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The Ramsey parameter

Definition

Let Ramsey(G ) = max{α(G ), ω(G )}, the Ramsey parameter of
graph G .

An alternative description: A subset H of vertices is homogeneous
if and only if it is either independent or a clique. The Ramsey
parameter is the maximum size of a homogeneous set.

Another way of describing it: Color the edges of the graph green,
and connect non-adjacent vertices with a red edge. In this way, we
obtain a 2-edge-coloring of the complete graph on the vertex set
V (G ), representing G . A homogeneous set is a set of vertices in
which all edges have the same color, or in other words, it is
monochromatic.
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Ramsey Algorithm: Finding a large homogeneous set

(Ramsey Algorithm)

Input: A simple graph G , output: a homogeneous set H.
Initialization: KF = ∅, T = V (G ) // KF is the set of selected
vertices. T is the set of surviving vertices.
While T 6= ∅ Selection step: Let x ∈ T be any surviving vertex.
KF ← KF ∪ {x}. N := NT (x) = {s ∈ T : xs ∈ E},
N := NT (x) = {s ∈ T : xs 6∈ E} = T − {x} − NT (x)
T ← the larger of N and N.
// If T = N 6= ∅, we say x is a K -element. If T = N 6= ∅, we say
x is an F -element.
F = {x ∈ KF : x is an F -element},
K = {x ∈ KF : x is a K -element}.
// F ∩ K = {z}, where z is the last selected element. F is an
independent set, K is a clique.
Cleanup: output← the larger of K and F . // H is homogeneous.
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Analysis of the Ramsey Algorithm

Lemma

Let G be an arbitrary graph with n vertices. Let k be the number
of vertices selected by the Ramsey Algorithm. Let ` be the size of
the output homogeneous set. Then

k ≥ log2 n, ` ≥ 1

2
log2 n.
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Proof and consequences

Clearly, ` ≥ k+1
2 . So it is enough to prove the first inequality.

Let Ti be the set T before the selection of the i-th vertex, and let
Ti+1 be the updated set T after the selection.

It is easy to see that if |Ti | ≥ 2s , then |Ti+1| ≥ 2s−1.

The claim follows from this observation.

Corollary

Using the notations from the previous lemma, if n = 4e , then
k ≥ 2e and ` ≥ e.

Corollary

In a graph with 4k vertices, there always exists a homogeneous set
of size k.

Peter Hajnal Ramsey theory, SzTE, 2023
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Ramsey Numbers

Definition

Let R(k) be the minimum number of vertices such that in every
graph with that many vertices, there exists a homogeneous set of
size k.

Theorem (Ramsey (1930) and Erdős)
√

2
k
< R(k) < 4k .

Theorem (Campos—Griffiths—Morris—Sahasrabudhe (2023))

R(k) < 3.99999k .
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Exact Values of Ramsey Numbers

Interesting values are considered for k ≥ 3 (k = 1, 2 trivially have
R(1) = 1 and R(2) = 2).

Only a few Ramsey numbers are known: R(3) = 6, R(4) = 18. For
R(5), it is known that 43 ≤ R(5) ≤ 49.

The lack of knowledge is even more noticeable for k = 10.
Currently, we only know that 798 ≤ R(10) ≤ 23, 556.
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The lack of knowledge is even more noticeable for k = 10.
Currently, we only know that 798 ≤ R(10) ≤ 23, 556.
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R(3) Lower Bound, Construction

Lemma

R(3) > 5.
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R(4) Lower Bound, Construction

Theorem

R(4) > 17.

The set of vertices is Z17 = {0, 1, 2, 3, . . . , 16}. An edge ij is red if
and only if i − j ∈ {−8,−4,−2,−1, 1, 2, 4, 8}, where the
arithmetic is done modulo 17 (Z17 arithmetic).
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R(4) Lower Bound, Construction

Theorem

R(4) > 17.

The set of vertices is Z17 = {0, 1, 2, 3, . . . , 16}. An edge ij is red if
and only if i − j ∈ {−8,−4,−2,−1, 1, 2, 4, 8}, where the
arithmetic is done modulo 17 (Z17 arithmetic).

Peter Hajnal Ramsey theory, SzTE, 2023
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The Improvement of Paul Erdős and György Szekeres

This improved the above estimation of Ramsey numbers.

Their algorithm can simultaneously compute an independent set
F (R) and a clique K (R) for any vertex set R.

Running the algorithm on G calculates F (V (G )) as an
independent set and K (V (G )) as a clique.

In contrast to previous algorithms, this one does not discard
vertices.

Peter Hajnal Ramsey theory, SzTE, 2023
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The Improvement of Paul Erdős and György Szekeres
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Erdős—Szekeres Algorithm

Erdős—Szekeres Algorithm

Input: A simple graph G , output: an independent set F (V ) and a
clique K (V ).

Base case of recursion: If |V | ≤ 2, let both sets be V and a
single-element subset.

Recursion: Otherwise, let x be any vertex. Let
N = {y ∈ V (G )− {x} : xy ∈ E}. Let
N = {y ∈ V (G )− {x} : xy 6∈ E}.
// N∪̇N = V (G )− {x}
Recursively call the algorithm on G |N and G |N with F (N) and
K (N) being the independent set and clique found in G |N , and
F (N) and K (N) being the independent set and clique found in
G |N .

Output: F (V (G )) is the larger of F (N) and {x} ∪ F (N).
K (V (G )) is the larger of {x} ∪ K (N) and K (N).

Peter Hajnal Ramsey theory, SzTE, 2023
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Analysis of the Erdős—Szekeres Algorithm

Theorem

Theorem If |V | ≥
(k+`−2

k−1
)

=
(k+`−2

`−1
)
, then the algorithm finds an

independent set of size at least k or a clique of size at least `.

We apply induction on k + `.

If the values of k or ` are at most 2, then the statement is obvious.
We assume that k , ` ≥ 3.

We know that |V | ≥
(k+`−2

k−1
)

and |N|+ |N| = |V | − 1.
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Proof

Then

|N|+ |N| =|V | − 1 ≥
(
k + `− 2

k − 1

)
− 1

>

[(
(k − 1) + `− 2

(k − 1)− 1

)
− 1

]
+

[(
k + (`− 1)− 2

k − 1

)
− 1

]
.

Thus

|N| >
(

(k − 1) + `− 2

(k − 1)− 1

)
−1 or |N| >

(
k + (`− 1)− 2

k − 1

)
−1.
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Proof (Continuation)

If |N| ≥
((k−1)+`−2

(k−1)−1
)
, then after the recursive call (by the induction

hypothesis) F (N) is at least k − 1, or K (N) is at least `.

Thus, F (V (G )) is at least k , as F (N) ∪ {x} is also included in the
comparison. K (V (G )) is at least `.

The case |N| ≥
(k+(`−1)−2

k−1
)

can be similarly argued.

This completes the justification of the statement.
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Asymmetric Ramsey Numbers

Definition

Let R(k , `) be the minimum value of |V | such that we can be sure
that any simple graph on V contains either an independent set of
size k or a clique of size `.

Simple Cases

(0) R(k , `) = R(`, k),

(i) R(1, `) = 1,

(ii) R(2, `) = `.
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Erdős—Szekeres Inequality

The essence of the proof is summarized by the following lemma.

Lemma: Erdős—Szekeres Inequality

R(k , `) ≤ R(k − 1, `) + R(k , `− 1).

Peter Hajnal Ramsey theory, SzTE, 2023
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The Legacy of Paul Erdős

• Extreme combinatorics and Ramsey theory are defining
themes in Paul Erdős’s long research life.
• Erdős’s results play a crucial role in shaping and defining
these areas.
• An Erdős joke illustrates the difficulty of the Ramsey
number problem: If an extraterrestrial super-civilization were
to arrive on Earth and state that humanity will be spared if
they determine the value of R(5), then politicians and
economists would need to support mathematicians and
computer scientists to combine the power and knowledge of
all supercomputers to solve the problem.
◦ If the beings demand the determination of R(6) to avoid
violence, then the same support should be given to soldiers
and weapon experts to solve the problem.

Peter Hajnal Ramsey theory, SzTE, 2023
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Multiple Colors Case

The above statement was made for a 2-coloring, but it can be
stated and easily proven for a c-coloring.

Accordingly, we can introduce new Ramsey numbers: Rc(k), when
working with a palette of size c .

As in the Erdős—Szekeres proof, we can break the symmetry of
colors and thus introduce generalized asymmetric Ramsey
numbers: Rc(k1, k2, . . . , kc).

Peter Hajnal Ramsey theory, SzTE, 2023
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Multiple Colors Case: Proof

Let’s only consider the case c = 3.

(I): Think of the three colors as red, light blue, dark blue. We are
looking for a monochromatic set of size k . Apply the two-color
Ramsey theorem for red/blue.

If a monochromatic set is found in the red color, it is
monochromatic. However, the monochromatic set found in the
blue color, when considering the original color shades, is
two-colored. But if the one seeing only blue applies the Ramsey
theorem with a size of R(k), then they can be sure of the existence
of a monochromatic set of size k .

The general case (3 colors instead of 2) can be handled by
induction on the palette size, based on the above idea.

Peter Hajnal Ramsey theory, SzTE, 2023
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Multiple Colors Case: Proof II

(II): Remember Ramsey’s proof. Let |V | = cck be an ordered set
of vertices. Take out the first v1 vertices. This selection survives
those vertices connected to v1 with an edge of the color most
common among the edges around v1. Repeat this with the
surviving vertices until there are surviving vertices.

There will be at least ck selection steps. Among the selected
vertices, at least k will be of the same color as the algorithm finds
the same color most common.

Theorem

Rc(k) ≤ cck .

Theorem

Rc(k1, k2, . . . , kc) ≤ ck1+k2+...+kc .
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Coloring r -tuples

The basic Ramsey theorem colored the edges of the complete
graph, the two-element subsets of vertices, with two colors. This
can be extended to coloring r -element subsets:
c :
(V
r

)
→ {red, blue}.

Of course, now, from a monochromatic set M, we demand that
every k-element subset has the same color. That is, M is
monochromatic if c|(Mr ) is a constant function.

The corresponding theorem is still true (that is, for a sufficiently
large set, the existence of a monochromatic set of size k is
inevitable). Accordingly, we can introduce the R(r)(k) and
R(r)(k , `) Ramsey numbers.

Note: r = 1 is also meaningful in a mathematical statement. The
case r = 1 is essentially the Pigeonhole Principle. The Ramsey
theorem can be seen as a generalized Pigeonhole Principle.

Peter Hajnal Ramsey theory, SzTE, 2023
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large set, the existence of a monochromatic set of size k is
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2-Coloring triples: Proof

For r = 1, 2, we know the cases. Let’s consider only the case r = 3.

Given a large set V , where a function c assigns a color to each
triple, we follow the Erdős—Szekeres proof: We introduced the
asymmetric R(r)(k , `) numbers.

We state the analogue of the Erdős—Szekeres Lemma:

Lemma

R(3)(k, `) ≤ R(R(3)(k − 1, `),R(3)(k , `− 1)) + 1.

The complete proof is an inductive proof of the finiteness of
R(3)(k, `).

The train of thought shown represents the inductive step.

Peter Hajnal Ramsey theory, SzTE, 2023
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Coloring r -sets with c Colors

The two steps can be summarized. We can examine the c-coloring
of r -element subsets. For a sufficiently large base set, a
monochromatic set of size k is guaranteed in this case as well. The

corresponding Ramsey numbers are denoted as R
(r)
c (k) and

R
(r)
c (k1, k2, . . . , kc).

The details of the development can be carried out by the interested
student.

Peter Hajnal Ramsey theory, SzTE, 2023
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Break
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Ramsey Theory

The graph-theoretic Ramsey theorem supports the following
philosophy: there is no complete disorder.

No matter how we draw edges among n vertices, there will always
be independent sets or cliques of size O(log n), meaning an
extremely ordered part.

This is unavoidable even if our goal is to create total chaos. A
certain local order is inevitable.

This philosophy appears in several mathematical theorems. The
corresponding theorems are Ramsey-type theorems.

Due to the many connections, a theory has developed around this
philosophy. Various branches of mathematics provide partial results
to this theory.

Peter Hajnal Ramsey theory, SzTE, 2023
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Erdős—Szekeres Theorem

Let n be given, and consider a set P of n points in the plane such
that no three points are collinear (P consists of points in general
position).

From the points of P, we want to select k in such a way that they
form the vertices of a convex polygon.

The following theorem states that if |P| is large enough, then this
is guaranteed.

Pál Erdős and György Szekeres

If P is a set of R(4)(5, k) points in general position, then we can
select k points from them in such a way that they form the
vertices of a convex polygon.

Peter Hajnal Ramsey theory, SzTE, 2023
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An Elementary Geometric Lemma

The proof relies on the following simple geometric lemma. The
lemma will not be proven. Based on the knowledge of a high
school student, the lemma can be easily understood.

Lemma

(i) If there are five points in general position in the plane, then
we can choose four of them in such a way that they form a
convex quadrilateral.

(ii) If there are k points in the plane such that any four of them
form a convex quadrilateral, then the k points are in convex
position.

Peter Hajnal Ramsey theory, SzTE, 2023
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Proof of the Theorem

After this, color the quadrilaterals formed by the elements of P
with two colors in such a way that a quadrilateral receives a red
color if the four points in it do not form the vertices of a convex
quadrilateral.

The Lemma (i) precisely says that in this case, P does not contain
a monochromatic red set of size five.

Choosing |P| accordingly, there exists a blue set of size k in P.

Lemma (ii) implies that this blue set forms a convex set of size k .

Peter Hajnal Ramsey theory, SzTE, 2023
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Happy End Problem

The theorem answered a question posed by Eszter Klein.

In the proof, the elementary geometric statement was noticed by
Klein Eszter, who then asked the question: Is it true that for a
sufficiently large point set, we can always find a set of k points
that forms the vertices of a convex k-gon in our point set?

Erdős Pál named the problem ”Happy End” because the question
itself might have played a role in the later marriage of Szekeres
György and Klein Eszter.

Peter Hajnal Ramsey theory, SzTE, 2023
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Erdős—Szekeres Numbers

ESz(n) is the minimum number such that for a set of points in
general position with that size, we guarantee the existence of a set
of n points forming the vertices of a convex polygon.

The following estimate comes from Erdős Pál and Szekeres György:

2k−2 + 1 ≤ ESz(k) ≤
(

2k − 2

k − 1

)
.

(Szekeres György)

Is it true that for any k, ESz(k) = 2k−2 + 1?

This conjecture/equality has only been proven for k ≤ 6 (2006).

Theorem, Suk 2017

2k−2 + 1 ≤ ESz(k) ≤ 2k+o(k).

Peter Hajnal Ramsey theory, SzTE, 2023
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2k−2 + 1 ≤ ESz(k) ≤
(

2k − 2

k − 1

)
.

(Szekeres György)

Is it true that for any k, ESz(k) = 2k−2 + 1?

This conjecture/equality has only been proven for k ≤ 6 (2006).

Theorem, Suk 2017

2k−2 + 1 ≤ ESz(k) ≤ 2k+o(k).

Peter Hajnal Ramsey theory, SzTE, 2023
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Break
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Arithmetic Ramsey-Type Theorems

In the following, we consider problems where a set of numbers is
given, and its elements are colored. We then take an
equation/system of equations and examine whether it can be
solved in such a way that the solution forms a monochromatic set.

Our first such theorem will be a lemma. This led to the
investigation of the Fermat conjecture. According to this
conjecture, the Diophantine equation xn + yn = zn has no
non-trivial solutions for n > 2. (This conjecture was proven by
Wiles in 1994.)

Peter Hajnal Ramsey theory, SzTE, 2023
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Arithmetic Ramsey-Type Theorems

In the following, we consider problems where a set of numbers is
given, and its elements are colored. We then take an
equation/system of equations and examine whether it can be
solved in such a way that the solution forms a monochromatic set.

Our first such theorem will be a lemma. This led to the
investigation of the Fermat conjecture. According to this
conjecture, the Diophantine equation xn + yn = zn has no
non-trivial solutions for n > 2. (This conjecture was proven by
Wiles in 1994.)

Peter Hajnal Ramsey theory, SzTE, 2023
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Schur’s Theorem

Throughout, when we say that a statement holds for sufficiently
large s, we mean

There exists a threshold s0 such that for all s ≥ s0, the statement
is true.

We use the language similarly for primes or, for example, perfect
squares, or any values taken from an infinite subset of N.

Schur’s Theorem

Let n ∈ N+. For sufficiently large prime p, the equation

xn + yn ≡p zn

has non-trivial solutions, where x ≡p y means x ≡ y mod p, and
a solution (x , y , z) is non-trivial if x , y , z 6≡p 0.

Peter Hajnal Ramsey theory, SzTE, 2023
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Schur’s Lemma

Of course, the threshold number p depends on n. Before proving
the theorem, we need the following lemma, which led to the
investigation of the Fermat conjecture.

Schur’s Lemma, 1916

Let ν be sufficiently large, and let c ∈ N+ be an arbitrary palette
size. Take an arbitrary coloring
ϕ : {1, 2, . . . , ν} = [ν]→ {1, 2, . . . , c}. Then the equation

x + y = z , where x , y , z ∈ [ν],

has a monochromatic solution.

Peter Hajnal Ramsey theory, SzTE, 2023
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Proof of the Lemma

Define a coloring of the complete graph on the set {0, 1, 2, . . . , ν}:
The color of edge ij is ϕ(|i − j |).

Then, by Ramsey’s theorem, if ν is large enough, there will be a
monochromatic triple (i.e., a triangle where every edge has the
same color). Actually, ν = Rc(3) is a good bound.

Let h, i , j be the vertices of a monochromatic triangle. Without
loss of generality, assume h < i < j . We know that

ϕ(i − h) = ϕ(j − i) = ϕ(j − h).

Then, the values x = i − h, y = j − i , z = j − h form a suitable
solution to the equation.

Peter Hajnal Ramsey theory, SzTE, 2023
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Proof of the Lemma

Define a coloring of the complete graph on the set {0, 1, 2, . . . , ν}:
The color of edge ij is ϕ(|i − j |).

Then, by Ramsey’s theorem, if ν is large enough, there will be a
monochromatic triple (i.e., a triangle where every edge has the
same color). Actually, ν = Rc(3) is a good bound.

Let h, i , j be the vertices of a monochromatic triangle. Without
loss of generality, assume h < i < j . We know that

ϕ(i − h) = ϕ(j − i) = ϕ(j − h).

Then, the values x = i − h, y = j − i , z = j − h form a suitable
solution to the equation.

Peter Hajnal Ramsey theory, SzTE, 2023
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Proof of the Theorem

For completeness, let’s see the proof of the theorem.

Let p be a sufficiently large prime, and consider the multiplicative
group of the p elements (F∗p). We define the subgroup

H = {xn|x ∈ F∗p} = {gn, g2n, . . . }

of nth powers, where g is a generator of the cyclic group F∗p.

It is observed that the size of this subgroup, |H|, is at least p−1
n .

Then, F∗p decomposes into cosets according to H:

F∗p = m1H∪̇m2H∪̇ . . . ∪̇m`H

The number of cosets ` is ` =
|F∗p |
|H| = p−1

|H| ≤ n.

Peter Hajnal Ramsey theory, SzTE, 2023
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Proof of the Theorem (Continued)

Consider F∗p ≡ [p − 1] = {1, 2, . . . , p − 1} and color it with the
following n-coloring: the elements of each coset miH receive the
i-th color.

Then, applying Schur’s lemma with parameters ν = p − 1 and
c = n, we find a suitable color/coset (miH) and suitable elements
in this color/in this coset (x , y , z ∈ miH) such that x + y = z .

That is, we have x = mix0
n, y = miy0

n, z = miz0
n and

mix0
n + miy0

n ≡p miz0
n.

Dividing by mi (mi 6= 0), we get

x0
n + y0

n ≡p z0
n,

where x0
n, y0

n, z0
n ∈ H, specifically x0

n, y0
n, z0

n 6≡p 0.

This gives us the sought non-trivial solutions.

Peter Hajnal Ramsey theory, SzTE, 2023
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Proof of the Theorem (Continued)

Consider F∗p ≡ [p − 1] = {1, 2, . . . , p − 1} and color it with the
following n-coloring: the elements of each coset miH receive the
i-th color.

Then, applying Schur’s lemma with parameters ν = p − 1 and
c = n, we find a suitable color/coset (miH) and suitable elements
in this color/in this coset (x , y , z ∈ miH) such that x + y = z .

That is, we have x = mix0
n, y = miy0

n, z = miz0
n and

mix0
n + miy0

n ≡p miz0
n.

Dividing by mi (mi 6= 0), we get

x0
n + y0

n ≡p z0
n,

where x0
n, y0

n, z0
n ∈ H, specifically x0

n, y0
n, z0

n 6≡p 0.

This gives us the sought non-trivial solutions.

Peter Hajnal Ramsey theory, SzTE, 2023
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Schur Numbers

As Ramsey’s lemma leads to the definition of Ramsey numbers,
Schur’s lemma also forms the basis of an important definition.

Definition: Sch(c), the c-parameter Schur number

For any c ∈ N+, let Sch(c) be the minimum ν such that, for any
coloring of [ν], there exists a monochromatic {x , y , z} satisfying
x + y = z . In other words, Sch(c) is the precise threshold in the
sufficiently large ν from the lemma.

Peter Hajnal Ramsey theory, SzTE, 2023
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Peter Hajnal Ramsey theory, SzTE, 2023
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Further Theorems

Schur’s lemma, which will be our true Schur’s theorem, sparked
further research. Among the achieved results, the following stands
out.

van der Waerden’s Theorem, 1927

For sufficiently large n, any coloring of [n] will contain a
monochromatic arithmetic progression of length k that is not
constant (AP).

Once again, it is important to mention the sequence related to the
theorem, which describes the concept of sufficiently large in the
theorem.

Definition

The smallest n for which the above theorem holds is denoted as
Wc(k).
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Break
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Positional Games

The simplest form of positional games is: a two-player game where
players take turns occupying still available positions on a board,
with the goal of forming some winning configuration.

Example: Tic-Tac-Toe

The board is a 3× 3 grid, and winning configurations include rows,
columns, and the two diagonals.

Example: Gomoku/Five in a row

The board is an infinite plane grid. Winning configurations consist
of five adjacent positions either horizontally, vertically, or
diagonally.

Peter Hajnal Ramsey theory, SzTE, 2023
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Generalized Tic-Tac-Toe Board

Definition

Ud
k = {set of positions} = {1, 2, . . . , k}d .

This means we have two parameters: k is the width of the board,
and d is the dimension of the board.

So, a position can be described by a d-dimensional vector, where
each coordinate ranges from 1 to k.

This convention is natural. For example, in the original
Tic-Tac-Toe game, positions can be identified as
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3).

Peter Hajnal Ramsey theory, SzTE, 2023
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Generalized Tic-Tac-Toe Winning Positions

Definition

Let e ∈ {∗, 1, . . . , k}d\{1, 2, . . . , k}d , and associate with it a line
Le = {P1,P2, . . . ,Pk}, where Pi = Pi (e) denotes the position
obtained by replacing the asterisks in e with i .

In other words, a line consists of positions whose coordinates are
fixed outside an index set S and take the same value inside S . Ud

k

contains k positions on each line.

The Ud
k board has (k + 1)d − kd lines in total.

Peter Hajnal Ramsey theory, SzTE, 2023
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Example

In the following figure, an example is shown for k = 3 and d = 2.
On the (1 ∗) line, the positions are (1, 1), (1, 2), and (1, 3). The (2
∗) line contains the positions (1, 1), (2, 2), and (3, 3). The other
diagonal won’t form a line. In this case, there are a total of 7 lines.

(1 3)

(1 2)

(1 1) (2 1)

(2 2)

(2 3)

(3 1)

(3 2)

(3 3)

(1 *) (2 *)

(* *)

(* 2)
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Generalized Lines, Subspaces

Definition

In the Ud
k table, an e-dimensional subspace can be described by a

vector a ∈ {∗1, ∗2, . . . , ∗e , 1, 2, . . . , k}d where each indexed asterisk
appears at least once. The elements of the subspace Aa described
by this vector are obtained by replacing the ∗i ’s with the same
element from {1, 2, . . . , k} (independently for different indices).

Thus, an e-dimensional subspace occupies ke positions. For e = 1,
the 1-dimensional subspace corresponds to a line.

Peter Hajnal Ramsey theory, SzTE, 2023
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Hales—Jewett Theorem (1963)

Hales—Jewett Theorem (1963)

For every k (table width), every c (palette size), and sufficiently
large d (dimension), the positions of the Ud

k table can be arbitrary
colored with c colors and the existence of a monochromatic line is
guaranteed.

This can also be interpreted as follows: on the table Ud
k , for

sufficiently large dimension d , if c players share the positions/color
them, then there cannot be a tie, i.e., one of the players contains a
winning set of positions/line within their color class.

Peter Hajnal Ramsey theory, SzTE, 2023
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Hales—Jewett Theorem ⇒ van der Waerden’s Theorem

Let k be the length of the arithmetic sequence sought in van der
Waerden’s theorem.

In the Hales—Jewett theorem, this corresponds to (as the table
width) a dimension d . Let n = kd .

Consider the set {0, 1, . . . , n − 1} and express its elements in base
k . If, during the conversion, we pad the digit sequences with
leading zeros to make them of length d , we establish a bijection

{0, 1, . . . , n − 1} ←→ {0, 1, . . . , k − 1}d

between our numbers and the positions on the table.

The coloring of van der Waerden’s theorem corresponds to a
Hales—Jewett-style coloring of our table, where the Hales—Jewett
theorem guarantees the existence of a monochromatic line
corresponding to a k-length arithmetic sequence.

Peter Hajnal Ramsey theory, SzTE, 2023
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Beginning of the Proof

Definition

The minimal dimension for which the above theorem holds,
parametrized by k and c , is denoted as HJc(k). These are the
Hales–Jewett numbers for given k and c .

Hales–Jewett theorem ≡ Hales–Jewett numbers are finite.

The proof is by complete induction on k , i.e., the table width.

For the case k = 2, observe that the set of positions (expressed in
a monotonically increasing sequence) 00 . . . 000,
00 . . . 001,00 . . . 011, . . ., 01 . . . 111, 11 . . . 111 forms a set (of
length d + 1) such that any two elements form a line. If d ≥ c ,
then the pigeonhole principle guarantees two monochromatic
elements, i.e., a monochromatic line.

Peter Hajnal Ramsey theory, SzTE, 2023
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Structure of the Inductive Step

The inductive step: Assume that the theorem holds for k
(HJ-Statement(k)) and we need to prove it for k + 1
(HJ-Statement(k + 1)).

This is the challenging part. We break it into two parts. We
introduce an intermediate statement, denoted as:
Statement(k + 1

2).

The proof proceeds as follows:

HJ-Statement(k)⇒ Statement(k +
1

2
)⇒ HJ-Statement(k).

Peter Hajnal Ramsey theory, SzTE, 2023
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Towards Statement(k + 1
2): Structure of a Subspace

Increase the width by 1. Identify the elements of our subspace with
the positions of Ue

k+1. Select the following subset

Ue
k+1 ⊇{(a1, a2, . . . , ae) : if ai = k + 1 , then ∀j > i , aj = k + 1}

notation
= Se

k+1.

Thus, we can obtain Se
k+1 as follows

Se
k+1 =

e⋃
i=0

Se
k+1(i),

where Se
k+1(i) contains numbers with the first e − i digits at most

k , followed by i digits equal to k + 1.

Note that the above definition requires that the order of our e
asterisks is fixed.
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Example

k = 6 and e = 2. The black square corresponds to S2
6 (2), as in

this case everywhere a1 to 6 must be 6. The green rectangle
represents S2

6 (1), and the red square corresponds to S2
6 (0). The

non-framed part does not satisfy the condition because it has 6 in
the first position, but the next position is less than 6.

(1 6) (6 6)

(1 2)

(1 3)

(1 4)

(1 5)

(1 1)

(6 5)

(6 4)

(6 3)

(6 2)

(6 1)
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Example

In the following figure, e = 3 is illustrated. The red cube
represents S3

k (0), the green box represents S2
6 (1), the blue box

represents S2
6 (2), and the light blue cube represents S2

6 (3).
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Description of Statement(k + 1
2)

Definition

A subspace is nice if all Se
k+1(i) subsets are monochromatic.

Note that the Se
k+1(i) subsets (i = 0, 1, 2, . . . , e) do not cover the

entire subspace. There are no coloring conditions for the uncovered

part. The parts designated by different i ’s are independent. Each

of them must be monochromatic, but the different parts can have
different colors (or the same color).

Peter Hajnal Ramsey theory, SzTE, 2023
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From Statement(k + 1
2) to HJ-Statement(k + 1)

Let e be chosen as the palette size in HJ-Statement(k + 1) and
work in a sufficiently large dimension for Statement(k + 1

2).

Statement requires the monochromaticity of e + 1 sets.

By the pigeonhole principle, there will be two that have the same
color. The proof of Hales—Jewett statement comes from the fact
that the union of any two Se

k+1(i) sets contains a line. (This is
easily verified after studying examples.)

Peter Hajnal Ramsey theory, SzTE, 2023
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HJ-Statement(k) ⇒ Statement(k + 1
2)

We prove Statement(k + 1
2) by induction on e.

For e = 1, it follows easily: the positions of Ud
k+1 contain the

narrower Ud
k table, where our assumption guarantees a

monochromatic line.

This line becomes part of the larger table (∗ can now take the
value of k + 1). Thus, in the larger table, the appropriate line is an
extension of the narrow but monochromatic line by one position.
Monochromaticity may be lost, but we still obtain a nicely colored
line/1-dimensional subspace.

Peter Hajnal Ramsey theory, SzTE, 2023
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Jump from e to e + 1

We are looking for the sufficiently large dimension as d ′ + d ′′,
where both terms are appropriately large.

Take an arbitrary coloring. We need to find the nicely colored
e + 1-dimensional subspace.

Each position will have a first d ′ coordinate, this is the beginning
of the position, and it will have a last d ′′ coordinate, the position’s
end. (Our table is the product of two smaller dimensional tables.)

Fix the beginning of the position. The possibilities for fixing are
identified with the positions of Ud ′

k+1.

For a fixed beginning, the possible ends are identified with the
positions of Ud ′′

k+1. In this, each end (with the fixed beginning)
describes a colored position in the entire table. Thus, fixing
corresponds to a colored Ud ′′

k+1 table.

Peter Hajnal Ramsey theory, SzTE, 2023
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Jump from e to e + 1

We are looking for the sufficiently large dimension as d ′ + d ′′,
where both terms are appropriately large.

Take an arbitrary coloring. We need to find the nicely colored
e + 1-dimensional subspace.

Each position will have a first d ′ coordinate, this is the beginning
of the position, and it will have a last d ′′ coordinate, the position’s
end. (Our table is the product of two smaller dimensional tables.)

Fix the beginning of the position. The possibilities for fixing are
identified with the positions of Ud ′

k+1.

For a fixed beginning, the possible ends are identified with the
positions of Ud ′′

k+1. In this, each end (with the fixed beginning)
describes a colored position in the entire table. Thus, fixing
corresponds to a colored Ud ′′

k+1 table.

Peter Hajnal Ramsey theory, SzTE, 2023
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Jump from e to e + 1 (Continuation)

There are c(k+1)d
′′

possibilities for coloring Ud ′′
k+1. Each of these

can be considered as a super-color.

That is, Ud ′
k+1 has a super-coloring. In this, there is a nicely colored

line (see the case e = 1). The selection of the line: asterisk the
first d ′ coordinates and fix.

The nicely colored line is a subset of S1
k+1(0), i.e., every element

(position’s beginning) has the same super-color, i.e., the same
colored Ud ′′

k+1 table belongs to it.

d ′′ should be large enough so that there is a nicely colored
e-dimensional subspace in it. Selecting this subspace: asterisk the
last d ′′ coordinates.

We claim that this is nicely colored. This can be easily verified.

Peter Hajnal Ramsey theory, SzTE, 2023
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Density vs. Structure

The graph theoretical Ramsey theorem discusses the arbitrary
red/blue coloring of the edges of a complete graph. We divide the(n
2

)
edges into two categories. The majority constitutes at least

1
2

(n
2

)
edges.

It arises whether this set of monochromatic edges already
guarantees the formation of a large monochromatic set in this
color. The first thought is immediately refuted by Turán’s theorem.
More than half of the edges can be red without forming a
monochromatic triangular subset.

If a larger monochromatic set is our goal, then more edges can be
specified while avoiding the large monochromatic set. The validity
of Ramsey’s theorem is of a structural nature. If the red edges
avoid forming a large monochromatic set, then the complementary
set (the blue edges) cannot have a similar structure.

Peter Hajnal Ramsey theory, SzTE, 2023
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Density vs. Structure

The graph theoretical Ramsey theorem discusses the arbitrary
red/blue coloring of the edges of a complete graph. We divide the(n
2

)
edges into two categories. The majority constitutes at least

1
2

(n
2

)
edges.

It arises whether this set of monochromatic edges already
guarantees the formation of a large monochromatic set in this
color. The first thought is immediately refuted by Turán’s theorem.
More than half of the edges can be red without forming a
monochromatic triangular subset.

If a larger monochromatic set is our goal, then more edges can be
specified while avoiding the large monochromatic set.

The validity
of Ramsey’s theorem is of a structural nature. If the red edges
avoid forming a large monochromatic set, then the complementary
set (the blue edges) cannot have a similar structure.

Peter Hajnal Ramsey theory, SzTE, 2023
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Summary

Theorem Structure to be
Colored

Monochromatic
Substructure
to be Found

Maximum Size of Possible
Color Class

Ramsey
Theo-
rem

Edges of a com-
plete graph with
n vertices

Edges of a
complete
graph with 3
vertices

Kbn/2c,dn/2e, the n-vertex
bipartite Turán graph

Ramsey
Theo-
rem

Edges of a com-
plete graph with
n vertices

Edges of a
complete
graph with k
vertices

Tn,k−1, the n-vertex, k − 1
part Turán graph

Schur [n] {x , y , x + y} I. Example: odd numbers.
II. Example: [n] \ [bn/2c].

van der
Waer-
den

[n] AP of length k
(non-constant)

???
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Erdős—Turán Theorem

Paul Erdős and Pál Turán conjectured that ??? is not good for the
case of the van der Waerden theorem, meaning that a significant
part of {1, 2, . . . , n} cannot contain an arithmetic sequence of
length k .

Thus, the van der Warden theorem is a kind of justification for
density. Which is much stronger than the usual combinatorial
proof of Ramsey theorems.

Definition

rk(n) = max{|R| : R ⊆ [n], R-contains no AP of length k}.

(Erdős Pál—Turán Pál, 1936)

rk(n) = o(n), if k ≥ 3.

Peter Hajnal Ramsey theory, SzTE, 2023
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Paul Erdős and Pál Turán conjectured that ??? is not good for the
case of the van der Waerden theorem, meaning that a significant
part of {1, 2, . . . , n} cannot contain an arithmetic sequence of
length k .

Thus, the van der Warden theorem is a kind of justification for
density. Which is much stronger than the usual combinatorial
proof of Ramsey theorems.

Definition

rk(n) = max{|R| : R ⊆ [n], R-contains no AP of length k}.
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Results

Erdős Pál—Turán Conjecture: For every positive ε, if n is large
enough, then rk(n) ≤ εn.

(Roth’s Theorem, 1956)

r3(n) = o(n).

Later, Endre Szemerédi proved the case of four-term arithmetic
progressions, followed by the general case.

(Szemerédi’s Theorem, 1975)

For every k ≥ 3, the conjecture holds. That is,

rk(n) = o(n).

Peter Hajnal Ramsey theory, SzTE, 2023
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Results II

After the proof of the conjecture, the exploration of the topic
became even more vibrant. We only outline the most outstanding
results.

The theorem was re-proven several times:

• 1977 Fürstenberg. His proof uses ergodic theory.

• 2001 Gowers. His proof employs strong combinatorial
number-theoretical results and Fourier techniques. The
Fourier method was introduced by Roth, but its successful
application required additional brilliant ideas.

Peter Hajnal Ramsey theory, SzTE, 2023
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Gowers’ Estimate

Gowers’ new proof is remarkable because the original combinatorial
and later ergodic-theoretic proofs necessarily did not provide
estimates for the rk(n) numbers. The application of the Fourier
method, however, provides effective estimates. Thus, as a
byproduct, the following estimate for the van der Waerden
numbers was obtained.

(Gowers’ Estimate)

W2(k) ≤ 22
22

2k+9

.

Peter Hajnal Ramsey theory, SzTE, 2023
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Green and Tao Theorem

All the power of the aforementioned methods and more was
needed for the following result to emerge.

Green—Tao Theorem

For every positive integer k , there exists an arithmetic progression
of length k among the primes.

Terence Tao received the Fields Medal in 2006. In the award
justification, the above result was highlighted. The reason for the
theorem is again of a density nature.

Peter Hajnal Ramsey theory, SzTE, 2023
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theorem is again of a density nature.

Peter Hajnal Ramsey theory, SzTE, 2023
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Green and Tao Theorem (Density Version)

(Green—Tao Theorem, Density Version)

Let Pn = {2, 3, 5, 7, 11, p6, . . . , pn} be the set of the first n primes.
Let ε be any (small) positive constant. If A ⊂ N satisfies
|A ∩ Pn| ≥ εn for infinitely many n, then A contains an arithmetic
progression of length k for every positive integer k .
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This is the end!

Thank you for your attention!

Peter Hajnal Ramsey theory, SzTE, 2023
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