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The 4-color-conjecture

Coloring problems in graph theory are closely related applications.

The beginning of their research started with puzzle in the XIXth
century.

The puzzle was the so called 4-color problem.

Today it is a theorem: 4-color-theorem, or simply 4CT.
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Drawing graphs

ρ is a drawing of a graph G , iff ρ = (ρV , ρE ), where:

(i) ρV : V (G )→ R2 is a 1-1 map, i.e. we assign a geometrical

point to each node of our graph (different points to different
vertices). // We will refer to the points assigned to a vertex

as vertex-points.

(ii) ρE : E (G )→ J , where J is the set of continuous,
non-selfintersecting plane curves. We assume that for an edge

e = xy the curve ρE (e) connects ρV (x) and ρV (y) and it
doesn’t contain any other vertex-point. // We will refer to

the curves assigned to an edge as edge-curves.

(+) We assume that any two different edge-curves have finitely
many common points. These are common endpoints or points
where the two edge-curves transversally meet.

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



Drawing graphs

ρ is a drawing of a graph G , iff ρ = (ρV , ρE ), where:

(i) ρV : V (G )→ R2 is a 1-1 map, i.e. we assign a geometrical

point to each node of our graph (different points to different
vertices). // We will refer to the points assigned to a vertex

as vertex-points.

(ii) ρE : E (G )→ J , where J is the set of continuous,
non-selfintersecting plane curves. We assume that for an edge

e = xy the curve ρE (e) connects ρV (x) and ρV (y) and it
doesn’t contain any other vertex-point. // We will refer to

the curves assigned to an edge as edge-curves.

(+) We assume that any two different edge-curves have finitely
many common points. These are common endpoints or points
where the two edge-curves transversally meet.

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



Drawing graphs

ρ is a drawing of a graph G , iff ρ = (ρV , ρE ), where:

(i) ρV : V (G )→ R2 is a 1-1 map,

i.e. we assign a geometrical

point to each node of our graph (different points to different
vertices). // We will refer to the points assigned to a vertex

as vertex-points.

(ii) ρE : E (G )→ J , where J is the set of continuous,
non-selfintersecting plane curves. We assume that for an edge

e = xy the curve ρE (e) connects ρV (x) and ρV (y) and it
doesn’t contain any other vertex-point. // We will refer to

the curves assigned to an edge as edge-curves.

(+) We assume that any two different edge-curves have finitely
many common points. These are common endpoints or points
where the two edge-curves transversally meet.

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



Drawing graphs

ρ is a drawing of a graph G , iff ρ = (ρV , ρE ), where:

(i) ρV : V (G )→ R2 is a 1-1 map, i.e. we assign a geometrical

point to each node of our graph (different points to different
vertices).

// We will refer to the points assigned to a vertex

as vertex-points.

(ii) ρE : E (G )→ J , where J is the set of continuous,
non-selfintersecting plane curves. We assume that for an edge

e = xy the curve ρE (e) connects ρV (x) and ρV (y) and it
doesn’t contain any other vertex-point. // We will refer to

the curves assigned to an edge as edge-curves.

(+) We assume that any two different edge-curves have finitely
many common points. These are common endpoints or points
where the two edge-curves transversally meet.

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



Drawing graphs

ρ is a drawing of a graph G , iff ρ = (ρV , ρE ), where:

(i) ρV : V (G )→ R2 is a 1-1 map, i.e. we assign a geometrical

point to each node of our graph (different points to different
vertices). // We will refer to the points assigned to a vertex

as vertex-points.

(ii) ρE : E (G )→ J , where J is the set of continuous,
non-selfintersecting plane curves. We assume that for an edge

e = xy the curve ρE (e) connects ρV (x) and ρV (y) and it
doesn’t contain any other vertex-point. // We will refer to

the curves assigned to an edge as edge-curves.

(+) We assume that any two different edge-curves have finitely
many common points. These are common endpoints or points
where the two edge-curves transversally meet.

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



Drawing graphs

ρ is a drawing of a graph G , iff ρ = (ρV , ρE ), where:

(i) ρV : V (G )→ R2 is a 1-1 map, i.e. we assign a geometrical

point to each node of our graph (different points to different
vertices). // We will refer to the points assigned to a vertex

as vertex-points.

(ii) ρE : E (G )→ J , where J is the set of continuous,
non-selfintersecting plane curves.

We assume that for an edge

e = xy the curve ρE (e) connects ρV (x) and ρV (y) and it
doesn’t contain any other vertex-point. // We will refer to

the curves assigned to an edge as edge-curves.

(+) We assume that any two different edge-curves have finitely
many common points. These are common endpoints or points
where the two edge-curves transversally meet.

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



Drawing graphs

ρ is a drawing of a graph G , iff ρ = (ρV , ρE ), where:

(i) ρV : V (G )→ R2 is a 1-1 map, i.e. we assign a geometrical

point to each node of our graph (different points to different
vertices). // We will refer to the points assigned to a vertex

as vertex-points.

(ii) ρE : E (G )→ J , where J is the set of continuous,
non-selfintersecting plane curves. We assume that for an edge

e = xy the curve ρE (e) connects ρV (x) and ρV (y) and it
doesn’t contain any other vertex-point.

// We will refer to

the curves assigned to an edge as edge-curves.

(+) We assume that any two different edge-curves have finitely
many common points. These are common endpoints or points
where the two edge-curves transversally meet.

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



Drawing graphs

ρ is a drawing of a graph G , iff ρ = (ρV , ρE ), where:

(i) ρV : V (G )→ R2 is a 1-1 map, i.e. we assign a geometrical

point to each node of our graph (different points to different
vertices). // We will refer to the points assigned to a vertex

as vertex-points.

(ii) ρE : E (G )→ J , where J is the set of continuous,
non-selfintersecting plane curves. We assume that for an edge

e = xy the curve ρE (e) connects ρV (x) and ρV (y) and it
doesn’t contain any other vertex-point. // We will refer to

the curves assigned to an edge as edge-curves.

(+) We assume that any two different edge-curves have finitely
many common points. These are common endpoints or points
where the two edge-curves transversally meet.

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



Drawing graphs

ρ is a drawing of a graph G , iff ρ = (ρV , ρE ), where:

(i) ρV : V (G )→ R2 is a 1-1 map, i.e. we assign a geometrical

point to each node of our graph (different points to different
vertices). // We will refer to the points assigned to a vertex

as vertex-points.

(ii) ρE : E (G )→ J , where J is the set of continuous,
non-selfintersecting plane curves. We assume that for an edge

e = xy the curve ρE (e) connects ρV (x) and ρV (y) and it
doesn’t contain any other vertex-point. // We will refer to

the curves assigned to an edge as edge-curves.

(+) We assume that any two different edge-curves have finitely
many common points. These are common endpoints or points
where the two edge-curves transversally meet.

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



Plane graphs

Refreshing memory

A drawing is nice iff two different edge-curves can share only
common endpoint.

A graph is planar graph iff it has a nice drawing.

There are graphs, that are not planar.

Definition: Plane graphs

A plane graph is a pair (G , ρ), where G is a graph and ρ is a nice
drawing it.
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Faces

A nice drawing od a graph divide the plane into regions.

Definition: Faces of a nice drawing

We introduce a relation on the set of the point on the plane, that
are not covered by edge-curves: P ∼ Q, there is continuous curve
connecting P and Q and not meeting any edge-curve.

This is an equivalence relation. Its equivalence classes are planar
point-sets, the faces of the drawing.

Theorem

Let G be a cycle-free graph and a nice drawing λ of it. In this case
there is only one face
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Example/A fundamental theorem: Cn

Theorem

Let Cn be the cycle-graph on n vertices (|E | = n) and its nice
drawing λ. Then we have exactly two faces: a bounded (≡ inside)
and a non-bounded (≡ outside). Furthermore the drawing
topologically unique.

The second claim is the so called Jordan—Schönflies theorem. It is
a very complicated statement.

Without uniqueness the claim is the famous Jordan curve theorem.

We accept this Theorem, we don’t prove it.
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Example

On the left hand side the two drawings of the same tree are different
(why?). On the right hand side we see two topologically equivalent
drawings of the same cycle.
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Boundary of a face

Definition: Bounding edge of a face

An edge is a bounding edge of a face iff any neighborhood of an
inner point of it intersects the face.

Think about a drawing as an overview of system of fences. Think
ourselves as living in one of the faces. Put one of our hands on the
fence and start walking like that. We will return to our starting
point, our walk (edges we touched) will be closed. It is possible
that we didn’t walk through a bounding edge. Then we take an
edge not crossed so far and define a closed walk as before. We
proced as far as all bounding edges are included in the boundary.

Definition: Boundary of a face

The boundary of a face is the set of walks, we described above.
The length of a boundary is the sum of the length of the walks,
contained in the boundary.
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Observations

Assume that our graph doesn’t have an isolated node.
Observation

If G is not connected, then it has a face with more than 1 walk in
the boundary.
Moreover, if G is connected then the boundary of each face is a
single walk.

Observation

If G is connected and e is a cut-edge, then the boundary of e is a
walk that traverses this edge twice.
Moreover, if G is connected and it has no cut-edge, then the
boundary of each face is a single tour (no edge is repeated).

Observation

If G is connected and v is a cut-vertex, then it has a face, that its
boundary travereses v more than once.
Moreover if G is connected and it has no cut-vertex, then the
boundary of each face is a cycle.
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Examples

The figure shows four drawings, each contains an emphasized yellow face.
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Plane graphs: Dualization

Let (G , λ) be a connected plane graphs.

In each face in the ”middle” we mark a special point, the ”capital
of the face”.

For each edge-curce in the ”middle” of it we mark a special point,
a ”border crossing”.

At each border crossing we put two persons standing back to back
each other and facing different sides of the edge-curve.

Each person ”builds” a path/half-edge from its position to the
capital of the face he/she is seeing. Easy to see that this is
possible to do such a way that the half-edges are disjoint.

Definition

Let (G ∗, λ∗) be the plane graph we obtain after merging the two
half-edges meeting at each border crossing to an edge-curve.
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Example

On the figure we see purple star that match the edges of the original
graph and the edges of the dual graph.
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Loops, cut-edges, duality

Let τ be a face of (G , λ), and τ∗ the corresponding vertex in G ∗.
The bounding edges of τ have corresponding edges in G ∗. They
are exactly the edges incident to τ∗.

A cut-edge e in the original graph corresponds to a loop e∗ in the
dual graph.

A loop e∗ in the dual graph adds 2 to the degree of the
correspoonding dual vertex τ∗. The original edge e add 2 to the
length of the boundary of τ .

The length of the boundary of face τ is the same as the degree of
the dual vertex τ∗.
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Dictionary between G and G ∗

ORIGINAL DUAL

G plane graph G ∗ plane graph

faces vertices

edges edges

two faces with common bordering
edge

two adjacent vertices

face coloring vertex coloring

proper face coloring (for any edge
the two faces on the two sides of it
get different colors)

proper vertex coloring

condition for proper face coloring:
no edge

condition for proper vertex coloring:
no loop
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Dictionary between G and G ∗

ORIGINAL DUAL

vertices faces

set of edges, that adjacent to a ver-
tex

edges bounding a face

degree length of the boundary

4-color-theorem (4CT ): Faces of
any 2-edge-connectred plane graph
can be legally colored with 4 colors

4-color-theorem (4CT ): Any
looples planar graph can be legally
vertex colored with 4 colors

We can assume: G 3-regular We can assume: Each face is a tri-
angle
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4-color-theorem: Classical form

Definition

A map is a graph G , that is nicely drawn on the plane, furthermore
it doesn’t have a cut-edge (i.e. 2-edge-connected).

4CT: face coloring version

Every map has a proper face coloring with 4 colors.

The following special case is equivalent to the ”full version”:

4CT: face coloring version, 3-regular case

Let (G , λ) be a map, where G is 3-regular. G has a proper face
coloring with 4 colors.
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4-color-theorem: Graph theoretical form

4CT: vertex coloring version

Any planar, looples graph has a proper vertex coloring with 4
colors, i.e. χ(G ) ≤ 4.

The following special case is equivalent to the ”full version”:

4CT: triangulated vertex coloring version

Let (G , λ) be a loopless graph with a nice drawing If each face is a
triangle, then χ(G ) ≤ 4.
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4-color-theorem: Final observations

Observation

If G is a 3-regular, looples graph, then we can find a proper
4-coloring using greedy algorithm.

Observation

We can find a proper 4-coloring of the faces of triangulated map.
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4CT as an edge coloring problem

Theorem

The following two claims are equivalent:

(i) For any G , a 3-regular, 2-edge-connected planar graph
χe(G ) = 3.

(ii) 4CT.
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Edge coloring theorem ⇒ 4CT

It is enough to prove 4CT for a 3-regular, 2-edge-connected planar
graph G .

We assume that the edge set of G is a disjoint union of
M1,M2,M3, three perfect matchings.

Let M1 + M2 be the spanning subgraph of G with edge set
M1 ∪M2.

M1 + M2 is a 2-regular graph, i.e. its components are cycles, nicely
drawn on the plane.

It is easy to see that the faces of M1 + M2 can be legally colored
with two colors (red/blue).

We can do the same for M1 + M3. The two colors can be chosen
as dark/light.
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Proof by picture

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



The end of the proof

The two colorings above give two coloring of the same plane.

We can consider that as coloring with 4 colors: dark rad, light red,
dark blue, light blue.

This is a legal face coloring of the given plane graph.
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4CT ⇒ edge coloring theorem

Let G be a 3-regular, 2-edge-connected planar graph G . We
assume that faces is legally colored with 4 colors (1, 2, 3, 4).

Let

M1 := {e ∈ E (G )| e on the two sides we see colors 1, 2 or 3, 4},

M2 := {e ∈ E (G )| e on the two sides we see colors 1, 3 or 2, 4},

M3 := {e ∈ E (G )| e on the two sides we see colors 1, 4 or 2, 3}.
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assume that faces is legally colored with 4 colors (1, 2, 3, 4).

Let

M1 := {e ∈ E (G )| e on the two sides we see colors 1, 2 or 3, 4},

M2 := {e ∈ E (G )| e on the two sides we see colors 1, 3 or 2, 4},
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Proof by picture
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The end of the proof

We claim that M1,M2,M3 are three perfect matchings.

First, they are disjoint.

Second, we claim that M1,M2,M3 are matchings:

Finally M1 ∪M2 ∪M3 = E (G ).
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The edge coloring version of 4CT

The proven theorem is a result of XIXth century mathematics

The XXth century created computers and led to the proof of 4CT.

Theorem

If G is a 3-regular 2-edge-connected planar graph, then

χe(G ) = 3.
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The Petersen graph

In the new version of 4CT the assumption that G is a planar graph
is a crucial condition.

If we do not assume planarity then there are counterexamples. The
simplest one is given by Petersen

The Petersen graph is 3-regular, 2-edge-connected, non-planar,
and E (G ) cannot be covered by three matchings.

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



The Petersen graph

In the new version of 4CT the assumption that G is a planar graph
is a crucial condition.

If we do not assume planarity then there are counterexamples. The
simplest one is given by Petersen

The Petersen graph is 3-regular, 2-edge-connected, non-planar,
and E (G ) cannot be covered by three matchings.

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



The Petersen graph

In the new version of 4CT the assumption that G is a planar graph
is a crucial condition.

If we do not assume planarity then there are counterexamples. The
simplest one is given by Petersen

The Petersen graph is 3-regular, 2-edge-connected, non-planar,
and E (G ) cannot be covered by three matchings.

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



The Petersen graph

In the new version of 4CT the assumption that G is a planar graph
is a crucial condition.

If we do not assume planarity then there are counterexamples. The
simplest one is given by Petersen

The Petersen graph is 3-regular, 2-edge-connected, non-planar,
and E (G ) cannot be covered by three matchings.

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



The Petersen graph

In the new version of 4CT the assumption that G is a planar graph
is a crucial condition.

If we do not assume planarity then there are counterexamples. The
simplest one is given by Petersen

The Petersen graph is 3-regular, 2-edge-connected, non-planar,
and E (G ) cannot be covered by three matchings.

Peter Hajnal Face coloring of plane graphs, University of Szeged, 2023



This is the end!

Thank you for your attention!
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