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Introduction

So far we considered the notion of planar graph.

A graph is planar or non-planar.

Crossing number is a parameter that measure how ”far” is a grph
G from planarity.

The crsooing number will be a non-negative integer that is 0 iff
our graph is planar.

Peter Hajnal Crossing number, SzTE, 2023



The basics The crossing Lemma Geometry: The theorem of Szemerédi, Trotter Arithmetic: Additive combinatorics
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Regular drawing

Definition

Let G be a graph, and λ is one of its drawing. We say that λ is
regular if there are no three different edge-curves with common
inner point.

Regularity is a technical assumption. Any graph has a regular
drawing. Any drawing can be made regular by a few local
deformation.
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A Definition

Definition: Crossing number of a drawing

Let G be a graph, and λ be a regular drawing of it.

x(G , λ) = |{P ∈ R2−λ(V ) : P is on more than one edge-curve}|.

An alternative definition can be: Consider an arbitrary drawing.
We count points P, that are an inner point of k edge-curves with
multiplicity

(k
2

)
.
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Examples

Several drawings of G = K5, and their crossing number: x(K5, λ) = 5,
x(K5, λ

′) = 4, x(K5, λ
′′′) = 3, x(K5, λ

′′′′) = 1.
Peter Hajnal Crossing number, SzTE, 2023
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Example

Le G be Kn, the complete graph on n vertices. Let λ be the
drawing where the vertex-points are placed in the vertices og a
convex n-gon, and the edges are straight segments. Then
x(Kn, λ) =

(n
4

)
. Indeed,there is a bijection between the crossings

and the 4-tuples of vertices.

The case of K6.

Peter Hajnal Crossing number, SzTE, 2023
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Example

Le G be Kn, the complete graph on n vertices. Let λ be the
drawing where the vertex-points are placed in the vertices og a
convex n-gon, and the edges are straight segments. Then
x(Kn, λ) =

(n
4

)
. Indeed,

there is a bijection between the crossings
and the 4-tuples of vertices.

The case of K6.

Peter Hajnal Crossing number, SzTE, 2023



The basics The crossing Lemma Geometry: The theorem of Szemerédi, Trotter Arithmetic: Additive combinatorics
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Example (continued)

Notation

If R ⊆ G , then any drawing λ of G can be restricted to R: λ|R .

Observartion

Let H be an arbitrary simple graph on n vertices, i.e. H ⊆ Kn.
Then x(H, λ|H) ≤

(n
4

)
= O(n4), where λ is the drawing of the

complete graph, we desribed above.
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Observation: Loops don’t count

Let G be a graph. We obtain G0 from G by deleting the loops of
G . We can think the other way around: we obtain G from G0 by
adding loops.

Observation

Any drawing λ of G0 can be extended to a λ̂ drawing of G , such a
way that the crossing number is not changed: x(G , λ̂) = x(G0, λ).

Consider the drawing of G0 around a vertex x . In a small enough
neighborhood, the edge-curves meeting at x form a star shape.
Between the branches there is

”
enough space” for the nice drawing

of arbitrary number of loops.

Peter Hajnal Crossing number, SzTE, 2023
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Loops don’t count: On figure
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Parallel edges count

Let G be a loopless graph. We obtain a simple graph G0 from G
by keeping one edge between two connected vertices and delete the
possible parallel edges to it. We can think the other way around:
we obtain G from G0 by adding parallel edges to an existing edge.

Observation

Given a nice drawing λ of G0. We can extend it to λ̂, a nice
drawing of G , i.e if x(G0, λ) = 0 then x(G , λ̂) = 0.

A

B

C

D

E
F

A

B

C

D

E
F
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The Definition

Definition: Crossing number of a graph

x(G ) = min{x(G , λ) : λ is regular}.

Observation

x(G ) = 0 iff G is planar.

Exercise

x(K5) = x(K3,3) = 1.

For any simple graph G on n vertices x(G ) = O(n4).
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Historical remarks

The concept was born in the 1940s, when Pál Turán was working
as a forced labor serviceman in a brick factory.

His job was to push mine cars between kilns and railway wagons.
The kilns and the loading bays were connected by rails for the
mine cars.

The hardest part of the job was to push the wagon when two rails
met, when the wagons were jerked.

It was a natural question: Design a rail system that includes n kilns
and m loading bays, and and has a minimum number of cross
overs.

That is, the question is to find the value of x(Kn,m). Later the
question to determine the value of x(Kn) was raised too.

Although in both cases, the optimal drawings are conjectured, the
conjecture is still a central open question.

Peter Hajnal Crossing number, SzTE, 2023
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Historical remarks

The concept was born in the 1940s, when Pál Turán was working
as a forced labor serviceman in a brick factory.

His job was to push mine cars between kilns and railway wagons.
The kilns and the loading bays were connected by rails for the
mine cars.

The hardest part of the job was to push the wagon when two rails
met, when the wagons were jerked.

It was a natural question: Design a rail system that includes n kilns
and m loading bays, and and has a minimum number of cross
overs.

That is, the question is to find the value of x(Kn,m). Later the
question to determine the value of x(Kn) was raised too.

Although in both cases, the optimal drawings are conjectured, the
conjecture is still a central open question.

Peter Hajnal Crossing number, SzTE, 2023



The basics The crossing Lemma Geometry: The theorem of Szemerédi, Trotter Arithmetic: Additive combinatorics

An inportant remark

Assume that e and f are two edges, with common endvertex v . If
the two edge-curves cross each other then the drawing is not
optimal.

Indeed, from the neighbors of v we approach v . As soon as two
edge-curves meet we redraw/switch, we avoid the crossing.

We obtain a drawing of the same graph. Meanwhile, the crossing
number cannot increase.
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The remark on a figure

Definition

A drawing λ is V -nice iff any two edge-curves that share a
common end vertex-point do not cross each other.

Observation

For any drawing λ of a graph G one can find a V -nice drawing λ′,
that x(G , λ′) ≤ x(G , λ).
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An easy bound on the crossing number

Reminder

Let G be a simple planar graphs. If |V | ≥ 3, then |E | ≤ 3|V | − 6.

Corollary

Let G be a simple graph and λ is its regular drawing. Then

x(G , λ) ≥ |E | − 3|V |.
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Proof of the easy bound

Let R be a subgraph of G , that V (G ) = V (R) and E (R) a
maximal edge set with the property that λ|R is nice.

We know that |E (R)| ≤ 3|V |.

Hence we have at least |E (G )| − 3|V | edges outside R.

For each e ∈ E (G )− E (R) the edge-curve λE (e) crosses ate least
one edge-curve of (R, λ|R).

We obtain, that
x(G , λ) ≥ |E (G )| − 3|V |.
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Proof of the easy bound

Let R be a subgraph of G , that V (G ) = V (R) and E (R) a
maximal edge set with the property that λ|R is nice.

We know that |E (R)| ≤ 3|V |.

Hence we have at least |E (G )| − 3|V | edges outside R.

For each e ∈ E (G )− E (R) the edge-curve λE (e) crosses ate least
one edge-curve of (R, λ|R).

We obtain, that
x(G , λ) ≥ |E (G )| − 3|V |.

Peter Hajnal Crossing number, SzTE, 2023



The basics The crossing Lemma Geometry: The theorem of Szemerédi, Trotter Arithmetic: Additive combinatorics
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The Crossing Lemma

Theorem (Crossing Lemma)

If G is a simple graph and |E | ≥ 4|V |, then

x(G ) ≥ 1

64

|E |3

|V |2
.

The bound |E | ≥ 4|V | guarantees that G is not planar,
i.e. x(G ) ≥ 1.
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First, a Corollary

Corollary

x(Kn) ≥ 1

64

(n
2

)3

n2
=

1

128
n4 + O(n3) = Ω(n4).

Corollary

x(Kn) = Θ(n4).
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The proof the Crossing Lemma I

Let λ be a V -nice drawing of G .

Let R be a random plane subgraph, that we obtain by the
following random process: for each vertex (independently) we leave
it untouched with property p, and delete it with probability 1− p.
The suitable p will be determined later.

We apply the easy bound on R:

x(R, λ|R) ≥ |E (R)| − 3|V (R)|.

The inequality holds for expected values too:

E(x(R, λ|R)) ≥ E(|E (R)|)− 3E(|V (R)|).
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The proof the Crossing Lemma II

The probability that a vertex survives the random process is p. The
probability that an edge survives our process is p2. The probability
that two intersecting edges survive the thinning process is p4.

From this:
p4x(G , λ) ≥ p2|E (G )| − 3p|V (G )|.

p will be positive, so we can divide the inequality by p4:

x(G , λ) ≥ |E (G )|
p2

− 3|V (G )|
p3

.
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The proof the Crossing Lemma III

Let p = 4|V |
|E | .

x(G , λ) ≥ 1

16

|E |3

|V |2
− 3

64

|E |3

|V |2
=

1

64

|E |3

|V |2
.

The claim is proven.
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Final remarks

The coefficient 1
64 is a byproduct of the proof.

With more attention it can be improved, but the optimal value is
not known.
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A geometric theorem

Definition

Let P ⊆ R2 a finite planar point set and E a finite set of lines on
the plane.

I (P, E) = |{(P, e) : P ∈ P, e ∈ E and P I e}|,

P I e denotes, that the point P is incident to the line e.

Theorem (Szemerédi—Trotter’s theorem)

I (P, E) ≤ 4(|P||E|)2/3 + 4|P|+ |E|.
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Theorem (Szemerédi—Trotter’s theorem)

I (P, E) ≤ 4(|P||E|)2/3 + 4|P|+ |E|.

Peter Hajnal Crossing number, SzTE, 2023



The basics The crossing Lemma Geometry: The theorem of Szemerédi, Trotter Arithmetic: Additive combinatorics
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The magnitude of the upper bound

O(|P|2/3|E|2/3 + |P|+ |E|) = O(max{|P|2/3|E|2/3, |P|, |E|}).

Note that for arbitrary p and e positive integers one can give a set
of points P of size p and a set of lines E of size e such that
number of incidences between them is at least a thousandth of the
upper estimate.

That is, the magnitude of the upper estimate is optimal.
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The proof I

We can assume that any line e ∈ E is incident to at least one point
in P.

We construct a simple graph from P and E : P forms the vertex
set. Two vertices, P,Q ∈ P are connected iff there is a line e ∈ E
that contains both and on e there are no other elements of P
between P and Q.
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The proof II

|V | = |P|.

For any k ≥ 1 if a line contains k points from P, then the
contribution of this line to the edge set is k − 1.

The total number of edges is the sum of these contributions,
i.e. |E | = I (P, E)− |E|.

Let λ be the drawing of our graph where the vertex-points are
defined by P. The edge-curves are the suitable segments of the
corresponding line from E .

From geometry it is obvious that x(G ) ≤ x(G , λ) ≤
(|E|

2

)
≤ |E|2.
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From geometry it is obvious that x(G ) ≤ x(G , λ) ≤
(|E|

2

)
≤ |E|2.
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The proof III

1st Case: |E | < 4|V |. I (P, E)− |E| < 4|P|.

2nd C:ase |E | ≥ 4|V |. Then the Crossing Lemma is applicable:

|E|2 ≥
(
|E|
2

)
≥ x(G , p) ≥ 1

64

(I (P, E)− |E|)3

|P|2
.

After rearrengment we obtain

4|P|2/3|E|2/3 ≥ I (P, E)− |E|.

In both cases the theorem is proven.
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Basic problems

Definition

Let A,B ⊂ R be finite set of numbers.
A + B = {a + b : a ∈ A és b ∈ B} and
A · B = {a · b : a ∈ A és b ∈ B}.

A + A-t, resp, A · A are called the sum-set, resp. product-set of A.

Question: How big and how small can be |A + A| and |A · A|,
assuming |A| = n?
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The basics The crossing Lemma Geometry: The theorem of Szemerédi, Trotter Arithmetic: Additive combinatorics

Basic observations: Sum-set

|A + A| ≤
(n

2

)
+ n.

If A is a random set of nimbers of size n then the size of A + A is(n
2

)
+ n almost surely.

We will give a lower bound on |A + A|. We can assume that the
elements A are a1 < a2 < . . . < an.

• Using
a1 + a1 < a1 + a2 < . . . < a1 + an < a2 + an < . . . < an + an
we have at least 2n − 1 different values in A + A.

• If A contains n consequtive elements of an arithmetic
progression, then |A + A| = 2n − 1.
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+ n.

If A is a random set of numbers of size n then the size of A · A is(n
2

)
+ n almost surely.

If A contains n consequtive elements of an geometric progression,
then |A · A| = 2n − 1.

Easy to give a linear lower bound on |A · A|.
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The basics The crossing Lemma Geometry: The theorem of Szemerédi, Trotter Arithmetic: Additive combinatorics

The fundamental question

In the case of minimization the structure of the extreme sets are
completely different (arithmetic and geometric sequences).

Is there a set where the sum set and the multiplication set will be
small at the same time?

Question by Pál Erdős: What can we say about
max{|A + A|, |A · A|} for n elements number-sets?

Conjecture (Erdős—Szemeredi)

For every positive ε

min
A⊆R,|A|=n

max{|A + A|, |A · A|} = Ω(n2−ε).

The conjecture is still open today.
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Question by Pál Erdős: What can we say about
max{|A + A|, |A · A|} for n elements number-sets?

Conjecture (Erdős—Szemeredi)
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Theorem of György Elekes

Theorem (György Elekes)

For large enough n

min
A⊆R,|A|=n

max{|A + A|, |A · A|} ≥ 1

10
n5/4,

i.e. for any n element set of numbers A we have
max{|A + A|, |A · A|} = Ω(n5/4).
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Elekes’ proof I

Assume that 0 /∈ A.

We define a planar point set and a set of lines on the plane:

PA = {(π, σ) : π ∈ A · A, σ ∈ A + A},

EA = {ea,a′ : y =
1

a
· x + a′, a, a′ ∈ A}.
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Elekes’ proof I

Assume that 0 /∈ A.

We define a planar point set and a set of lines on the plane:

PA = {(π, σ) : π ∈ A · A, σ ∈ A + A},

EA = {ea,a′ : y =
1

a
· x + a′, a, a′ ∈ A}.

Peter Hajnal Crossing number, SzTE, 2023



The basics The crossing Lemma Geometry: The theorem of Szemerédi, Trotter Arithmetic: Additive combinatorics
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Elekes’ proof II

The points and lines in the case of A = {1, 2, 3, 6}
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Elekes’ proof III

The parameters of Szemerédi, Trotter’s theorem can be easily
bounded:

• |PA| = |A · A| · |A + A|.
• The equation of the line ea,a′ is 1

a · y −
1

a·a′ · x = 1. It can be
seen that the intersections with the axes and (a, a′) determine
each other. Hence |EA| = |A|2.
• The line ea,a′ contains (a · a1, a1 + a′), (a · a2, a2 + a′), . . .,

where A = {a1, a2, . . .}. We obtain that
I (PA, EA) ≥ |A||EA| = |A|3.
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Elekes’ proof III
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Elekes’ proof III
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Elekes’ proof IV

We use the Szemerédi—Trotter Theorem:

n3 = |A|3 ≤ I (P, E) ≤ 4|A·A|2/3·|A+A|2/3·(|A|2)2/3+4|A·A||A+A|+|A|2.

We know that |A|2 = n2 ≤ 1
3n

3, if n large enough. We can assume
that 4|A + A||A · A| ≤ 1

3n
3, otherwise we obtain a stronger

conclusion than the one stated.

The last two terms of the right hand side can be rearranged to the
left hand side. There we still have at least 1/3 · n3:

1

3
n3 ≤ 4|A · A|2/3|A + A|2/3 · n4/3.
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This is the end!

Thank you for your attention!

Peter Hajnal Crossing number, SzTE, 2023
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