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Joyal’s proof of Cayley Theorem Trees and linear algebra

The Idea

Consider two sets

{(T , a, z) : T is a tree on the vertex set [n], and a, z ∈ [n]}

and
{f : [n]→ [n]}.

We are going to give a bijection between the two sets.
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An example
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a = 4 and z = 8

The Joyal coding of the example is as follows:

(1) Take the unique a-z path in the tree (P). List the vertices of
the path in two different ways. First, use the increasing order (in
our example 2 3 4 8). Second, use the order as you walk from a to
z (in our example 4 3 2 8).
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An example (cont’d)

Write down the two sequences in two lines and interpret it as a
ϕ : V (P)→ V (P) permutation.(

2 3 4 8
4 3 2 8

)
.

(2) We extend the domain ϕ to V (G ) and define the Joyal code of
our example: Take a vertex v from V (G ) \ V (P). It might have
several neighbors. Exactly one is closer to P than v : v ′. Define
f (v) as v ′ outside P, and as π(v) on P.

The complete Joyal code of our example is

i 1 2 3 4 5 6 7 8 9

JF (i) 2 4 3 2 6 2 8 8 8
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Decoding

For decoding we are given an arbitrary f : [n]→ [n]. We must
prove that there exists exactly one (T , a, z) triplet such that the
above coding procedure assigns f to it.

First, take the directed graph of f . I.e.
−→
G f the directed graph on

V = [n], such that it has n edges:
−−→
if (i) (i = 1, 2, . . . , n). This a

directed graph with the property that each node has out-degree 1.

Consider the sequence of sets:

V , f (V ), f (f (V )), f (f (f (V ))), . . .

This sequence will ’converge’ to a set U.

f |U will be a permutation of U.
−→
G |U consists of directed cycles as

components.
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Decoding (cont’d)

Write f |U : U → U using the ’two lines notation’. Use increasing
order in the first line. s1, s2, . . . , s` denotes the second line.

The second line ’lines up’ the elements of U.

Now take the directed graph of f . Throw away the edges inside U.
’Forget’ the orientation of the remaining edges. Inside U add the
edges si−1si (i = 1, 2, . . . , `− 1).

The n − 1 edges on n vertices form a tree T .

Let a := s1, z := s`.

The rest is left to the diligent audience: The Joyal coding of
(T , a, z) is f . There are no other (T ′, a′, z ′) triplet with f as its its
Joyal code.
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Break
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Directed graphs

Definition

Directed graph is a (V ,E , I ,O) quadruple, where V is a finite
vertex set and E is a finite edge set. I ,O ⊂ E × V are two
incidence relations with the property that for each edge there is
exactly one edge incident to it.

• If uOe and vIe, then we say the e goes from u into v , and we
write e = −→uv .

• From the directed graph
−→
G = (V ,E , I ,O) we can define the

graph G = (V ,E , I ∪ O). We say that we remove/erase the

orientation of
−→
G and obtain G . Or

−→
G is an orientation of G .
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Vertex-edge incidence matrix of directed graphs

Let
−→
G be a loopless directed graph.

Inc−→
G

= (aij) ∈ Rn×m ≡ RV×E , where

aij =


1, if vi Iej ,

−1, if viOej ,

0, otherwise.

or

ave =


1, if vIe,

−1, if vOe,

0, otherwise.

Note that the sum of the rows of Inc−→
G

is
−→
0 ∈ RE . Hence the rank

of Inc−→
G

is at most |V | − 1
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Submatrices with n − 1 rows

Definition

Given a non-oriented or directed graph G with a distinguished
vertex r ∈ V (G ). The (G , r) pair is called rooted graph. r is called
the root of G .

Notation

Let (G , r) be a rooted graph. Let
−→
G be an arbitrary orientation of

G .

Inc−r−→
G

[F ] is a submatrix of Inc−→
G

, that we obtain by deleting the

row of r and all the columns outside F .
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The main lemma: Submatrices of size (n − 1)× (n − 1)

Lemma

Let G be a graph,
−→
G an arbitrary orientation of it, and r an

arbitrary root. Let F be an edge set of size |V | − 1 (i.e. Inc−r−→
G

[F ] is

an (n − 1)× (n − 1) matrix).
Then the following properties are equivalent:

(1) Inc−r−→
G

[F ] has full rank (n − 1), i.e. its rows are independent,

also its columns are independent,

(2) F doesn’t contain an edge set of a cycle,

(3) F is an edge set of spanning tree,

(4) det Inc−r−→
G

[F ] ∈ {±1}.
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(1)⇒(2)

Proof by contradiction. Assume that E (C ) = {e1, . . . , e`} ⊂ F ,
where C is a cycle.

First, assume that in
−→
G the cycle C corresponds to a directed

cycle.

Easy to see that the sum of the columns corresponding to the
edges of C is the null-vector. The columns are not linearly
independent. The claim is proven.

Second, consider the general case. Note that the corresponding
matrix can be obtained from the matirx of the first case, by
multiplying some of the columns by −1.
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(2)⇒(3)

A pure graph theoretical statement. See in recitation session.
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(3)⇒(4)

Assume that F is an edge set of a spanning tree T . We can think
about T as a tree that is constructed from r by branching process.

Assume that in the ith step we extended our actual tree by the
edge ei and vi (i = 1, 2, . . . , n − 1). Note that
Fv = {e1, e2, . . . , en−1}, and V (G ) \ {r} = {v1, v2, . . . , vn−1}.

Note that the matrix, where the row and column order follows the
indices is a triangular matrix with ±1’s in the diagonal. The claim
follows by linear algebra.
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(4)⇒(1)

An obvious statement from linear algebra.
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Binet-Cauchy formula

Theorem (Binet-Cauchy formula)

Let A,B ∈ Rn×m. Then

det(A · BT )n×n =
∑

F⊂{1,...,m}=’columns’
|F |=n

detA[F ] · detB[F ].
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The Theorem of Kirchoff

Corollary (Theorem of Kirchoff)

Let (G , r) be an arbitrary rooted graph, and let
−→
G be and arbitrary

orientation of G . Then the number of spanning tree of G is

det[Inc−r−→
G
· (Inc−r−→

G
)T ].
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The proof

Apply the Binet-Cauchy formula for A = B = Inc−r−→
G

:

det[Inc−r−→
G
· (Inc−r−→

G
)T ] =

∑
F⊂E(G)
|F |=|V |−1

Inc−r−→
G

[F ] · Inc−r−→
G

[F ].

By our Lemma these determinants are 0, or (−1)2, or (+1)2. If we
ignore the 0 terms then we obtain∑

F⊂E(G)

F is a spanning tree

1.

The Theorem is proved.
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Another view of Inc−→
G
· IncT−→

G

Observation

(Inc−→
G
IncT−→

G
)uv =

{
−(] of edges between u and v) if u 6= v ,

d(u) if u = v .
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Laplace matrix of a graph

Definitions

DG ∈ RV×V is a diagonal matrix with the degrees on the diagonal:

(DG )v ,v = d(v).

AG ∈ RV×V , the adjacency matrix of G , a loopless graph is a
symmetric matrix:

(AG )u,v = ] of edges between u and v .

LG = DG − AG is the Laplace matrix of G .

Observation

A−r−→
G

(A−r−→
G

)T = L−rG
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The Theorem of Kirchoff, the second form

The Theorem of Kirchoff, the second form

The number of spanning trees of a graph G is

det L−rG = det(D−rG − A−rG ).
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Cayley’s Theorem from Kirchff’s Theorem

Apply Kirchoff’s Theorem for Kn

] of spanning trees of Kn =

det



n − 1 −1 −1 . . . −1 −1
−1 n − 1 −1 . . . −1 −1
−1 −1 n − 1 . . . −1 −1

...
...

...
. . .

...
...

−1 −1 −1 . . . n − 1 −1
−1 −1 −1 . . . −1 n − 1


(n−1)×(n−1)
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This is the end!

Thank you for your attention!
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