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Menger Minimal Graphs Lovász’s lifting lemma

Flows: Reminder

In the course Algorithms and Their Complexity, the theory of flows
was discussed (the necessary definitions can be found there). The
following theorem is the fundamental theorem of flows.

Theorem (the main theorem of flows)

Let H be a network and f be a flow in it. Then the following are
equivalent:

(i) f is a maximum value flow in the network H.

(ii) There is no augmenting path with respect to f in the network
H.

(iii) There exists a source/sink cut in H with capacity equal to the
value of f .
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Menger Minimal Graphs Lovász’s lifting lemma

The main theorem of flows: Consequences

Consequence: Maximum Flow-Minimum Cut Theorem, MFMC
Theorem

Let H : (
−→
G , c , s, t) be a network. Then

max{val(f ) : f is a flow in H} =

min{c(V) : V is a source/sink cut in H}.

Another consequence of the fundamental theorem is the
Ford-Fulkerson algorithm.

Integral Flow Theorem

If every edge in network H has an integer capacity

(c : E (
−→
G )→ Z), then there exists an optimal flow in which every

edge carries an integer amount of material.
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Menger Minimal Graphs Lovász’s lifting lemma

Uniform Networks

Let
−→
G be a directed graph with source/sink nodes s and t. If we

set the capacity of every edge to be 1, we obtain a network H−→
G

.

Easy observation/exercise

Let
−→
G be an arbitrary directed graph with two distinguished nodes

s and t. Let H−→
G

be the following network: (
−→
G , c ≡ 1, s, t).

(i)

max{val(f ) : f is a flow in H−→
G
} =

max{k : P1,P2, . . . ,Pk are edge-disjoint
−→
st -paths in

−→
G }

(ii)

min{c(V) : V is a source/sink cut in H−→
G
} =

min{|S | : S ⊂ E (G ) is a source→sink separating edge set}.
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Menger Minimal Graphs Lovász’s lifting lemma

Menger’s First Theorem

The MFMC theorem and the observation provide a purely
graph-theoretical theorem:

Menger’s Theorem

Let
−→
G be an arbitrary directed graph with two distinguished nodes

s and t. Then

max{k : P1,P2, . . . ,Pk are edge-disjoint
−→
st paths in

−→
G } =

min{|S | : S ⊂ E (G ) is a source/sink separating edge set}.
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Menger Minimal Graphs Lovász’s lifting lemma

Menger’s Theorems for Directed Graphs

Menger’s Theorems

Let
−→
G be an arbitrary directed graph with two distinguished nodes s and t.

Then

(i)
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−→
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−→
G } =
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min{|U| : U ⊂ V (
−→
G )− {s, t} is a source→sink separating node set}.
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Menger Minimal Graphs Lovász’s lifting lemma

Menger’s Theorems for Undirected Graphs

Menger’s Theorems for Undirected Graphs

Let G be an arbitrary undirected graph with two distinguished nodes s and
t. Then

(i)

max{k : P1,P2, . . . ,Pk edge-disjoint st paths in G} =

min{|S | : S ⊂ E (G ) is a source/sink separating edge set}.

(ii)
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Menger Minimal Graphs Lovász’s lifting lemma

A Note

In the case of internally node-disjoint paths, if there exists an
−→
st or

st edge, then the theorem is uninteresting.

There is no suitable separating set U, and the paths Pi may be the
same one-edge path (without internal nodes).

That is, the optimum of both optimization problems is ∞. In this
case, it is worthwhile to assume the absence of edges between s
and t.
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Menger Minimal Graphs Lovász’s lifting lemma

k-Edge Connectivity

Definition

Let k be a positive integer. A graph G is k-edge-connected
(shortened as k-edge-connected) if removing any set of fewer than
k edges results in a connected graph.

For every set F ⊆ E (G ) with |F | < k, the graph G − F is connected.

The condition must hold even for F = ∅, i.e., our base graph must
be connected. Connectivity should be preserved when any proper
but not large set of edges is removed.
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Menger Minimal Graphs Lovász’s lifting lemma

k-(Vertex) Connectivity

Definition

A graph G is k-(vertex) connected (shortened as kvc), if removing
any set of fewer than k vertices results in a connected graph and
|V (G )| > k.

For every set U ⊆ V (G ) with |U| < k, the graph G − U is
connected, and |V | > k .

The technical condition for the vertex count serves to ensure that
the graph is sufficiently large: after removing the not too large
vertex set mentioned in the definition, at least two vertices should
remain.
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Menger Minimal Graphs Lovász’s lifting lemma

Examples

Example

Trees are not 2-edge-connected if they have edges.

Example

Cycles are 2-connected (if they have at least three vertices) and
therefore 2-edge-connected, but they are not 3-connected.

Example

Among graphs with k + 1 vertices, only the complete graph is
k-connected.
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Menger Minimal Graphs Lovász’s lifting lemma

Connections

The following diagram summarizes the relationships between
various connectivity concepts. Graph classes not derivable from the
diagram are not included.

1vc ⇐ 2vc ⇐ 3vc ⇐ . . . ⇐ kvc ⇐

m∗
vc
m

www� www� www�
1ec ⇐ 2ec ⇐ 3ec ⇐ . . . ⇐ kec ⇐

The horizontal connections are obvious from the definitions. The
vertical arrows represent a somewhat more challenging relationship.
The starred equivalence is only partially true. In
1-vertex-connectedness, the condition of having at least two
vertices is essential; this is not a requirement for connectivity. The
other vertical implications follow from the lemma below.
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Menger Minimal Graphs Lovász’s lifting lemma

Lemma

Lemma

Let e be any edge of graph G and v be any vertex. Let k ≥ 2.

(a) If G is k-edge-connected, then G − e is
(k − 1)-edge-connected.

(b) If G is k-vertex-connected, then G − v is
(k − 1)-vertex-connected.

(c) If G is k-edge-connected, then G − v can have any number of
components.

(d) If G is k-vertex-connected, then G − e is
(k − 1)-vertex-connected.
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Menger Minimal Graphs Lovász’s lifting lemma

Characterization of Higher Connectivity

Theorem

(i) A graph G is k-edge-connected if and only if, for any two of
its vertices, there exist k pairwise edge-disjoint paths between
them.

(ii) A graph G is k-vertex-connected if and only if, for any two of
its vertices, there exist k paths, whose internal vertices form
pairwise disjoint sets (Path system is vertex-independent),
and |V (G )| > k.
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Menger Minimal Graphs Lovász’s lifting lemma

Proof: Trivial Direction

One direction of each statement is straightforward: the existence
of the required paths ensures the corresponding connectivity.

Indeed: Suppose that after the appropriate reduction of our graph,
we obtain a non-connected graph between two vertices — x and y .

Applying the condition to x and y , the guaranteed path system
between x and y is in our graph. Removing the edges/vertices
must eliminate each of them. Due to the independence of the
paths, this cannot happen.
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Menger Minimal Graphs Lovász’s lifting lemma

Proof: Non-trivial Direction (i)

Let G be a graph, and x , y ∈ V be any two vertices, with k given.

Assume that G is k-edge-connected, and apply Menger’s theorem.

k ≤min{|L| : L ⊆ E (G ),G − L does not have an xy path} =

= max{l : P1, . . . ,Pl pairwise edge-disjoint xy paths in G}

Thus, there exist k pairwise edge-disjoint xy paths in G .
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Menger Minimal Graphs Lovász’s lifting lemma

Proof: Non-trivial Direction (ii)

Assume that G is k-vertex-connected.

Let P be the set of xy edges, and let p be its cardinality. The
edges in P are vertex-independent xy paths.

If p ≥ k, then the statement holds. If p ≤ k − 1, then G − P is
(k − p)-vertex-connected.

We show that there exist k − p vertex-independent xy paths in
G − P.

Apply the undirected, vertex-independent version of Menger’s
theorem (x and y are not connected in G − P):

k − p ≤min{|U| : U ⊆ V (G ) \ {x , y}, G − P − U does not have an xy path} =

= max{l : vertex-independent xy paths in G − P}

Hence, there exist k − p vertex-independent xy paths in G − P.
Adding the elements of P as 1-length xy paths, we obtain k
vertex-independent xy paths in G .
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Menger Minimal Graphs Lovász’s lifting lemma

Connectivity Parameters

Definition

The connectivity parameters of graph G :

κe(G ) =

{
max{k : G is k-edge-connected}, if G is connected

0, if G is not connected

κ(G ) =

{
max{k : G is k-vertex-connected}, if G is connected

0, if G is not connected
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Menger Minimal Graphs Lovász’s lifting lemma

Observation

For every graph G , the following hold:

κe(G ) = min
x ,y∈E(G)

max{k : P1, ...Pk pairwise edge-disjoint xy paths in G} =

= min
x ,y∈E(G)

min
V xy cut

|E (V)| = min
V cut
|E (V)|,

where V = {S ,T}, S ∪ T = V (G ), S ∩ T = ∅, S ,T 6= ∅.

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023



Menger Minimal Graphs Lovász’s lifting lemma

Algorithmic Remarks

Theorem

κe(G ) and κ(G ) can be efficiently calculated with a flow algorithm.

Theorem

Calculating max
V cut
|E (V)| is hard, an NP-complete problem.
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Menger Minimal Graphs Lovász’s lifting lemma

Break
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Menger Minimal Graphs Lovász’s lifting lemma

Minimal k-edge-connected graphs

Definition

Let G be a graph, k a positive integer. G is called minimal
k-edge-connected if

(i) k-edge-connected, and

(ii) for any edge e, G − e is not k-edge-connected.

For k = 1, minimal k-edge-connected graphs are trees.

If G is minimal k-edge-connected, then it has no loops.

If G is k-edge-connected and has at least two vertices, then every
vertex has degree at least k.
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Menger Minimal Graphs Lovász’s lifting lemma

Boundary of a Vertex Set: Definition

Notation

The boundary of U ⊆ V (G ):

∂U = {xy ∈ E (G ) : x ∈ U and y /∈ U, or x /∈ U and y ∈ U}
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Menger Minimal Graphs Lovász’s lifting lemma

Boundary of a Vertex Set: Image

V(G)

U

@U

Figure: In the figure, the green edges belong to ∂U.
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Menger Minimal Graphs Lovász’s lifting lemma

Boundary of a Vertex Set: Image

∂U = ∂U, where U = V (G ) \ U.

If G has no loops, then for any x ∈ V (G ), d(x) = |∂{x}|.

G is k-edge-connected if and only if the boundary of any proper,
non-empty subset of V (G ) contains at least k edges.
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Menger Minimal Graphs Lovász’s lifting lemma

Mader’s Theorem

Mader’s Theorem

Let k be a positive integer, G a minimal k-edge-connected graph
with |V (G )| ≥ 2. Then the following hold:

(i) G has a k-degree vertex.

(i)+ G has at least two k-degree vertices.

Definition

k a positive integer, G a minimal k-edge-connected graph. A set
P ⊆ V (G ) is called a precise set if its boundary contains exactly k
edges.

The statement (i) of the theorem is equivalent to the existence of
a singleton precise set in G .
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Menger Minimal Graphs Lovász’s lifting lemma

Observation

Observation

If, for any e = xy ∈ E (G ), G − e is not k-edge-connected, then
there exists a separating set C ⊂ V (G ) such that |∂G−eC | < k . In
this case, C is a precise set in G and separates x and y .

C

e
x

y

V(G)
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Menger Minimal Graphs Lovász’s lifting lemma

Proof of Mader’s Theorem (i): Cases

Let M be a minimal precise set in G , i.e., a precise set such that
none of its proper subsets is precise. We claim that M is a
singleton set.
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Menger Minimal Graphs Lovász’s lifting lemma

Proof of Mader’s Theorem (i): Case 1

Case 1: No edge crosses within M.

In this case, the following equality holds:

k = |∂M| =
∑
m∈M
|∂{m}| =

∑
m∈M

d(m)

Since every vertex in G has degree at least k, M can only be a
singleton set.
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Menger Minimal Graphs Lovász’s lifting lemma

Proof of Mader’s Theorem (i): Case 2

Case 2: At least one edge crosses within M.

Let xy be such an edge. Since G has no loops, x and y are distinct
vertices.

M is precise, so M 6= V (G ).

Let z ∈ V (G ) \M.

Due to the observations, there exists a precise set C ⊆ V (G ) that
separates x and y . Without loss of generality, we can assume
z /∈ C ; if z was an element of C , we could replace C with C .

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023



Menger Minimal Graphs Lovász’s lifting lemma

Proof of Mader’s Theorem (i): Case 2

Case 2: At least one edge crosses within M.

Let xy be such an edge. Since G has no loops, x and y are distinct
vertices.

M is precise, so M 6= V (G ).

Let z ∈ V (G ) \M.

Due to the observations, there exists a precise set C ⊆ V (G ) that
separates x and y . Without loss of generality, we can assume
z /∈ C ; if z was an element of C , we could replace C with C .

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023



Menger Minimal Graphs Lovász’s lifting lemma

Proof of Mader’s Theorem (i): Case 2

Case 2: At least one edge crosses within M.

Let xy be such an edge. Since G has no loops, x and y are distinct
vertices.

M is precise, so M 6= V (G ).

Let z ∈ V (G ) \M.

Due to the observations, there exists a precise set C ⊆ V (G ) that
separates x and y . Without loss of generality, we can assume
z /∈ C ; if z was an element of C , we could replace C with C .

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023



Menger Minimal Graphs Lovász’s lifting lemma

Proof of Mader’s Theorem (i): Case 2

Case 2: At least one edge crosses within M.

Let xy be such an edge. Since G has no loops, x and y are distinct
vertices.

M is precise, so M 6= V (G ).

Let z ∈ V (G ) \M.

Due to the observations, there exists a precise set C ⊆ V (G ) that
separates x and y . Without loss of generality, we can assume
z /∈ C ; if z was an element of C , we could replace C with C .

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023



Menger Minimal Graphs Lovász’s lifting lemma

Proof of Mader’s Theorem (i): Case 2

Case 2: At least one edge crosses within M.

Let xy be such an edge. Since G has no loops, x and y are distinct
vertices.

M is precise, so M 6= V (G ).

Let z ∈ V (G ) \M.

Due to the observations, there exists a precise set C ⊆ V (G ) that
separates x and y . Without loss of generality, we can assume
z /∈ C ; if z was an element of C , we could replace C with C .

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023



Menger Minimal Graphs Lovász’s lifting lemma

Proof of Mader’s Theorem (i): Case 2

Case 2: At least one edge crosses within M.

Let xy be such an edge. Since G has no loops, x and y are distinct
vertices.

M is precise, so M 6= V (G ).

Let z ∈ V (G ) \M.

Due to the observations, there exists a precise set C ⊆ V (G ) that
separates x and y . Without loss of generality, we can assume
z /∈ C ; if z was an element of C , we could replace C with C .

Peter Hajnal Higher order connectivity of graphs, SzTE, 2023



Menger Minimal Graphs Lovász’s lifting lemma

Proof of Mader’s Theorem (i): Submodularity

Lemma

|∂(A ∩ B)|+ |∂(A ∪ B)| ≤ |∂(A)|+ |∂(B)|.

Both sides count edges.

Let e = xy ∈ E (G ).

There are eight cases. In all cases the right hand side counts e at
least as many times as the left hand side.
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Menger Minimal Graphs Lovász’s lifting lemma

Proof of Mader’s Theorem (i): Case 2

Apply the lemma to M and C .

By our choices, M ∩ C 6= ∅ and M ∪ C 6= V (G ).

k + k ≤ |∂(M ∩ C )|+ |∂(M ∪ C )| ≤ |∂M|+ |∂C | = 2k

The first and last terms in the inequality are equal, so all our
estimates are tight, in particular, |∂(M ∩ C )| = k .

Since x and y belong to different subsets of C , M ∩ C is a proper
precise subset of M.

This contradicts the minimality of M, so the second case is not
possible.

(ii) Let P be a precise set in G . In this case, P is also precise. P
and P each have a minimal precise subset for containment, let
these be M1 and M2. These are two different singleton precise sets
in G .
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Menger Minimal Graphs Lovász’s lifting lemma

Example

Let m ≥ 2 be an integer. If we replace each edge in a tree T with
m parallel edges, we obtain a minimal m-edge-connected graph.

In particular, if T is a path of length at least one, then we have
exactly two vertices with degree m.

The figure below illustrates the case of m = 3.
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Menger Minimal Graphs Lovász’s lifting lemma

Break
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Menger Minimal Graphs Lovász’s lifting lemma

Lovász’s Lifting Lemma

Lovász’s Lifting Lemma

Let G be a graph, u ∈ V (G ), G0 = G − u, k ≥ 2 an integer.
Suppose that the number of edges between u and G0 is even and
positive, and u satisfies the following condition:

(L) If U is a nontrivial subset of V (G0), then |∂GU| ≥ k .

Then, there exist two edges e = ux and f = uy incident to u such
that the graph G̃ = G − e − f + xy also satisfies condition (L).
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Menger Minimal Graphs Lovász’s lifting lemma

Lovász’s Lifting Lemma in Pictures

G

G0

u

x

y

u

x

y

Figure: In the figure, the red edges are being exchanged. If an edge
already exists between x and y , we add a new edge parallel to the
existing xy edges.
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Menger Minimal Graphs Lovász’s lifting lemma

G graph, k positive even integer, two operations

Edge addition: We add a new edge between two vertices of G :
G → G+.

Contraction of k/2 edges: We remove k/2 edges from G ,
replace their endpoints with new vertices, and then identify the
k/2 new vertices: G → G̃ .
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Menger Minimal Graphs Lovász’s lifting lemma

Observation

If G is k-edge-connected, then G+ and G̃ are also
k-edge-connected.

For G+, this is obvious. For G̃ , we need to verify that the
boundary of any non-empty proper subset of V (G ) has at least k
elements. This is sufficient to check for subsets that do not
contain the new vertices. This is a straightforward task.

Observation

Let G0 be the graph with one vertex and no edges.

Assume that G can be built in the following way:

G0 → G1 → . . .→ Gl = G ,

where for every i = 0, . . . , l − 1, the Gi → Gi+1 operation is either
edge addition or contraction of k/2 edges.

Then G is k-edge-connected.
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Menger Minimal Graphs Lovász’s lifting lemma

Application of the Lifting Lemma: Growth of
2`-edge-connected graphs

Our goal is to prove the converse of the observation above.

Theorem

If k is a positive even number, and G is a k-edge-connected graph,
then G can be built from G0 (see above) using the previous two
operations.
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Menger Minimal Graphs Lovász’s lifting lemma

Proof of the Enhanced Lifting Lemma

Let G and k be given. We prove the statement by induction on the
number of edges.

G0 and all graphs with at most one edge can be trivially
constructed.

Let G be a k-edge-connected graph with at least two vertices.
Assume that all graphs with at most |E (G )| − 1 edges can be
constructed.

G is not minimally k-edge-connected. Then G has an edge e such
that G − e is k-edge-connected. Since |E (G − e)| = |E (G )| − 1,
by the induction hypothesis, G − e can be constructed. Thus, G
can be constructed by adding back the edge e to G − e.

From now on: G is minimally k-edge-connected, |V (G )| ≥ 2.
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Menger Minimal Graphs Lovász’s lifting lemma

Completion of the Proof

In this case, G has a vertex u with degree k .

By applying the lifting lemma to this vertex k/2 times, we lift the
edges, and then remove u.

Thus, by the lemma, we obtain a graph H that is k-edge-connected
and has fewer edges than G . Therefore, H can be constructed.

If we contract the edges in E (H) \ E (G ) to a single vertex u, we
obtain the graph G .
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Menger Minimal Graphs Lovász’s lifting lemma

The Sharpened Lifting Lemma

We prove the following slightly stronger version of Lovász’s lemma:

Lemma+

Let G be a graph, u ∈ V (G ), G0 = G − u, k ≥ 2 an integer.
Suppose that the number of edges between u and G0 is even and
positive, and G0 satisfies

(L) If U is a nontrivial subset of V (G0), then |∂GU| ≥ k .

Then, for any edge e = ux , there exists an edge f = uy such that
the graph G̃ = G − e − f + xy also satisfies property (L).
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Menger Minimal Graphs Lovász’s lifting lemma

Beginning of the Proof

Let G , u, k , and e = ux be given.

Let’s try the edge f = uy . Let G̃ = G − e − f + xy . Suppose that
G̃ does not have property (L). Then, there exists a set Cf ⊆ V (G0)
that is a counterexample, meaning |∂

G̃
Cf | < k.

If Cf separates x and y , then |∂
G̃
Cf | = |∂GCf | ≥ k , which is a

contradiction.
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Menger Minimal Graphs Lovász’s lifting lemma

The Proof

Assume u 6∈ Cf . If Cf separates x and y , or x , y 6∈ Cf , then Cf

would not be a counterexample. Thus, x , y ∈ Cf .

Then k > |∂
G̃
Cf | = |∂GCf | − 2, so |∂GCf | ≤ k + 1. Let Cf be

V (G0) \ Cf .

Let d be the number of edges between u and G0, d1 be the number
of edges between u and Cf , d2 be the number of edges between u
and Cf , and d3 be the number of edges between Cf and Cf .

Since G has property (L), we have d2 + d3 = |∂GCf | ≥ k , and
d1 + d3 = |∂GCf | ≤ k + 1. Since d1 + d2 = d is even, we have

d1 ≤ d2. (1)

Thus, at most half of the edges incident to u can go to the
counterexample set Cf .
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Iteration

Repeat the procedure for other edges.

G

G0

u

x

f
g h

C

C

C

h

g

f
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System of Counterexample Sets

Either we find a suitable edge uy , or we obtain a set of
counterexample sets C such that

⋃
C∈C C contains the

neighborhood of u.

Let’s thin out the C system in such a way that this property holds,
but with the minimal number of counterexample sets.

Let C0 be the obtained system. Due to (1), it cannot be the case
that C0 consists of only two counterexample sets: Otherwise, at
most half of the edges incident to u could extend to both sets in a
way that the edge ux is included in both, and the two sets together
still cover the neighborhood of u. This is clearly impossible.
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Menger Minimal Graphs Lovász’s lifting lemma

Lemma

Lemma

For any graph H and sets A,B,C ⊆ V (H), the following inequality holds:

|∂(A ∩ B ∩ C )|+ |∂(A ∩ B ∩ C )|+ |∂(A ∩ B ∩ C )|+|∂(A ∩ B ∩ C )|
≤|∂A|+ |∂B|+ |∂C |

The proof of the lemma (like proving submodular inequalities) involves
simple calculations. We need to check for each edge how many times it
contributes to the left and right sides. Each edge contributes at least as
much to the right side as to the left side.
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Menger Minimal Graphs Lovász’s lifting lemma

Conclusion of the Proof

Let C1,C2,C3 ∈ C0. Apply the lemma to these, with the additional
observation that the edge ux is counted once on the left side but three
times on the right side:

|∂(C1 ∩ C2 ∩ C3)|+ |∂(C1 ∩ C2 ∩ C3)|+ |∂(C1 ∩ C2 ∩ C3)|+
|∂(C1 ∩ C2 ∩ C3)| ≤|∂C1|+ |∂C2|+ |∂C3|

≤(k + 1) + (k + 1) + (k + 1)− 2

Each of the four terms in the starting four-term sum involves the
intersection of three sets, all of which are non-empty (the first has x as an
element, the others are empty due to the minimality of C0). Thus, due to
property (L), each term is at least k . Summing up, we have 4k ≤ 3k + 1,
i.e., after sorting, k ≤ 1.

This is a contradiction because we assumed k ≥ 2. Thus, one of the edges
uy satisfies the lemma.
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This is the End!

Thank you for your attention!
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