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Reminder

Reminder: Cliques

K ⊂ V (G ) is a clique in a graph G any two distinct vertices of G
are connected.

ω(G ) = max{|K | : K is a clique}

Reminder: independent vertex sets

F ⊂ V (G ) is an independent vertex set if there is no edge
x = uv ∈ E (G ) such that u, v ∈ F .

α(G ) = max{|F | : F is independent}

In this lecture we always assume that our graph is SIMPLE.

Peter Hajnal Extremal graph theory, SzTE, 2023
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Algorithm finding a large independent set

Greedy algorithm for finding a large independent set

Input: G simple graph

Output: F , an independent vertex set

Inicialization: F := ∅, T := V (G ).

// F is an independent set, that is only extended during the run.
T is the set of surviving vertices, i.e. vertices that are not chosen,
and not thrown away.

While T 6= ∅ Greedy extension:

Take any vertex x from T .

F ← F ∪ {x} // We extend F with x.

T ← T − {x} − NT (x) // After choosing x only the
non-neighboring vertices of T will survive the extension.

Peter Hajnal Extremal graph theory, SzTE, 2023
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The analysis of the algorithm

Lemma

The size of the output of the greedy algorithm for finding large
independent set is at least

|V (G )|
D(G ) + 1

.

After each extension of F by a vertex, the set T is decreased by at
most D(G ) + 1 vertices.

The size of the output is exactly the number of extension steps.
During the extensions the original size of T , |V (G )| drops to 0.

Hence we executed at least |V (G )|/(D(G ) + 1) extension steps.
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The essence of the algorithm

We say that at every extension step we bite/cut off a part of T .
We could give an upper bound on the size of each piece that we
can bite/cut. During the algorithm we consumed the whole vertex
set. Hence the number of cuts must be ”large”.

The original algorithm choose an element x from T without any
consideration. An enhancement of our method can be if we choose
a reasonable x . Our goal is to have as many bite/cuts as possible.
The natural choice is the vertex x that results in the smallest
bite/cut.

Peter Hajnal Extremal graph theory, SzTE, 2023
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Improved greedy algorithm

Improved greedy algorithm

Inicialization: F := ∅, T := V (G ).

// F is an independent set, that is only extended during the run.
T is the set of surviving vertices, i.e. vertices that are not chosen,
and not thrown away.

While T 6= ∅ Greedy extension:

Take a x ∈ T = V (G |T ) of minimal degree in G |T .

F ← F ∪ {x}, // We extend F with x.

T ← T − {x} − NT (x) // After choosing x , the non-neighbors of
x in T are thrown away.

Peter Hajnal Extremal graph theory, SzTE, 2023
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The analysis of the improved algorithm

Theorem (Turán’s theorem, algorithmic form)

The size of the output of the improved greedy algorithm for finding
large independent set is at least

|V (G )|
d(G ) + 1

,

where d(G ) denotes the average degree of G ,

i.e. d(G ) =
∑

x∈V d(x)

|V | = 2|E |
|V | .
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Proof

Let G be any simple graph and run the improved greedy algorithm
with input G .

Let xi be the vertex chosen at the ith extension step.

Let Hi be the bite/cut after ith extension step. I.e.
Hi = {xi} ∪ (N(xi ) ∩ T ).

It is straight forward that V (G ) = H1∪̇H2∪̇ . . . ∪̇H`, where ` is the
number of extension steps, i.e. the size of the output.

Let E = E(H1,H2, . . . ,H`) be that simple graph where two vertices
is connected if and only if (iff) they belong to the same bite/cut.
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Proof (1st Observation)

Observation

For each vertex x we have dG (x) ≥ dE(x), specially

|E (E(H1, . . . ,H`))| ≤ |E (G )|.

Let x be a vertex from the ith bite/cut: x ∈ Hi . d(x) counts edges
incident to x . We divide these edge into two classes:

(1) edges leading to H1 ∪ H2 ∪ . . . ∪ Hi−1 form x → dback(x),

(2) edges leading to Hi ∪ . . . ∪ H` from x → d forward(x).

Obviously d(x) = dback(x) + d forward(x).

We have dback
E (x) = 0 ≤ dback

G (x), furthermore

d forward
E (x) = |Hi | − 1 = d forward

G (xi ) ≤ d forward
G (x).

Hence the claim dE(x) ≤ dG (x) is obvious.
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Proof (1st Observation)

Observation

For each vertex x we have dG (x) ≥ dE(x), specially

|E (E(H1, . . . ,H`))| ≤ |E (G )|.

Let x be a vertex from the ith bite/cut: x ∈ Hi . d(x) counts edges
incident to x . We divide these edge into two classes:

(1) edges leading to H1 ∪ H2 ∪ . . . ∪ Hi−1 form x → dback(x),

(2) edges leading to Hi ∪ . . . ∪ H` from x → d forward(x).

Obviously d(x) = dback(x) + d forward(x).

We have dback
E (x) = 0 ≤ dback

G (x), furthermore

d forward
E (x) = |Hi | − 1 = d forward

G (xi ) ≤ d forward
G (x).

Hence the claim dE(x) ≤ dG (x) is obvious.

Peter Hajnal Extremal graph theory, SzTE, 2023



Turán’s theorem Extremal graph theory Trees Erdős—Stone—Simonovits Theorem Degenerate problems
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Proof (2nd Observation)

Let hi = |Hi |, hence
∑`

i=1 hi = |V | =: n.

We have

|E (G )| ≥ |E (E)| =
∑̀
i=1

(
hi
2

)
≥ `
(
|V |/`

2

)
,

where the last inequality is the Jensen inequality: for the convex
function

(x
2

)
= x(x − 1)/2.

Observation

µn,` := min{|E (E(H1, . . . ,H`))| :
∑̀
i=1

|Hi | = n} ≥ `
(
n/`

2

)
.

The proof of the algorithmic form of Turán’s theorem: The
claim is a simple consequence of the two Observations and simple
arithmetics.
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A new Observation

We proved the following claim

Observation

If
|E (G )| < µn,`,

then the improved greedy algorithm executes at least `+ 1
extension steps, i.e. the algorithm finds an independent set of size
at least `+ 1.

During the analysis of the algorithm we estimated µn,` using the
Jensen inequality.

The Jensen inequality is sharp if we work with real numbers. In our
setting this is not true.
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Balanced partitions

Definition

We consider a partition of a set of n elements into k parts. We say
that the partition is balanced or its parts are almost ”equal” iff one
of (or all of) the following equivalent properties holds

(i) For each part O |O| ∈
{⌊

n
k

⌋
,
⌈
n
k

⌉}
.

(ii) For any two parts O and O ′ ||O| − |O ′|| ≤ 1.

(iii) n − k
⌊
n
k

⌋
parts have size

⌈
n
k

⌉
and k −

(
n − k

⌊
n
k

⌋)
parts have

size
⌊
n
k

⌋
.
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Balanced equivalence graphs, Turán graphs

Definition: En,k , the balanced equivalence graphs on n vertices
with k components

Its vertex set is an n elements set, divided into k parts

V = O1
·
∪ . . .

·
∪ Ok , of ”almost equal” size.

Its edge set contains exactly those edges that are connecting two
vertices from the same part.

Definition: Tn,k the Turán graph on n vertices with k parts

Its vertex set is an n elements set, divided into k parts

V = O1
·
∪ . . .

·
∪ Ok , of ”almost equal” size.

Its edge set contains exactly those edges that are connecting two
vertices from two different parts.

Tn,k = En,k
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Lemma

Lemma

µn,` = min{|E (E(H1, . . . ,H`))| :
∑̀
i=1

|Hi | = n} = |E (En,`)|.

Example

n = 700, ` = 200

Estimating µn,` using Jensen’s inequality:

µn,` ≥ `
(
n/`

2

)
= 875.

Applying Lemma:

µn,` = |E (En,`)| = 900.
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Proof of the Lemma

Assume that E is an equivalence graph, and the partition behind it
is not balanced.

We can find two parts with sizes that differ from each other by
more than 1.

Modify E by modifying its underlying partition: Take the two parts
from above and place one vertex from the bigger part into the
smaller one. The other parts remain untouched.

Easy computation give us that this modification
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Reformulation of the Theorem

Theorem

If G is a simple graph on n vertices and |E (G )| < |E (En,`)|, then
the improved greedy algorithm will have at least `+ 1 extension
steps. Specially we have α(G ) ≥ `+ 1.

Theorem

Let G be a simple graph on n vertices. If α(G ) < k , then
|E (G )| ≥ |E (T n,k−1)|.
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The reformulated theorem, complementary form

Theorem of Paul Turán

If G is a simple graph on n vertices and it doesn’t contain a clique
of size k then

|E (G )| ≤ |E (Tn,k−1)|.

Theorem of Paul Turán

Let G be a simple graph on n vertices. If

|E (G )| > |E (Tn,k−1)|,

then it must contain a clique of size k .
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Turán’s theorem, algorithmic version in complementary
form

If we run the improved greedy algorithm for G then we will find a
”large” vertex set, that forms a clique in G . The algorithm can be
formulated in terms of the original graph.

Exercise

Formulate an improved greedy algorithm for finding a ”large”
clique in the input graph. You can build on the ideas of our
original algorithm, or you can take the above algorithm and
eliminate the reference to the complementer graph from it.

The improved greedy algorithm for finding large clique in the case
of |E (G )| > |E (Tn,k−1)| will find a clique of size at least k .
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Theorem of Turán is sharp

Tn,k doesn’t contain a clique of size k + 1.

1st argument (pigeon hole principle): Take any set L of size
larger than the number of parts of our Turán graph. By pigeon hole
principle we can find two vertices in L, that belong to the same
part. By definition they are not connected, hence L is not a clique.

2nd argument (coloring): Tn,k has a legal k-coloring. Hence
Tn,k cannot contain a subgraph R with χ(R) ≥ k + 1. Hence Tn,k

doesn’t contain a clique of size k + 1, furthermore it doesn’t
contain any subgraph that is nor k-colorable.
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Break
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Generalizations

A special case of Turán’s theorem consider a simple graph on n
vertices doesn’t have a clique of size 4 (or K4 subgraph). The claim
of the theorem is that G cannot have more than |E (Tn,3)| edges.

The condition can be formulated like ”We consider simple graphs,
bur K4 is a forbidden subgraph”. K4 van be considered as the
graph of tetrahedron. // Every polytope (bounded subset of Rn,
that is an intersection of finitely many closed halfspaces) has a
graph. Its vertex set consists of the vertices of the polytope, it
edge set is formed by the edges of the polytope.

At the end of his research paper Turán asked the following
question: What happens if we forbid as subgraph the graph of
another polytope. Proposing this question was crucial in the
history of graph theory. It started a new line of research, that led
to a new branch of combinatorics.

Extremal graph theory has been born.
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Generalizations

A special case of Turán’s theorem consider a simple graph on n
vertices doesn’t have a clique of size 4 (or K4 subgraph). The claim
of the theorem is that G cannot have more than |E (Tn,3)| edges.

The condition can be formulated like ”We consider simple graphs,
bur K4 is a forbidden subgraph”. K4 van be considered as the
graph of tetrahedron. // Every polytope (bounded subset of Rn,
that is an intersection of finitely many closed halfspaces) has a
graph. Its vertex set consists of the vertices of the polytope, it
edge set is formed by the edges of the polytope.

At the end of his research paper Turán asked the following
question: What happens if we forbid as subgraph the graph of
another polytope. Proposing this question was crucial in the
history of graph theory. It started a new line of research, that led
to a new branch of combinatorics.

Extremal graph theory has been born.

Peter Hajnal Extremal graph theory, SzTE, 2023



Turán’s theorem Extremal graph theory Trees Erdős—Stone—Simonovits Theorem Degenerate problems
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edge set is formed by the edges of the polytope.

At the end of his research paper Turán asked the following
question: What happens if we forbid as subgraph the graph of
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The function ext

Definition

ext(n;T ) = max{|E (G )| : G is a simple graph on n vertices, T 6⊆ G}.

We refer to T as a forbidden subgraph. n is the size of the vertex
set of the graph, we consider.

It will be very useful to introduce the following notation: Gn
denotes the class of simple graphs on n vertices. So G ∈ Gn
expresses that G is a simple graph on n vertices.
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Turán-type questions

We can reformulate Turán’s theorem again:

ext(n;Kk) = |E (Tn,k−1)|.

The problems related to ext(n;T ) are called Turán-type problem.

Turán-type problems form only a small portion of extremal graph
theory.

Extremal graph theory considers a special class of graphs and a
graph parameter. We are interested what are the extremal values
of this parameter if our graphs are chosen from the special class.
Very often only the maximal, or only the minimal value has
theoretical significance.
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Turán-type questions

We can reformulate Turán’s theorem again:

ext(n;Kk) = |E (Tn,k−1)|.

The problems related to ext(n;T ) are called Turán-type problem.

Turán-type problems form only a small portion of extremal graph
theory.

Extremal graph theory considers a special class of graphs and a
graph parameter. We are interested what are the extremal values
of this parameter if our graphs are chosen from the special class.
Very often only the maximal, or only the minimal value has
theoretical significance.

Peter Hajnal Extremal graph theory, SzTE, 2023



Turán’s theorem Extremal graph theory Trees Erdős—Stone—Simonovits Theorem Degenerate problems
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Turán-type questions

We can reformulate Turán’s theorem again:

ext(n;Kk) = |E (Tn,k−1)|.

The problems related to ext(n;T ) are called Turán-type problem.

Turán-type problems form only a small portion of extremal graph
theory.

Extremal graph theory considers a special class of graphs and a
graph parameter. We are interested what are the extremal values
of this parameter if our graphs are chosen from the special class.
Very often only the maximal, or only the minimal value has
theoretical significance.

Peter Hajnal Extremal graph theory, SzTE, 2023



Turán’s theorem Extremal graph theory Trees Erdős—Stone—Simonovits Theorem Degenerate problems

Turán-type questions

We can reformulate Turán’s theorem again:

ext(n;Kk) = |E (Tn,k−1)|.

The problems related to ext(n;T ) are called Turán-type problem.

Turán-type problems form only a small portion of extremal graph
theory.

Extremal graph theory considers a special class of graphs and a
graph parameter. We are interested what are the extremal values
of this parameter if our graphs are chosen from the special class.
Very often only the maximal, or only the minimal value has
theoretical significance.

Peter Hajnal Extremal graph theory, SzTE, 2023



Turán’s theorem Extremal graph theory Trees Erdős—Stone—Simonovits Theorem Degenerate problems

Open problems

• We mentioned that the original paper of Paul Turán introduced
some problems. It is interesting to note that the problem
concerning the forbidden cube graph is still open, We do not know
how many edges a G ∈ Gn can have if it doesn’t contain as a
subgraph a cube graph.
• We also mention that the simplest Turán-type problem (when a
triangle is forbidden) was know at the very beginning of the 20th
century. Mantel proposed the claim as an exercises in a
mathematical journal. It was only an interesting question.
• Turán’s publication was a really influential paper.
• Turán’s close colleague and friend, Paul Erdős immediately
realized the importance of these type of questions. His earlier work
already contained some sporadic extremal results. His work was
one of the main driving force that shaped these questions and
relating results into a theory.
• One can assume that the forbidden subgraph T doesn’t have
isolated vertex. (Why?)
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realized the importance of these type of questions. His earlier work
already contained some sporadic extremal results. His work was
one of the main driving force that shaped these questions and
relating results into a theory.
• One can assume that the forbidden subgraph T doesn’t have
isolated vertex. (Why?)

Peter Hajnal Extremal graph theory, SzTE, 2023



Turán’s theorem Extremal graph theory Trees Erdős—Stone—Simonovits Theorem Degenerate problems
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Break
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The forbidden graph with one edge

Observation

Let I be the gaph containing two vertices and oone connecting
edge. Then ext(n; I ) = 0.
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Forbidden graphs with two edges

Observation

Let ∧ be a simple graph on three vertices with two edges. Then
ext(n;∧) = bn/2c.

Obervation

Let M2 be a 1-regular graph on four vertices. Then
ext(n;M2) = n − 1, assuming n ≥ 4.

Proof: Easy.
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A Corollary

Corollary

If |E (T )| ≥ 2, then
ext(n;T ) = Ω(n).

The upper bounds is easy if T doesn’t have a cycle.

Peter Hajnal Extremal graph theory, SzTE, 2023



Turán’s theorem Extremal graph theory Trees Erdős—Stone—Simonovits Theorem Degenerate problems
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Theorem on forbidden trees

Theorem

Let T be a forest (i.e. a graph without cycle; i.e. a graph with tree
components). If |E (T )| > 1, then for suitable constants
αT , βT > 0

αT · n ≤ ext(n;T ) ≤ βT · n.

Hence the order of magnitude of ext(n;T ) is linear.

The lower bound follows from the condition that the forbidden
subgraph has at least two edges. This part of the claim is easy.
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Lemma

Notation

Let H be a graph. d(H) denotes the average degree of H, δ(H)
denotes the minimal degree of H.

Lemma

For G ∈ Gn we have a subgraph R (R ⊆ G ) with

δ(R) ≥ d(G )

2
.
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The proof of the Lemma

Algorithm

Input: G , simple graph. Output: R spanning subgraph with d/2.

A := G
// A is the actual graph, initially it is G .

Until we find x ∈ V (A): dA(x) < d
2 do

A← A− x .

The Lemma is equivalent to the fact the the algorithm doesn’t

”
consume” G completely.
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The proof of the Lemma (continued)

Assume that during the algorithm all vertices are deleted.

Let π be the order of the vertices, that follows the deletions:
π : v1, . . . , vn, i.e. vi is the vertex that is deleted in the ith step
(n = |V (G )|).

dback
π (v) denotes the number of the neighbors of the vertex v = vi

with a larger index than i .

We know: For all vertices v ∈ V dback
π (v) < d

2 .

Observe that:
∑

dback
π (v) = |E |.

|E | is n d
2 . A contradiction.
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dback
π (v) denotes the number of the neighbors of the vertex v = vi

with a larger index than i .

We know: For all vertices v ∈ V dback
π (v) < d

2 .

Observe that:
∑

dback
π (v) = |E |.

|E | is n d
2 . A contradiction.
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The proof of the Theorem

The Claim

If ∑
i di
n
≥ 2|V (T )|n

n
= 2|V (T )|,

then G contains a subgraph isomorphic to T .

Using the Lemma we have a subgraph R, that satisfies
δ(R) ≥ |V (T )|.

We are looking for T in R.

We think of T as a result of branching operations starting from an
empty graph. Let Ti be the graph during this construction with i
edges.

We proof by induction that Ti is a subgraph of R.
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The proof on a Figure

G
R R
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Break
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A fundamental result

Reminder: If the forbidden graph T is such that χ(T ) = k then
ext(n;T ) ≥ |E (Tn,k−1)|.

(Erdős—Stone, Erdős—Simonovits)

If T is such χ(T ) = k ≥ 2, then ext(n;T ) = |E (Tn,k−1)|+ o(n2).

(Erdős—Stone, Erdős—Simonovits)

(i) Let T be a forbidden subgraph with chromatic number k ≥ 3
(i.e. k − 1 — the number of parts of the corresponding — is
at least 2). Then ext(n;T ) = |E (Tn,k−1)|+ o(n2) (In this
case o(n2) is the remainder term in the formula).

(ii) Let T be a forbidden non-empty, bipartite graph,
i.e. χ(T ) = 2. Then ext(n;T ) = o(n2) (i.e. the formal
remainder term is the main term now).
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(i) Let T be a forbidden subgraph with chromatic number k ≥ 3
(i.e. k − 1 — the number of parts of the corresponding — is
at least 2). Then ext(n;T ) = |E (Tn,k−1)|+ o(n2) (In this
case o(n2) is the remainder term in the formula).

(ii) Let T be a forbidden non-empty, bipartite graph,
i.e. χ(T ) = 2. Then ext(n;T ) = o(n2) (i.e. the formal
remainder term is the main term now).

Peter Hajnal Extremal graph theory, SzTE, 2023



Turán’s theorem Extremal graph theory Trees Erdős—Stone—Simonovits Theorem Degenerate problems
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(i) Let T be a forbidden subgraph with chromatic number k ≥ 3
(i.e. k − 1 — the number of parts of the corresponding — is
at least 2). Then ext(n;T ) = |E (Tn,k−1)|+ o(n2) (In this
case o(n2) is the remainder term in the formula).

(ii) Let T be a forbidden non-empty, bipartite graph,
i.e. χ(T ) = 2. Then ext(n;T ) = o(n2) (i.e. the formal
remainder term is the main term now).

Peter Hajnal Extremal graph theory, SzTE, 2023



Turán’s theorem Extremal graph theory Trees Erdős—Stone—Simonovits Theorem Degenerate problems
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If T is such χ(T ) = k ≥ 2, then ext(n;T ) = |E (Tn,k−1)|+ o(n2).
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(i) Let T be a forbidden subgraph with chromatic number k ≥ 3
(i.e. k − 1 — the number of parts of the corresponding — is
at least 2). Then ext(n;T ) = |E (Tn,k−1)|+ o(n2) (In this
case o(n2) is the remainder term in the formula).

(ii) Let T be a forbidden non-empty, bipartite graph,
i.e. χ(T ) = 2. Then ext(n;T ) = o(n2) (i.e. the formal
remainder term is the main term now).

Peter Hajnal Extremal graph theory, SzTE, 2023



Turán’s theorem Extremal graph theory Trees Erdős—Stone—Simonovits Theorem Degenerate problems

A reformulation of the theorem

Let us given 2 ≥ k ∈ N. Let ε > 0 be an arbitrary small real
number. Let S an arbitrary natural number. Let G ∈ Gn be a
graph, with ”many” edges:

|E (Tn,k−1)|+ ε · n2 =
1

2

(
1− 1

k − 1

)
n2 + ε · n2.

In this case G contains KS ,S ,...,S = Kk×S , assuming that n is large
enough. KS ,S ,...,S = Kk×S is a complete k-partite graph, with parts
of size S .
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The proof: The first steps

Lemma

For G ∈ Gn |E (G )| ≥ δ
(n

2

)
(the average degrre is at least δ(n− 1)).

The G has a subgraph R, with all degrees at least δ(|V (R)| − 1).

Algorithm

// G -ről feltesszük, hogy átlag foka δ(|V (G )| − 1)

A := G
// A is the actual graph, initially it is G .

Until we find x ∈ V (A) such that dA(x) < δ(|V (A)| − 1)

A← A− x .

The Lemma is equivalent to the fact that the algorithm do not
delete all vertices.
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The proof: The first steps

Lemma

For G ∈ Gn |E (G )| ≥ δ
(n

2

)
(the average degrre is at least δ(n− 1)).

The G has a subgraph R, with all degrees at least δ(|V (R)| − 1).

Algorithm
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The proof of the Lemma

Assume that during the algorithm all vertices are deleted.

In the ith step we delete fewer than δ(n − i) edges.

During the process we delete fewer tham

δ(n − 1) + δ(n − 2) + . . .+ δ · 2 + δ · 1 = δ

(
n

2

)
edges. Contradiction, since the number of edges in G is δ

(n
2

)
.
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Extended Lemma

Extended Lemma

ε0 > 0 is a small real, and N is a big natural number. Let G be a
large enough graph (|V (G )| := n > ν(N, ε0)) with average degree
at least δ · (n − 1).

Then we have a subgraph R that satisfies

(δ − ε0)(|V (R)| − 1)

and |V (R)| ≥ N.
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Extended Lemma

Extended Lemma

ε0 > 0 is a small real, and N is a big natural number. Let G be a
large enough graph (|V (G )| := n > ν(N, ε0)) with average degree
at least δ · (n − 1).

Then we have a subgraph R that satisfies

(δ − ε0)(|V (R)| − 1)

and |V (R)| ≥ N.

Peter Hajnal Extremal graph theory, SzTE, 2023



Turán’s theorem Extremal graph theory Trees Erdős—Stone—Simonovits Theorem Degenerate problems

The proof of the Extended Lemma

Let A = G be the actual graph. Until we find a vertex x ∈ V (A)
that has degree less than (δ − ε0)|V (A)| delete x (A← A− {x}).

The goal is to prove that the process halts when we have more
than N vertices.

If this is not the case then the number of deleted edges and the
number of remainder edges is at most

(δ − ε0)(n − 1)+(δ − ε0)(n − 2) + . . .+ (δ − ε0)(N + 1) +

(
N

2

)
=(δ − ε0)

(
n

2

)
+ (1− δ + ε0)

(
N

2

)
.

The number of edges in G is at least δ
(n

2

)
.

If n is ”large”, then this is a contradiction.

Peter Hajnal Extremal graph theory, SzTE, 2023



Turán’s theorem Extremal graph theory Trees Erdős—Stone—Simonovits Theorem Degenerate problems

The proof of the Extended Lemma

Let A = G be the actual graph. Until we find a vertex x ∈ V (A)
that has degree less than (δ − ε0)|V (A)| delete x (A← A− {x}).

The goal is to prove that the process halts when we have more
than N vertices.

If this is not the case then the number of deleted edges and the
number of remainder edges is at most

(δ − ε0)(n − 1)+(δ − ε0)(n − 2) + . . .+ (δ − ε0)(N + 1) +

(
N

2

)
=(δ − ε0)

(
n

2

)
+ (1− δ + ε0)

(
N

2

)
.

The number of edges in G is at least δ
(n

2

)
.

If n is ”large”, then this is a contradiction.

Peter Hajnal Extremal graph theory, SzTE, 2023



Turán’s theorem Extremal graph theory Trees Erdős—Stone—Simonovits Theorem Degenerate problems
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The new Claim

The new Claim

Let ε > 0 be an arbitrary real. Let G ∈ Gn be a graph with
minimal degree at least(

1− 1

k
+
ε

2

)
(n − 1).

Them for any s ∈ N a large enough G contains K(k+1)×s subgraph.
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The new Claim

The new Claim

Let ε > 0 be an arbitrary real. Let G ∈ Gn be a graph with
minimal degree at least(

1− 1

k
+
ε

2

)
(n − 1).

Them for any s ∈ N a large enough G contains K(k+1)×s subgraph.

Peter Hajnal Extremal graph theory, SzTE, 2023



Turán’s theorem Extremal graph theory Trees Erdős—Stone—Simonovits Theorem Degenerate problems
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The proof of the new Claim

The proof is induction on k . We are going to find a sequence of
subgraphs. The scheme is

K1×s1 → K2×s2 → K3×s3 → . . .→ K(k−1)×sk−1
→ Kk×sk .

The final sk parameter is the vaule s in the Claim. The si values
will satisfy that si � si+1.

• The start of the induction is obvious: K1×s1 is an empty graph
on s1 verices and n is large enough.

• For the induction step we need to prove that for any s we can
find a large S = S(s), that in a large enough G satisfying the
assumption on the minimal degree if K`×S is a subgraph, then a
subgraph, K(`+1)×s is guaranteed too.
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Proof (continued)

Let F be the set of vertices, where we have the subgraph K`×S
(|F | = `S , F divided into ` disjoint subsets of size S , the parts of
F ).

The vertices of F = V (G )− F are classified as good (J is the set
of them) and bad (R is the set of them). Hence F = J∪̇R.

x ∈ J/x is good iff x has at least s neighbors on each part of F .
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Proof (continued)

If |J| > (s − 1)
(S
s

)`
, we are done: each good vertex has a type: s

(arbitrary) neighbors in all ` parts.(S
s

)`
is the number of possible types.

The size of J is so big that the pigeon hole principle guaratees that
we have at least s good vertices with the same type.

We take s good vertices with the same type. We also take the ` · s
vertices corresponding the common type. These (`+ 1)s vertices
span a K(`+1)×s subgraph.
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Proof: Missing edges between F and F I

We have a lower bound on each degree, specially in each vertex in
F is NOT connected to at most(

1

k
− ε

2

)
(n − 1)

other vertex.

So between F and F at most

|F | ·
(

1

k
− ε

2

)
(n − 1) = `S ·

(
1

k
− ε

2

)
(n − 1) ≤ S ·

(
1− ε`

2

)
n

edges are missing.
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Proof: Missing edges between F and F II

On the other hand each vertex in R has at most s

So every vertex in R is not connected to at least S − s vertices in
F . The number of missing edges is at least

|R|(S − s) = (n − |F | − |J|)(S − s) = (n − `S − |J|)(S − s).
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Proof: Missing edges between F and F I+II

(n − `S − |J|)(S − s) ≤ S ·
(

1− ε`

2

)
n.

After rearrangement

(n − `S)(S − s)− S ·
(

1− ε`

2

)
n ≤ (S − s)|J|.

Hence (ε
2
`S − s

)
n − `S(S − s) ≤ (S − s)|J|,

ε`S − 2s

2(S − s)
· n − `S ≤ |J|.
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Proof: The end

We are given ε, `, s and we got to choose the value S .

With the choice of S we can achieve that the coefficient of n in
the lower bound on |J| is positive.

After this for large enough n we have many good vertices.

This guarantees the induction step.
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Break
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What do we know and what don’t?

First, if the forbidden subgraph T is bipartite and contains a cycle
then we do not know too much.

Based on the quoted results, in all other cases we know the exact
order of magnitude of ext(n;T ).

If T is a bipartite graph with cycle, then considering ext(n;T ) is
called the degenerated case.

The degenerated case we have only a few exact results. We the
know the exact the order of magnitude of ext(n;T ), when T is C4,
C6, C10 or K2,k , K3,k .

For example the case of C8, C12, C14, . . ., K4,4, K4,5, . . ., or the
cube graph (the order of magnitude of ext(n;T )) is not known.
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The forbidden C4

Determining the order of magnitude of ext(n;C4) consists of two
parts.

We need to prove a mathematical statement: If G ∈ Gn is C4-free
graph them it cannot have too many edges.

On the other hand, we need to construct one G ∈ Gn that is
C4-free, and has many edges.
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The mathematical theorem

Theorem

Let G ∈ Gn be a C4-free graph. Them

|E (G )| ≤ 1

4
· n
√

4n − 3 +
1

4
· n.
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The construction

The construction is involved. It requires basic knowledge of finite
fields and finite geometries. We do not discuss.

We just mention one important property for us: |E | ∼ 1
2n

3/2.
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The summary of the results

Theorem

ext(n,C4) ∼ 1

2
n

3
2 .
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This is the end!

Thank you for your attention!

Peter Hajnal Extremal graph theory, SzTE, 2023
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