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The basic question Realization with simple graphs, Havel—Hakimi Trees

Introduction

This lecture is the continuation of the BSC course, called
Combinatorics.

Let us recall some important concepts of graph theory.

Definition: Graph

Let G = (V ,E , I ), where V and E are arbitrary finite sets,
I ⊆ V × E incidence relation. The set V is called vertex set, E is
called edge set. If (v , e) ∈ I we say that the vertex v is an
endvertex of edge e. G is called graph iff any edge has two
endvertices. We mention that the two endvertices of e might
coincide.
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Introduction (cont’d)

Definition: Simple graph

Edges with two identical endvertices are called loops. If e1 and e2
are such that they incident to the same pair of vertices, then we
call them parallel edges. Graphs that do not contain loops and
parallel edges are called simple graphs.

Definition: Degree of a vertex

The degree of a vertex v is the number of edges incident to v ,
where the loops incident to v are counted twice.
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Degree sequences

Definition: Degree sequence

The sequence of natural numbers d1, . . . , dn is called degree
sequence if it is the sequence of degrees of a graph G , and it is. a
non-increasing sequence.
Especially n = |V |, d1 ≥ d2 ≥ . . . ≥ dn−1 ≥ dn is satisfied.

• Alternatively, we also write d1 = dmax , and dn = dmin.

• Note that from the degree sequence of a graph G we can
calculate the number of edges:

2|E | =
n∑

i=1

di .

• In other words

daverage =
n∑

i=1

di/n = 2|E |/n.
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The basic problem

The basic problem

Given a non-increasing sequence of natural numbers 〈di 〉ni=1. Is
there a graph G that the sequence of degrees is the initial
sequence?

• If so, then in that case we say that the sequence is realizable,
and G is a realizing graph.

• Of course, the elements of a realizable sequence are always
natural numbers.
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A remark

If there is no assumption on G then the basic problem can be
answered easily.

Claim

The sequence of natural numbers 〈di 〉ni=1 can be realized if and
only if (iff)

∑n
i=1 di is even.

The simple proof (see recitation session) makes use of the
possibility of loops.
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Further problems

• A natural question is: ”Can we realize a given sequence without
loops?”.

• Or in general: When a given sequence of natural numbers can be
realized with a graph with some special property?

• In the following, we will consider such questions.

• If the answer is yes, then we can extend our problem:

(1) We can ask for a realizing graph.

(2) We can ask for the list of all realizing graphs.
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Realization with loopless graphs

Theorem

〈di 〉ni=1 descending sequence of natural numbers is realizable with a
graph without loops if and only if

•
∑n

i=1 di is even, and

• d1 = dmax ≤ d2 + d3 · · ·+ dn.
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Realization with loopless graphs, the proof

• First, suppose that 〈di 〉ni=1 is realizable without loops. Then we
know that the condition 1. is satisfied.

• To see that Condition 2. is necessary consider the realizing graph
for the sequence. Let vi be the vertex with degree di . How many
edge are between {vi} and V \ {vi}?
• We can’t have loops, so the answer is di .

• On the other hand, it is obvious the result of the enumeration is
at most d1 + · · ·+ di−1 + di+1 + . . . + dn.

• The two answers must be consistent. So we got n conditions:
each element of our degree sequence is not more than the sum of
the other degrees.

• Of these, only one inequality is not obvious. This is exactly the
condition 2.
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Realization without loops, proof (cont’d)

• The other direction is proven with mathematical induction
according to

∑n
i=1 di . First we look at some easy cases.

• If d1 ≤ 1, then the statement is obvious.

• If n = 1, then d1 = 0 from assumption 2. The realization is
obvious.

• If n = 2, then from Condition 2 we have that d1 = d2. So d1
parallel edges between the two vertices realizes the sequence.

• We assume that that n ≥ 3 and d1 ≥ 2 (also d2 ≥ 1).

• In the case
∑n

i=1 di = 0 the sequence can be realized by n node
graph with no edge.

• Be m :=
∑n

i=1 di . Suppose that in the case
∑n

i=1 di < m our
two conditions guarantee the realization without loops.
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Realization without loops, the proof (cont’d)

• Consider the sequence

d1 − 1, d2 − 1, d3, . . . , dn.

• This is not necessarily non-increasing. Its maximum element is
d1 − 1 or d3 (when d1 = d2 = d3). In both cases, our two
conditions are satisfied.

• The induction hypothesis can be applied: the new series is
realizable with a loopless graph.

• Its two different vertices have degree d1 − 1, and d2 − 1.
Connecting them with an extra edge we get a graph that gives the
realization of the original sequence.

Peter Hajnal, MSc – Discrete Mathematics Degree sequences, University of Szeged, 2023



The basic question Realization with simple graphs, Havel—Hakimi Trees

Realization without loops, the proof (cont’d)

• Consider the sequence

d1 − 1, d2 − 1, d3, . . . , dn.

• This is not necessarily non-increasing. Its maximum element is
d1 − 1 or d3 (when d1 = d2 = d3). In both cases, our two
conditions are satisfied.

• The induction hypothesis can be applied: the new series is
realizable with a loopless graph.

• Its two different vertices have degree d1 − 1, and d2 − 1.
Connecting them with an extra edge we get a graph that gives the
realization of the original sequence.

Peter Hajnal, MSc – Discrete Mathematics Degree sequences, University of Szeged, 2023



The basic question Realization with simple graphs, Havel—Hakimi Trees

Realization without loops, the proof (cont’d)

• Consider the sequence

d1 − 1, d2 − 1, d3, . . . , dn.

• This is not necessarily non-increasing. Its maximum element is
d1 − 1 or d3 (when d1 = d2 = d3). In both cases, our two
conditions are satisfied.

• The induction hypothesis can be applied: the new series is
realizable with a loopless graph.

• Its two different vertices have degree d1 − 1, and d2 − 1.
Connecting them with an extra edge we get a graph that gives the
realization of the original sequence.

Peter Hajnal, MSc – Discrete Mathematics Degree sequences, University of Szeged, 2023



The basic question Realization with simple graphs, Havel—Hakimi Trees

Realization without loops, the proof (cont’d)

• Consider the sequence

d1 − 1, d2 − 1, d3, . . . , dn.

• This is not necessarily non-increasing. Its maximum element is
d1 − 1 or d3 (when d1 = d2 = d3). In both cases, our two
conditions are satisfied.

• The induction hypothesis can be applied: the new series is
realizable with a loopless graph.

• Its two different vertices have degree d1 − 1, and d2 − 1.
Connecting them with an extra edge we get a graph that gives the
realization of the original sequence.

Peter Hajnal, MSc – Discrete Mathematics Degree sequences, University of Szeged, 2023



The basic question Realization with simple graphs, Havel—Hakimi Trees

Realization without loops, the proof (cont’d)

• Consider the sequence

d1 − 1, d2 − 1, d3, . . . , dn.

• This is not necessarily non-increasing. Its maximum element is
d1 − 1 or d3 (when d1 = d2 = d3). In both cases, our two
conditions are satisfied.

• The induction hypothesis can be applied: the new series is
realizable with a loopless graph.

• Its two different vertices have degree d1 − 1, and d2 − 1.
Connecting them with an extra edge we get a graph that gives the
realization of the original sequence.

Peter Hajnal, MSc – Discrete Mathematics Degree sequences, University of Szeged, 2023



The basic question Realization with simple graphs, Havel—Hakimi Trees

Realization without loops, final remark

From the induction proof one can easily construct an algorithm
that — from a given sequence, satisfying the two conditions —
constructs a realizing graph that doesn’t contain a loop.
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Break
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Realization with simple graphs

Lemma

If 〈di 〉ni=1 is decreasing a sequence of natural numbers can be
realized with a simple graph, then there is a realizing simple graph
whose vertices are v1, . . . , vn, where di = d(vi ), and the neighbors
of the vertex v1 are exactly the vertices v2, v3, . . . , vd1+1. (Note
that d1 ≤ n − 1 is guaranteed by the realizing graph of the original
sequence).
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A consequence of the Lemma

Theorem, V. Havel (1955) and S. Hakimi (1962)

〈di 〉ni=1 can be realized with a simple graph if and only if the
sequence

d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn

is realizable too.

• One direction is obvious.

• The other direction is an easy consequence of the former lemma?
We take the graph realizing 〈di 〉ni=1, in which v1 is connected to
the vertices with the smallest index. Then we delete the vertex v1
to obtain a graph that realizes the required degree sequence.
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The proof of the Lemma

• Let G be a realizing graph for which d(vi ) = di and the index
sum of v1’s neighbors is minimal. We claim that this graph proves
the lemma.

• Assume that in G the neighborhood of v1 is not {v2, . . . , vd1+1}.
This means that there exists i < j such that v1 is connected to vj ,
but not connected to vi .

• The neighborhood of vj consists of v1 and dj − 1 further vertices.
vi has di neighbors (v1 is not among them).

• Due to the descending order, we have dj − 1 ≤ di − 1 < di . This
implies that there is a vertex x 6= v1 which is adjacent to vj but
not connected to vi .

• Let G̃ be the graph that we obtain from G by deleting edges vjv1
and vix and adding edges vjx and viv1.
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The proof of the Lemma (cont’d)
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Dashed lines indicate LACK of edges. This is the information guarantees
that we get a simple graph after the “switch”.

• Thus, the graph remained simple and its degree sequence did not
change, however in G̃ the index sum of the neighbors of v1 is
decreased.

• This contradicts the choice of G .
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One final remark

• Notice that using the Lemma one can get a recursive algorithm
(Havel-Hakimi algorithm) to decide whether there is a realization
by simple graphs.

• In the case of affirmative answer the algorithm construct a
realizing simple graph.

• Listing all realizing simple graphs is a non-trivial problem.
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Break
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Trees

Trees

Tree, branching operation.

Consequence (Basic theorem on the number of edges of a tree)

For each tree we have

|E | = |V | − 1.

In other words: Any tree on n vertices has n − 1 edges.

A straight forward claim

If a tree has at least two vertices, then it can’t have an isolated
node.
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Sufficient and necessary conditions

Theorem

Assume that n ≥ 2. The sequence 〈di 〉ni=1 can be realized by a tree
if and only if

∑n
i=1 di = 2n − 2 and dmin > 0.
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The proof

• We saw that the conditions are necessary.
• We use induction to prove that the conditions are sufficient.

• If n = 2 then the conditions imply that d1 = d2 = 1. The
realization by tree is straight forward and unique.

• Assume that n ≥ 3, and we have the claim for shorter sequences
than n.

• A simple arithmetic gives 1 < daverage =
∑n

i=1 di
n < 2. Hence

d1 = dmax ≥ daverage ≥ dmin = dn.

• We have dn = 1, and d1 ≥ 2.

• The d1 − 1, d2, . . . , dn−1 sequence also satisfies the conditions.
By the induction hypothesis it can be realized by a tree.

• From this realizing tree we can obtain a new one by branching,
that realizes the original sequence,
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• Assume that n ≥ 3, and we have the claim for shorter sequences
than n.

• A simple arithmetic gives 1 < daverage =
∑n

i=1 di
n < 2. Hence

d1 = dmax ≥ daverage ≥ dmin = dn.

• We have dn = 1, and d1 ≥ 2.

• The d1 − 1, d2, . . . , dn−1 sequence also satisfies the conditions.
By the induction hypothesis it can be realized by a tree.

• From this realizing tree we can obtain a new one by branching,
that realizes the original sequence,
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The basic question Realization with simple graphs, Havel—Hakimi Trees

Realizations by trees: an algorithm

• Again based on the proof one can design an algorithm that from
an input sequence, satisfying the conditions, constructs a realizing
tree.

Example

3

2
1

3
2

1

1 1
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The basic question Realization with simple graphs, Havel—Hakimi Trees

Realizing by trees: Finding all realizations

• To list all realizing trees we choose an arbitrary vertex of degree
1. Let us refer to our choice as vertex u.

• The possible neighbors of it (v) are the vertices with degree at
least 2 (|V | ≥ 3).

• We run through all possible v ’s and connect u and v . The
unique neighbor of u is known. We have to realize a transformed
sequence on V − {u} (u disappears and the degree of v will be
reduced by 1).

• We have smaller realization problems. If we can list all
realizations in each cases then we can generate the required
complete list. We iterate the ideas if the number of vertices is at
least 3. In the case of |V | = 2 we know the complete list without
using any idea.
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The basic question Realization with simple graphs, Havel—Hakimi Trees

Complete list of tree realizing a given sequence: The
algorithm

Algorithm

INPUT: A sequence 〈di 〉ni=1 that satisfies
∑n

i=1 di = 2n − 2 and
dmin > 0.

• If n = 1, 2, we know the complete list.

• In the case of n > 2 we choose an arbitrary vertex of degree 1.
We call it u ∈ V .

• For each vertex v ∈ V , that has degree at least 2 (d(v) ≥ 2)
take the degree sequence in the vertex set V − {u}

d ′(x) =

{
d(x), x 6= v ,

d(v)− 1, x = v .
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The basic question Realization with simple graphs, Havel—Hakimi Trees

Complete list of tree realizing a given sequence: The
algorithm (cont’d)

Algorithm (cont’d)

• We generate the complete list of realizing trees for d ′ by our
algorithm.

• For each v , for all trees on the corresponding list we add the
vertex u by a branching from v . We add the trees, we obtain this
way, to the output list.
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The basic question Realization with simple graphs, Havel—Hakimi Trees

All realizations by tree, Example

33221111

2322111 3222111 3312111 3321111

132211 222211 231211 232111 231211 321211 331111

. . 
. . . 

.

12221 21221 22121 22211 13121 22121 23111 23111 32111

1212 2112 2211 1311 2211

121121 211

1111 11

. . 
. . . 

.

. . 
.

. . 
.

. . 
.

The chosen degree 1 is always the last one in the sequence, we circled
them. The degrees of the possible neighbor are underlined.
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The basic question Realization with simple graphs, Havel—Hakimi Trees

All realizations by tree, numbers

• Easy to enumerate that in the case of the previous example there
are 100 realizing trees.

• Note that V is given, its element can be distinguished.

• There are only 5 isomorphism classes of trees realizing the degree
sequence of the example.
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The basic question Realization with simple graphs, Havel—Hakimi Trees

All realizations by tree, enumeration

The above recursive algorithm can be easily transformed to an
induction proof of a

Theorem

Let 〈di 〉ni=1 be a sequence realizable by tree. The number of trees
on the vertex set {v1, v2, . . . , vn}, that satisfies d(vi ) = di
(i = 1, . . . , n):

(n − 2)!
n∏

i=1

1

(di − 1)!
= (n − 2)!

n∏
i=1

di
di !

.

The adventage of the second form: we can deal with sequence of
natural numbers, i.e. di = 0 is allowed (〈di 〉ni=1 ∈ Nn (n ≥ 2)).
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The basic question Realization with simple graphs, Havel—Hakimi Trees

All realizations by tree, enumeration: The proof

• If we have a 0 in the sequence, then our formula gives 0, as
required.
• Assume that 1 ≥ d1 ≥ d2 ≥ · · · ≥ dn, and the vertex set of the
realizing trees is {vi}ni=1, where d(vi ) = di .
• We know

1

n

n∑
i=1

di = 2
n − 1

n
< 2,

hence we have that dn = d(vn) = 1.
• The set of the realizing trees can be classified according to the
only neighbor of vn. We have n − 1 classes! When the only
neighbor of vn is vi then the size of the corresponding class is the
number of realizations of d1, d2, d3, . . . , di−1, di − 1, di+1, . . . , dn−1.
• From the induction hypothesis we know contribution of this class
to the final result of the enumeration.
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• If we have a 0 in the sequence, then our formula gives 0, as
required.
• Assume that 1 ≥ d1 ≥ d2 ≥ · · · ≥ dn, and the vertex set of the
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1

n

n∑
i=1

di = 2
n − 1

n
< 2,

hence we have that dn = d(vn) = 1.
• The set of the realizing trees can be classified according to the
only neighbor of vn. We have n − 1 classes! When the only
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The number of realizations by trees: The formal induction

If n = 2, then the claim is true. Using the induction hypothesis we
can enumerate the trees realizing the given sequence as a sum of
n − 1 numbers:

n−1∑
j=1

(n − 3)!

(
j−1∏
i=1

di
di !

)
·

dj − 1

(dj − 1)!
·

 n−1∏
i=j+1

di
di !

 =

(n − 3)!

(
n−1∏
i=1

di
di !

)
n−1∑
j=1

(dj − 1) =

(n − 3)!

(
n∏

i=1

di
di !

)
n∑

j=1

(dj − 1) =

(n − 3)!

(
n∏

i=1

di
di !

) n∑
j=1

dj − n

 = (n − 2)!
n∏

i=1

di
di !

.
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The number of trees on a given vertex set, Theorem of
Cayley

Theorem (Cayley)

On the vertex set {v1, v2, . . . , vn} there are nn−2 tree.

Theorem (Cayley)

The complete graph on n vertices (Kn) ha nn−2 spanning tree.
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The proof of the Theorem of Cayley

Classify the trees on a given vertex set according to their degree
sequences. In each of the disjoint classes we know how many trees
are. The summation of the sizes give the number of all trees:∑

d1,d2,...,dn∈N\{0}
d1+d2+···+dn=2(n−1)

(n−2)!
n∏

i=1

1

(di − 1)!
=

∑
d−
1 +d−

2 +···+d−
n =n−2

(n − 2)!∏n
i=1 d

−
i !

,

where d−i = di − 1.
Note that the right hand side of the equation can be rewritten by
the multinomial theorem∑

d−
1 +d−

2 +···+d−
n =n−2

(n − 2)!∏n
i=1 d

−
i !

=

∑
d−
1 +d−

2 +···+d−
n =n−2

(n − 2)!∏n
i=1 d

−
i !

1d
−
1 1d

−
2 · · · 1d

−
n = (1 + · · ·+ 1)n−2 = nn−2.
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This is the end!

Thank you for your attention!
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