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The problem

The problem

Given G simple bipartite graph, |L| = |U| = n.

Is there a perfect matching in G?

The assumption of the bipartite property is not necessary, but it
makes our life easier.
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Coding with matrices

Definition

Let G be a simple graph.

The adjacency matrix of G , denoted as AG , is a matrix with rows
and columns identified with vertices, furthermore

(AG )uv =

{
1, u and v are adjacent,

0, u and v are not adjacent,

Definition

Let G be a bipartite graph with color classes L∪̇U.

The bipartite adjacency matrix of G is a matrix BG ∈ RL×U :

(BG )`,u =

{
1, ` and u are adjacent,

0, ` and u are not adjacent,
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The relation of matrices

In a bipartite graph there is no adjacency between lower vertices,
and no adjacency between upper vertices.

In AG this property means a big block of 0’s.

AG =

(
0 BG

BT
G 0

)
BG is a condensed version of the adjacency matrix.
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The simple bipartite graph G and BG

The BG matrix is a code of the simple bipartite graph G . There is
a dictionary between the linear algebraic language and graph
theoretical language.

possible edges of G ≡ positions of BG = A× F

E (G ) ≡ the 1’s of BG

|A| = |F | ≡ BG is a square matrix

M is a matching ≡ 1’s s.t. there is maximum one 1

in each row and column

M is a perfect matching ≡ n 1’s s.t. there is exactly one 1

in each row and column

≡ n 1’s s.t. their product is a

term of the determinant

Peter Hajnal Matchings and algebra, University of Szeged, 2023



A randomized method Linear programming method

The simple bipartite graph G and BG

The BG matrix is a code of the simple bipartite graph G .

There is
a dictionary between the linear algebraic language and graph
theoretical language.

possible edges of G ≡ positions of BG = A× F

E (G ) ≡ the 1’s of BG

|A| = |F | ≡ BG is a square matrix

M is a matching ≡ 1’s s.t. there is maximum one 1

in each row and column

M is a perfect matching ≡ n 1’s s.t. there is exactly one 1

in each row and column

≡ n 1’s s.t. their product is a

term of the determinant

Peter Hajnal Matchings and algebra, University of Szeged, 2023



A randomized method Linear programming method

The simple bipartite graph G and BG

The BG matrix is a code of the simple bipartite graph G . There is
a dictionary between the linear algebraic language and graph
theoretical language.

possible edges of G ≡ positions of BG = A× F

E (G ) ≡ the 1’s of BG

|A| = |F | ≡ BG is a square matrix

M is a matching ≡ 1’s s.t. there is maximum one 1

in each row and column

M is a perfect matching ≡ n 1’s s.t. there is exactly one 1

in each row and column

≡ n 1’s s.t. their product is a

term of the determinant

Peter Hajnal Matchings and algebra, University of Szeged, 2023



A randomized method Linear programming method

The simple bipartite graph G and BG

The BG matrix is a code of the simple bipartite graph G . There is
a dictionary between the linear algebraic language and graph
theoretical language.

possible edges of G ≡ positions of BG = A× F

E (G ) ≡ the 1’s of BG

|A| = |F | ≡ BG is a square matrix

M is a matching ≡ 1’s s.t. there is maximum one 1

in each row and column

M is a perfect matching ≡ n 1’s s.t. there is exactly one 1

in each row and column

≡ n 1’s s.t. their product is a

term of the determinant

Peter Hajnal Matchings and algebra, University of Szeged, 2023



A randomized method Linear programming method

The determinant

Reminder

detM =
∑
π∈Sn

sign(π)
n∏

i=1

Miπ(i).

Corollary

If detBG 6= 0 then the above expansion of detBG has a non-zero
term.

This is equivalent to the fact that there is a perfect matching in G .

The reverse direction of the Corollary is not true.
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The permanent

Definition

The permanent of M ∈ Rn×n

per Mn×n =
∑
π∈Sn

n∏
i=1

Miπ(i)

Observation

(i) per BG 6= 0 iff there is a perfect matching in G .

(ii) per BG is the number of perfect matchings in G .

Unfortunately computing per BG is #P-hard.

Reminder

There are efficient algorithms to compute the determinant of a
square matrix.
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Polynomials

Definition

XG ∈ R [xe : e ∈ E (G )]n×n: ∀e ∈ E (G ) we substitute the 1 ofBG ,
corresponding to e with xe .

Theorem

det(XG ) is a non-zero polynomial if and only if there is a perfect
matching in G .

Observation

(i) The number of perfect matchings in G is the number of
monomials of det(XG ).

(ii) It is possible that to write down det(XG ) takes too long. But
evaluate det(XG )|xe=αe is easy.
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A randomized algorithm

Randomized algorithm

Random substitution: For each edge e generate re ∈ {1, . . . ,N},
a random value (uniform distribution, independence).

Calculating DET: Compute det(XG )|xe=re .

Evaluation:
If the value is non-0, then the output is

”
There is perfect

matching”.
If the value is 0, then the output is

”
Probably there is no perfect

matching”.
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Error

Our algorithm can make errors. But how?

•
”

There is a perfect matching”: the answer is guaranteed to
be correct.

•
”

Probably there is no perfect matching”:

◦ if det(XG ) is the 0 polynomial, then the answer is correct;
◦ if det(XG ) is a non-0 polynomial, and we generate an

unfortunate re ’s, one of the roots of det(XG ): the
algorithm fails.

Our goal is to reduce the probability of error.
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Schwartz’ lemma

Theorem (Schwartz-lemma)

Let p(x1, . . . , xk) ∈ R[x1, . . . , xk ] be a non-zero polynomial and let
ri ∈ {1, . . . ,N} be uniform independent random variables,
(1 ≤ i ≤ k). Then

P(p(r1, . . . , rk) = 0) ≤ deg p

N
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Proof by induction on k : k = 1

For k = 1 we have p ∈ R[x ].

We know that |{r ∈ R : p(r) = 0}| ≤ deg p, hence the probability
that the value of r is a root of p is at most deg p

N .
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Proof by induction on k : The induction step

Assume that we know the claim for k − 1 variables. Write p as:

p(x1, . . . , xk) = pα(x1, . . . , xk−1) · xαk +pα−1(x1, . . . , xk−1) · xα−1k +

· · ·+ p0(x1, . . . , xk−1),

where pα(x1, . . . , xk−1) is a non-0 polynomial.

It is obvious that deg p ≥ deg pα + α.

Let Rk = {(r1, . . . , rk) : p(r1, . . . , rk) = 0}, the set of choices for
(r1, . . . , rk), that is a root of p. We need to bound P(Rk).

Let Rk−1 = {(r1, . . . , rk) : pα(r1, . . . , rk−1) = 0}.

Let
Q = {(r1, . . . , rk) : (r1, . . . , rk−1) /∈ Rk−1, but (r1, . . . , rk) ∈ Rk}.

Easy to see that Rk ⊆ Rk−1 ∪ Q.
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Proof by induction on k : The induction step (cont’d)

Based on the induction hypothesis we can bound the probability of
Rk−1.

Based on the analysis of case k = 1 we can estimate the
probability of Q.

After summing our bounds we obtain

P(Rk) ≤ P(Rk−1) + P(Q) ≤ deg pα
N

+
α

N
≤ deg p

N
.

This proves the claim of the Theorem.
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Methods to reduce the error

We can apply Schwartz’ Lemma for p = det(XG )
(deg p = n(= |A| = |F |)) we get that in the case of the choice
N = 2n the probability of error is at most 1

2 .

We can reduce the error probability.

(I) Increase the value of N.
(II) Independently repeat the algorithm M times (N = 2n). As

soon as one determinant computation gives a non-0 value
stop and announce ”The graph has a perfect matching”. If all

M execution evaluate a 0 determinant, then announce
”Probably the graph has NO perfect matching”.

Theorem

After M independent repetition as above

P(error) ≤ 1

2M
.
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Break

Peter Hajnal Matchings and algebra, University of Szeged, 2023



A randomized method Linear programming method

Introduction

The problem

Let G be a bipartite graph, c : E (G )→ R+. Find a matching M,
that c(M) =

∑
e∈M c(e) has the maximum value.

Definition

For an edges set M ⊆ E (G ) = {e1, . . . , em} the characteristic
vector of M is χ

M
= (vi ) ∈ Rm, where vi = 1, if ei ∈ M, otherwise

0.

Note that m = |E (G )|, hence

RE(G) ≡ Rm.
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Algebraization

c(M) = 〈c , χ
M
〉, where c ∈ RE(G).

The new form of our problem:

max{〈c, χ
M
〉 : M is a matching}
= max{〈c , x〉 : x ∈ {χ

M
: M is a matching}}

= max{〈c , x〉 : x ∈ conv {χ
M

: M is a matching}}
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Geometry

Definition

Let P ⊆ Rm be a set of vectors/points. Then the convex hull of P
is,

conv P = {
k∑

i=1

λipi : λi ≥ 0,
∑

λi = 1, p
i
∈ P}

the minimal convex set containing P.

The vectors/points of the sets are called the convex combinations
of the elements of P.

Notation

The set conv {χ
M

: M is a matching} is denoted as MP(G ).
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The relation of the continuous and discrete set

MP(G ) is a geometrical/continuous set of points,
{χM : M is a matching} is a combinatorial/discrete set of points.

{χM : M is a matching} ⊂ conv {χ
M

: M is a matching}

Usually extending the set of feasible solutions effects the
optimization problem. In our problem this not the case.

MP(G ) convex, bounded, closed set.

If we optimize a linear function on MP(G ) then the optimal value
is obtained at a point χ

M
:

〈c ,
∑

λipi 〉 =
∑

λi 〈c , pi 〉 ≤ max〈c, p
i
〉.
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Linear programming/LP

Solving
max{〈c , x〉 : x ∈ MP(G )}

is an LP problem.

The standard usage of an LP algorithm requires the description of
MP(G ) as an intersection of finitely many closed halfspaces
(solution set of a system of linear inequalities).

Bellow we describe few linear inequalities that is satisfied by the
vectors of {χM : M is a matching}.

Definition

Let

M̂P(G ) = {x ∈ RE(G) : xe ≥ 0 ∀e ∈ E (G ), and
∑
e:vIe

xe ≤ 1 ∀v ∈ V (G )},

where x = (xe : e ∈ E (G )) ∈ RE(G).
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MP(G ) as an intersection of finitely many closed halfspaces
(solution set of a system of linear inequalities).

Bellow we describe few linear inequalities that is satisfied by the
vectors of {χM : M is a matching}.
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The relation of the two polytope

One inclusion is obvious

MP(G ) ⊆ M̂P(G ).

In general the inclusion is strict.

One example is G = C2k+1.

Let x ∈ RE(G) the vector with all 1
2 components. x ∈ M̂P(G ) and

x 6∈ MP(G ) (
∑

e∈E(G) xe = k + 1/4 hyperplane separate x from
MP(G )).
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The goal

Our goal is to prove that if G is a bipartite graph then
MP(G ) = M̂P(G ).

It is enough to show that the vertices of M̂P(G ) have integer
coordinates.

Indeed: The elements of M̂P(G ) with integer coordinates are
exactly the set {χM : M is a matching}!
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The Lemma, that implies the Goal

Lemma

Let IncG ∈ RV×E be the vertex-edge incidence matrix of the
bipartite graph G . Then each square submatrix R of IncG has
determinant −1, 0, or 1.

If we want to see a generic vertex of M̂P(G ), then we take suitable

|E | defining inequalities of M̂P(G ). Substitute the inequality signs
with equality signs. We obtain a system of linear equations, that
has a unique solution.

The unique solution is the vertex, chosen.

To see the unique solution use Cramer’s rule. Its coordinates are
fractions of two determinants. The two determinants are integers,
and the denominator is non-zero. By the Lemma the denominator
must be ±1. This implies that the ratios are integers and the Goal
is achieved.
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The proof of the Lemma

Let R be a square submatrix of size k × k .

We prove the claim with induction on k .

The case k = 1 is obvious.

The rows of IncG (hence the rows of R two) can be classified as
lower and upper rows.

Case 1: R has a column with at most one 1. We can expand the

determinant according to this column. Using the induction

hypothesis we are done.

Case 2: Each column of R has two 1’s. // we know that one is in
a lower row, and one in an upper row. This implies that the sum of

lower rows of R is the same as the sum of the upper rows. This
implies a non-trivial linear combination of rows gives

−→
0 . That

means the determinant of R is 0.
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Summary of our results

Definition

A M istotally unimodular, if each square submatrix of it has
determinant 0 or ±1.

Corollary

If G is bipartite, then

a) IncG is totally unimodular,

b) MP(G ) = M̂P(G ).
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The LP algorithm

Algorithm based on linear programming

Given an edge weighted graph. Let w ∈ RE(G) the vector of the
weights. Find the maximum weight matching.

(Algebraization) Write down the linear inequalities describing

MP(G ) = M̂P(G ). Introduce the objective function is 〈w , x〉

(Optimization) Solve the above LP problem (for example use the
simplex method).
// The solution is guaranteed to be an integer solution. Hence it is
a 0/1 vector.

(Combinatorialization) We interpret the optimal solution a
characterization of an edge set M. M is the output.
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This is the end!

Thank you for your attention!

Peter Hajnal Matchings and algebra, University of Szeged, 2023
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