
Complexity classes

Peter Hajnal

Bolyai Institute, SZTE, Szeged

2023 fall

Peter Hajnal Complexity classes, SzTE, 2023

Cpmlexity of a Turing machine/algorithm on an input

Definition

The time complexity of a Turing machin T on an ω input is
` := TIME(ω,T) if its truncated run is (κi)

`
i=0, and ∞ if the run is

an infinite loop (it does not reach the STOP state).

We will also use this notion for Turing machines, designed for
decision making. In this case the role of STOP will be substituted
by ACCEPT/REJECT.

Definition

The space complexity of a Turing-machine T on an input ω is
s := SPACE(ω,T), if during its execution on ω the largest index of
the cells under the work hand is s, or ∞, if the working eye/hand
moves arbitrarily far from the left border of the work tape.

Peter Hajnal Complexity classes, SzTE, 2023

An Observation

The Turing machine can visit at most as many cells on the working
tape as many times it moves.

Observation

SPACE(ω,T) ≤ TIME(ω,T)

Peter Hajnal Complexity classes, SzTE, 2023

Complexity of a machine/algorithm

Definition

Let t : N→ R be an arbitrary function. We say that a Turing
machine T is an element of the set TIME(t(n)) if for every ω ∈ Σ∗

TIME(ω,T) ≤ t(|ω|).

Definition

Let s : N→ R be an arbitrary function. We say that a Turing
machine T is an element of the set SPACE(s(n)) if for every ω ∈ Σ∗

SPACE(ω,T) ≤ s(|ω|).

Peter Hajnal Complexity classes, SzTE, 2023

Classes of languages

Definition

Let t : N→ R be an arbitrary function. We say that a language L
is an element of the set T IME(t(n)), if there exists a Turing
machine T such that

(i) decides L, and

(ii)) T ∈ TIME(t(n)), i.e. TIME(ω,T) ≤ t(|ω|).

Definition

Let s : N→ R be an arbitrary function. We say that a language L
is an element of the set SPACE(s(n)), if there exists a Turing
machine T such that

(i) decides L, and

(ii) T ∈ SPACE(s(n)), i.e. SPACE(ω,T) ≤ s(|ω|).

Peter Hajnal Complexity classes, SzTE, 2023

P

The classes T IME(t(n))/SPACE(s(n)) are very much depend
on the model we use. We obtain much more useful classes when
time or space constraint is not specified by a function, but by an
”order of magnitude”.

Definition: Decidable languages in polynomial time

P :=
⋃

p∈R[x]

T IME(p(n)) =
⋃
a∈N
T IME(ana + a).

Peter Hajnal Complexity classes, SzTE, 2023

EXP ,PSPACE

Definition: Decidable languages in exponential time

EXP :=
⋃
a∈N
T IME(2an

a+a).

Definition: Decidable languages in polynomial space

PSPACE :=
⋃
a∈N
SPACE(ana + a).

Peter Hajnal Complexity classes, SzTE, 2023

EXPSPACE ,L

Definition: Decidable languages in exponential space

EXPSPACE :=
⋃
a∈N
SPACE(2an

a+a).

Definition: Decidable languages in logarithmic space

L :=
⋃
a∈N
SPACE(a log(n + 2)).

The complete list of complexity classes is much longer
http://qwiki.stanford.edu/index.php/Complexity Zoo.

Peter Hajnal Complexity classes, SzTE, 2023

Break

Peter Hajnal Complexity classes, SzTE, 2023

Inclusions

The following inclusions are straight forward:

L ⊆ PSPACE ⊆ EXPSPACE ⊆ D ⊆ S ⊆ P(Σ∗)

⊆ ⊆

P ⊆ EXP

Our goal is to prove that:

L ⊆ P ⊆ PSPACE ⊆ EXP ⊆ EXPSPACE ⊆ D ⊆ S ⊆ P(Σ∗).

To prove these inclusions the following Lemma will be useful:

Lemma

Lemma

SPACE(s(n)) ⊆ ∪c∈NT IME(cs(n)+log(n+1)).

Peter Hajnal Complexity classes, SzTE, 2023

The proof of the Lemma I

Let L be a language in SPACE(s(n)). Then there is a Turing
machine T , that decides L (specially it stops on all ω ∈ L), and its
space complexity is at most s(n).

Notation

The previous sentence is a characteristic first line in proofs on
complexity. We introduce a spacial notation for that:
L ∈T SPACE(s(n)).

Let κ0(ω)→ κ1(ω)→ κ2(ω)→ . . .→ κ`(ω) be the run on input
ω. This is a sequence of configurations of length ` ≥ 1, where the
first one (κ0(ω)) is the initial configuration (specially the state is
START) and the last configuration is (κ`(ω)) the first one, where
the state is ACCEPT or REJECT.

Peter Hajnal Complexity classes, SzTE, 2023

The proof of the Lemma II

It is easy to see that the configurations in the sequence must be
different, i.e. if i 6= j then κi 6= κj .

Let n := |ω|. Question: How many different configurations can we
imagine?

An upper bound on the answer is:

(n + 2) · (s(n) + 1) · |Γ|s(n) · |S | ≤ αT (n + 1)α
s(n)
T ≤ βs(n)+log(n+1)

T ,

where αT , βT constants depending on T .

Indeed: The number of the possible position of the input eye is
n + 2. The number of the possible position of the work eye/pen is
s(n) + 1. The number of the possible content of the work tape is
(|Γ|+ 1)s(n). Finally the state of the machine comes from |S |
possibilities.

Peter Hajnal Complexity classes, SzTE, 2023

The proof of the Lemma III

If the runtime were longer than βT
s(n)+log n, then some

configurations would be repeated during the run, so the run would
be infinite.

We know that this is not the case. So we get the bound claimed.

Peter Hajnal Complexity classes, SzTE, 2023

Robustness

The mathematical definition of the Turing machine has a lot of
subtleties. Researchers/lecturers/textbook writers have many
different definitions, since everyone chooses the most appealing
version of the concept of a Turing machine.

Nevertheless the possible choices do not affect the concept of
computability/decidability.

A similar comment applies to the complexity classes defined with
constraint on the time/space described by order of magnitude. For
example P (the class of languages that can be decided in
polynomial time) remains the same when working with a different
model.

P is a robust class of languages.

Peter Hajnal Complexity classes, SzTE, 2023

Dangers

It would cause a much bigger problem, if we were to define the
LINEAR := {L(T) : T ∈ ∪a∈NTime(an + a)} language class.

This language class is not so robust anymore.

If we deal with such a class then clarifying/understanding the exact
model of computation is crucial.

Similarly serious technical problems would be raised by the
language class E := {L(T) : T ∈ ∪a∈NTime(an+a)}.

Peter Hajnal Complexity classes, SzTE, 2023

Break

Peter Hajnal Complexity classes, SzTE, 2023

The language PALINDROM

Definition: PALINDROM language

PALINDROM = {ω = ω1, . . . ωn : where ωi = ωn+1−i

for all i ∈ {1, 2, . . . , n}}.

So we have a decision problem. Given a word ω, we have to decide
ω is a palindrom or not. So we don’t need an output tape, but the
set of states S contains the states REJECT and ACCEPT.

Two Turing machines/algorithms are sketched. For simplicity we
assume that Σ = {0, 1}.

Peter Hajnal Complexity classes, SzTE, 2023

First model: Single tape model

• The first decision is to choose an alphabet for the work tape:
Γ = {0, 1, 0X, 1X}.

Peter Hajnal Complexity classes, SzTE, 2023

First algorithm/TM: Hogh level description

• On the left, find the first unchecked bit.

Mark it and remember its value.

On the right, find the last unchecked bit and mark if it matches.

If so, we continue the procedure, until we run out of unchecked
bits.

Peter Hajnal Complexity classes, SzTE, 2023

First algorithm/TM: S , set of states

For the Turing machine’s work so far, we used the following state
set

S = {START, LEFT-MARK, RIGHT-FIND-0, RIGHT-FIND-1,

RIGHT-TEST-0, RIGHT-TEST-1,

LEFT-FIND, ACCEPT, REJECT}.

Peter Hajnal Complexity classes, SzTE, 2023

First algorithm/TM: Transition function (fragments)

(START ,B) 7→ (LEFT-MARK, ∗,R)

(LEFT-MARK, 0) 7→ (RIGHT-FIND-0, 0X,R)

(LEFT-MARK, 1) 7→ (RIGHT-FIND-1, 1X,R)

(RIGHT-FIND-1, 0) 7→ (RIGHT-FIND-1, 0,R)

(RIGHT-FIND-1,C) 7→ (RIGHT-TEST-1, ∗, L)

(RIGHT-TEST-1, 0) 7→ (REJECT , ∗, ∗)

(RIGHT-TEST-1, 1) 7→ (LEFT-FIND, 1X, L)

Peter Hajnal Complexity classes, SzTE, 2023

FIRST algorithm/TM: Transition function

(RIGHT-TEST-1, 1X) 7→ (ACCEPT, ∗, ∗)

(RIGHT-TEST-1, 0X) 7→ (ACCEPT, ∗, ∗)

(LEFT-FIND, 0) 7→ (LEFT-FIND, 0, L)

(LEFT-FIND, 0X) 7→ (LEFT-MARK, 0X,R)

(LEFT-MARK, 0X) 7→ (ACCEPT, ∗, ∗)

(LEFT-FIND, 0) 7→ (LEFT-FIND, 0, L)

(START, 0) 7→
”

Who cares?”

Peter Hajnal Complexity classes, SzTE, 2023

First algorithm/TG: The movement of the head, time

If ω is a palindrome word, then the above A1 algorithm/machine
run can be easily calculated.

The movement of the head is easy to describe. It will be a damped
pendulum motion.

theorem

TIME (A1, ω) = O(|ω|2)

Constants are not calculated. Also irrelevant, by increasing the
number of states the running time can be reduced. For example,
we could use states for examples RIGHT-TEST-000,
RIGHT-TEST-001, RIGHT-TEST-010, RIGHT-TEST-011, . . .

Peter Hajnal Complexity classes, SzTE, 2023

Second model: Standard model with 1 work tape

Γ = Σ = {0, 1}.

Peter Hajnal Complexity classes, SzTE, 2023

Second algorithm/TM: High level description

The input is copied to the working tape.

The input head goes to the beginning of the input. // The work
head is at the end of the copied input.

The the eyes move in different directions and test the palindrom
property.

Peter Hajnal Complexity classes, SzTE, 2023

Second algorithm/TM: S , the set of states

S = {START, COPY, TO-THE-LEFT, TEST, ACCEPT, REJECT}.

Peter Hajnal Complexity classes, SzTE, 2023

Second algorithm/TM: Transition function

(START ,B,B) 7→ (COPY,R, ∗,R)

(COPY, 0,^) 7→ (COPY,R, 0,R)

(COPY, 1,^) 7→ (COPY,R, 1,R)

(COPY,C,^) 7→ (TO-THE-LEFT, L, ∗, L)

(TO-THE-LEFT, 0, 0) 7→ (TO-THE-LEFT, L, 0, .)

(TO-THE-LEFT,B, 0) 7→ (TEST,R, 0, .),

Peter Hajnal Complexity classes, SzTE, 2023

Second algorithm/TM: Transition function

(TEST, 1, 1) 7→ (TEST,R, ∗, L),

(TEST, 1, 0) 7→ (REJECT, ∗, ∗, ∗),

(TEST,C,B) 7→ (ACCEPT, ., ∗, .).

Peter Hajnal Complexity classes, SzTE, 2023

Second algorithm/TM: The time

Observation

All ω input, the run length is at most 3|ω|+ 3 = O(|ω|).

Specifically
TIME (ω;T) = Θ(|ω|)

This result is sharp in terms of magnitude.

Peter Hajnal Complexity classes, SzTE, 2023

Break

Peter Hajnal Complexity classes, SzTE, 2023

The one-tape model is bad

Theorem

If T is a Turing machine that decides in the single-tape model the
PALINDROM language, then ∀ n, ∃ω ∈ Σn :

TIME(ω,T) ≥ αT |ω|2,

for some positive constant αT .

Peter Hajnal Complexity classes, SzTE, 2023

Proof: Notions

The common boundary of two adjacent cells on the input tape is
called door. The cells of the (input) tape can be imagined as an
infinite series of rooms. We can say, that the head can only move
through the doors.

 M M M M M M 1 2 i i+1 n–1 n

a

The cells Mi and Mi+1 and the door a between them.

Peter Hajnal Complexity classes, SzTE, 2023

A run of T

Consider the truncated run of the Turing machine T on ω input:

κ0(ω)→ κ1 → κ2 → . . .→ κ`,

where

` := min{n | state of κn is ACCEPT or REJECT.}

Definition: σ(a, ω)

Now take those κj , κj+1 configurations, in which the input eye is
over Mi/Mi+1. Let sj be the state of the Turing machine when
passing through the a door separating the cells.
The sequence of these sj states is denoted by σ(a, ω).

Peter Hajnal Complexity classes, SzTE, 2023

A crucial observation

Let ω
a

| be the initial segment of the input till the ”door a”, and let
a

| ω be the final segment of the input after ”door a”.

Of course the concatenation of the two parts is the full ω input:

ω =
(
ω

a

|
)(a

| ω
)

.

Observation

Knowing ω
a

| and the σ(a, ω) state sequence, then we are able to
reconstruct how the Turing machine ”works” when the eye is on
the left hand side of the door a.

We cannot know how long the eye was a right but as soon as it
crosses the door (and as long as it remains on the left) we are able
to describe the run of T .

Peter Hajnal Complexity classes, SzTE, 2023

Corollary of the Observation

Corollary

Let ω, ω′ ∈ Σn be arbitrary inputs and a be a a door. Suppose
σ(a, ω) = σ(a, ω′) and Turing machine T has the same result on
the two inputs.

Then T outputs the same on the input ω̃ =
(
ω

a

|
)(a

| ω′
)

.

Peter Hajnal Complexity classes, SzTE, 2023

I0

Definition: I0

Suppose that 3|n. Let

I0 := {α0
n
3
←−α : α ∈ Σ

n
3 } ⊆ PALINDROM ∩ Σn.

|I0| = |Σ|
n
3 = |{0, 1}|

n
3 = 2

n
3 .

Corollary

Let ω, ω′ ∈ I0 be distinct words and a be a middle door (i.e. one
of the doors separating the middle n/3 zeros). Then
σ(a, ω) 6= σ(a, ω′).

Indirectly, suppose that σ(a, ω) = σ(a, ω′). Then the previous
corollary if both inputs have ACCEPT as the state of Turing

machine, then the ω̃ =
(
ω

a

|
)(a

| ω′
)

= α0
n
3
←−
α′ input is also

accepted. Contradiction.
Peter Hajnal Complexity classes, SzTE, 2023

A Lemma

Observation

The number of state sequences shorter than t

1 + |S |+ · · ·+ |S |t−1 =
|S |t − 1

|S | − 1
< |S |t − 1 < |S |t .

Lemma

If |I0| = |Σ|
n
3 ≥ |S |t , then ∃ω ∈ I0 such that σ(a, ω) has length at

least t, where a is a middle door.

We have |I0| = |Σ|
n
3 ≥ |S |t in the case when t ∼ βT · n.

Peter Hajnal Complexity classes, SzTE, 2023

A Corollary of the Lemma

Corollary

Let a be an arbitrary middle door. Assume that |I0| ≥ 2|S |t . There
exists at least |I0|/2 inputs in I0 for which |σ(a, ω)| ≥ t.

Let denote the set of inputs in the Corollary by I1(a), i.e.

I1(a) = {ω ∈ I0 : |σ(a, ω)| ≥ t} ⊆ I0.

We also know that t ∼ γT · n is a suitable choice to guarantee
|I1| ≥ |I0|/2.

Peter Hajnal Complexity classes, SzTE, 2023

The proof

∑
ω∈I0

TIME(ω,T) ≥
∑
ω∈I0

∑
a middle door

|{t : t the head crosses a}|

=
∑
ω∈I0

∑
a middle door

|σ(a, ω)| =
∑

a middle door

∑
ω∈I0

|σ(a, ω)|

≥
∑

a middle door

∑
ω∈I1(a)

t =
∑

a middle door

|I1(a)| · t ≥
∑

a middle door

|I0|
2
· t

=
n

3
· |I0|

2
· t =

γT
6
· n2 · |I0|.

After division by |I0|:

1

|I0|
∑
ω∈I0

TIME(ω,T) ≥ γT
6
· n2.

Peter Hajnal Complexity classes, SzTE, 2023

This is the end!

Thank you for your attention!

Peter Hajnal Complexity classes, SzTE, 2023

