C)| \\ \leq |\partial A| + |\partial B| + |\partial C| \end{aligned}$

The proof of the lemma (like proving submodular inequalities) involves simple calculations.

(日) (日) (日)

Lemma

For any graph H and sets $A, B, C \subseteq V(H)$, the following inequality holds:

 $\begin{aligned} |\partial(A \cap B \cap C)| + |\partial(A \cap \overline{B} \cap \overline{C})| + |\partial(\overline{A} \cap B \cap \overline{C})| + |\partial(\overline{A} \cap \overline{B} \cap C)| \\ \leq |\partial A| + |\partial B| + |\partial C| \end{aligned}$

The proof of the lemma (like proving submodular inequalities) involves simple calculations. We need to check for each edge how many times it contributes to the left and right sides.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Lemma

For any graph H and sets $A, B, C \subseteq V(H)$, the following inequality holds:

 $\begin{aligned} |\partial(A \cap B \cap C)| + |\partial(A \cap \overline{B} \cap \overline{C})| + |\partial(\overline{A} \cap B \cap \overline{C})| + |\partial(\overline{A} \cap \overline{B} \cap C)| \\ \leq |\partial A| + |\partial B| + |\partial C| \end{aligned}$

The proof of the lemma (like proving submodular inequalities) involves simple calculations. We need to check for each edge how many times it contributes to the left and right sides. Each edge contributes at least as much to the right side as to the left side.

イロト 不得 とくほと くほとう

Let $C_1, C_2, C_3 \in C_0$. Apply the lemma to these, with the additional observation that the edge ux is counted once on the left side but three times on the right side:

Let $C_1, C_2, C_3 \in C_0$. Apply the lemma to these, with the additional observation that the edge ux is counted once on the left side but three times on the right side:

$$\begin{aligned} |\partial(C_1 \cap C_2 \cap C_3)| + |\partial(C_1 \cap \overline{C_2} \cap \overline{C_3})| + |\partial(\overline{C_1} \cap C_2 \cap \overline{C_3})| + \\ |\partial(\overline{C_1} \cap \overline{C_2} \cap C_3)| \leq |\partial C_1| + |\partial C_2| + |\partial C_3| \\ \leq (k+1) + (k+1) + (k+1) - 2 \end{aligned}$$

Let $C_1, C_2, C_3 \in C_0$. Apply the lemma to these, with the additional observation that the edge ux is counted once on the left side but three times on the right side:

$$\begin{aligned} |\partial(C_1 \cap C_2 \cap C_3)| + |\partial(C_1 \cap \overline{C_2} \cap \overline{C_3})| + |\partial(\overline{C_1} \cap C_2 \cap \overline{C_3})| + \\ |\partial(\overline{C_1} \cap \overline{C_2} \cap C_3)| \leq |\partial C_1| + |\partial C_2| + |\partial C_3| \\ \leq (k+1) + (k+1) + (k+1) - 2 \end{aligned}$$

Each of the four terms in the starting four-term sum involves the intersection of three sets, all of which are non-empty (the first has x as an element, the others are empty due to the minimality of C_0). Thus, due to property (L), each term is at least k. Summing up, we have $4k \leq 3k + 1$, i.e., after sorting, $k \leq 1$.

Let $C_1, C_2, C_3 \in C_0$. Apply the lemma to these, with the additional observation that the edge ux is counted once on the left side but three times on the right side:

$$\begin{aligned} |\partial(C_1 \cap C_2 \cap C_3)| + |\partial(C_1 \cap \overline{C_2} \cap \overline{C_3})| + |\partial(\overline{C_1} \cap C_2 \cap \overline{C_3})| + \\ |\partial(\overline{C_1} \cap \overline{C_2} \cap C_3)| \leq |\partial C_1| + |\partial C_2| + |\partial C_3| \\ \leq (k+1) + (k+1) + (k+1) - 2 \end{aligned}$$

Each of the four terms in the starting four-term sum involves the intersection of three sets, all of which are non-empty (the first has x as an element, the others are empty due to the minimality of C_0). Thus, due to property (L), each term is at least k. Summing up, we have $4k \leq 3k + 1$, i.e., after sorting, $k \leq 1$.

This is a contradiction because we assumed $k \ge 2$. Thus, one of the edges uy satisfies the lemma.

This is the End!

Thank you for your attention!

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023

・ 同 ト ・ ヨ ト ・ ヨ ト