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Normalized Turing Machines

Reminder

For L ∈T T IME(t(n))/NT IME(t(n)), we always assume that
t(n) is a nice time function, i.e., there exists a Turing machine that
solves L and run for t(n) steps on each input of length n.
For an input ω ∈ Σn, the run of T can be represented as

κ0(ω)→ κ1 → κ2 → . . .→ κ`,

where κ0(ω) is the initial configuration corresponding to ω, κi+1 is
the successor of κi , and κ` is the first configuration where the
state is ACCEPT or REJECT. We can assume ` = t(n).
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Encoding Configurations with Bits

Observation

Configurations κ can be encoded with bit sequences.

allapot karakter karakter karakter

felette  van  e a szem bitek

inputszalag munkaszalag

karakter karakter karakter

felette  van  e a szem bitek

We also need to encode the position of the head. To do this, we
spread it by placing one bit on each cell. This means that not
every bit sequence of a given length encodes a configuration.

Encoding S elements requires dlog2 |S |e bits.

The length of blocks encoding states and symbols depends on |S |,
|Σ|, and |Γ|. In any case, a constant number of bits is sufficient
(depending on the Turing machine).
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Observations

1st Remark

We can choose the agreement such that for a given n-bit input ω,
its length dωe is αT · n.

If the time complexity of T is at most t(n), then the length of the
configuration codes is βT · t(n).

In the following, n and the encoding agreement are always fixed
(accordingly, the lengths of the corresponding codes are always
known).
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Further Remark

2nd Remark

The function dκie → dκ+i e = dκi+1e can be easily
defined/calculated.

The statement of the remark is not mathematically precise, and
the interpretation of the term easily is not well-defined.

We show that it is possible to straightforwardly determine/calculate
a small (polynomial-size) circuit that, given the code of a
configuration, computes the code of the next configuration.
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Circuits

Definition: Circuit

A circuit is an
−→
G directed graph that does not contain a directed

cycle (i.e., it can be drawn so that all edges go downwards).

Each vertex has in-degree 0, 1, or 2. Vertices with in-degree 0 are
called input vertices. Let I be the set of input vertices. We refer to

the non-input vertices as gates. The set of gates is K = V (
−→
G )− I .

A special vertex or vertices, referred to as output vertices, is/are
designated for output. Let `I : I → {x1, x2, . . . , xn} ∪ {0, 1} be a
labeling for the output vertices. Let `K : K → {¬,∨,∧} be a
labeling for the gates, with the property that the label of a gate is
¬ if its in-degree is 1. Let ` = (`I , `K ) be the labeling function for
all vertices.

A labeled directed graph (
−→
G , `) is called a circuit.
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Circuit as a Dynamic Computation Model

A circuit computes a Boolean function in the following way: We assume
that the circuit is drawn such that all edges go downward. The evaluation
of gates proceeds from top to bottom.
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Circuit as a Dynamic Computation Model (continued)

When we reach a gate, the gates from which edges lead to it have
already been evaluated, meaning that a computed bit has been
assigned.

The bit computed by the current gate can be naturally interpreted
based on the bits flowing on the incoming edges and the label of
the gate. The bit sequence computed by the circuit is the bit(s)
computed by the output vertex (or vertices).

Definition

Let fC be the Boolean function computed/realized by the circuit C
as described above.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023
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Mathematizing the Last Observation

2nd Observation

From a bit sequence encoding a configuration, we can
straightforwardly describe a small circuit that computes the code
of the next configuration.

Our construction is simple but involves many details and
agreements. Instead of providing a formal description, we illustrate
the ideas through an example.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023
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Mathematizing the Last Observation in a Picture
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Mathematizing the Last Observation in Words

For a cell, we perform the logical AND operation on the bit
indicating whether the eye/hand is there and the bits encoding the
content of the cell. The resulting bit sequence is either all 0 (if the
eye/hand is not there, we ANDed with all 0s) or the code of the
seen character (if the eye/hand is there).

For the bit sequences obtained for the tape cells, we read the first,
then the second, and so on, characters by performing the logical
OR operation. We obtain the code of the seen character on the
tape.
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Mathematizing the Last Observation in Words

In the yellow area, more complex calculations are performed: we
compute constant many bits from constant many bits (depending
on the Turing machine). The concrete implementation depends on
the transition function. If we have no idea about the dependencies
of individual bits, we can write down the obvious DNF formula
based on the transitions. Even in this case, working with a
constant number of gates allows us to accomplish our task.

In the light blue area, we calculate one of the bits describing the
position of the head. This depends on whether the head was there
or stood over one of the neighboring cells, and also on the
direction the transition prescribes. This part could be explicitly
written down, but it is unnecessary based on our previous remark.
This blue part is there for each head-position bit.
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Mathematizing the Last Observation in Words

In the green area, we calculate the new content of the tape. Each
tape cell has such a green block (we only displayed one for
simplicity). The new character depends on the new one, the old
one, and whether the head is there. This part could also be easily
implemented if we knew the number ` of bits used to encode the
elements of Γ. In the green area, we calculate the function
f (ε, k0, k1) = kε, which computes ` from 1 + 2` bits.
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Observation

3rd Observation

dωe → dκ0(ω)e is a simple assignment/function.

This is a simpler observation than before. Again, we refer to a
diagram.

karakter

karakter karakter

We assumed that the code for the START state is 00 . . . 0 (of
length dlog2 |S |e, in our example 9).

The code for . on the input tape is 00 . . . 0, and the code for / is
11 . . . 1 (of length dlog2 |Σ|e, in our example 5).

On the tape, the code for . is 0 . . . 00, and the code for the blank
character is 0 . . . 01 (of length dlog2 |Γ|e, in our example 8).
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Our Results So Far

Definition

Let
CIRCUIT-EVAL = {dC, ωe : C(ω) = 1},

i.e., the decision problem that, given a circuit C and a bit sequence
ω, decides whether the circuit computes the 1 bit when given the
bit values of x1, x2, . . . as ω (i.e., it evaluates Cn(ω)).

Theorem

CIRCUIT-EVAL is P-complete (with respect to L-reductions).
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Proof

Let L ∈T P. Let t(n) be a polynomial, and T be the time
constraint.

We can assume that T is such that after reaching the
ACCEPT/REJECT state, it

”
holds” its state. Thus, answering the

question ω ∈ L? (ω ∈ Σn) is equivalent to determining whether,
during the run on ω, the configuration κt(n) in state ACCEPT.

We can agree to encode configurations with 0-1 sequences, such
that in the block encoding the state, the code of the ACCEPT
state is an all 1s sequence.

Based on the above, for any L ∈T P, given an arbitrary ω ∈ Σn,
we can construct a circuit TT ,ω that encodes the input gates with
ω (3rd observation), and some of its levels encode the elements of
the configuration sequence of the Turing computation (2nd
observation).
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Proof (Continued)

After constructing t(n) such levels, we are interested in
determining whether there are only 1s in a specific block. This can
be expressed easily using AND gates.

The theoretical part of the reduction follows from the earlier
observations. The construction/reduction is log-space.
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Circuit Satisfaction and the First NP-Complete Theorem

Definition

CIRCUIT-SAT = {dCe :there is a bit sequence ω such that

C(ω) = 1}

i.e., the decision problem that, given a circuit C, we need to decide
whether it is satisfiable.

Consequence

(i) For any L ∈ NP language, L ≺L CIRCUIT-SAT

(ii) CIRCUIT-SAT is NP-complete

(iii) P = NP ⇔ CIRCUIT-SAT ∈ P
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Proof (i)

L ∈T NP, so for any ω ∈ L, there exists a witness:
τ = (t1, t2, . . . , tp(n)) such that T (ω, τ) reaches the ACCEPT
state. That is, for the constructed circuit C ,
C (dωe, y1, y2, . . . , yq(n)) evaluates to 1 when we substitute the bits
of τ into the corresponding places of the y variables.

Conversely, if we find a satisfying assignment for
C (dωe, y1, y2, . . . , yq(n)), we can find the code of a witness.

Therefore, constructing the code of C (dωe, y1, y2, . . . , yq(n))
(which can be done in L) is a good reduction.
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Proof (ii)+(iii)

(ii) From part (i) and the fact that CIRCUIT-SAT∈ NP (witness is
a satisfying input), it follows that CIRCUIT-SAT is NP-complete.

(iii) Since CIRCUIT-SAT ∈ NP, if P = NP, then it is in P as
well.

Conversely, if CIRCUIT-SAT∈ P, then for any L ∈ NP language,
we can reduce it to CIRCUIT-SAT, and the reduced problem can
be decided in P.

The two steps together form a polynomial time algorithm solving
the decision problem for L. From this, we obtain NP ⊆ P, so
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Conjunctive Normal Form (CNF)

Definition

Let V = {x1, x2, . . . , xn} be a set of variables. Let L = V ∪̇V be
the set of literals (V is the set of negated variables, i.e.,
{x1, x2, . . . , xn}).

A subset of L is called a clause. In our case, a clause is thought of
as the disjunction of the associated literals using the ∨ logical
operator.

A formula ϕ in conjunctive normal form (CNF) is a set of clauses.

For this set of clauses, we think of the clauses as connected by the
∧ logical operator, i.e., the conjunction.
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Conjunctive Normal Form (CNF)

A CNF formula ϕ is satisfiable if there is an evaluation of V
(which can be naturally extended to an evaluation of L) such that
each clause evaluates to true when the corresponding literals are
substituted by their evaluated values.

Definition: The SAT language

SAT = {dϕe : ϕ is a satisfiable CNF}

That is, SAT is the problem where, given a CNF formula ϕ, we
need to decide whether it is satisfiable.
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The Cook–Levin Theorem

Cook–Levin Theorem

SAT (satisfiability of CNF formulas) is NP-complete.
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From One NP-Complete Problem to Another

It is easy to see that SAT ∈ NP.

If we are given a reduction from CIRCUIT-SAT to SAT, then we
are done: From the previous consequence (i), and the transitivity
of polynomial-time reductions, we can reduce any L ∈ NP
language to SAT.

The above two steps are very characteristic once we have our first
NP-complete problem.

We don’t need the full power of NP to formulate a problem C . It
is enough to formulate a NP-complete problem C ′ using C .
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Plan for the Proof of CIRCUIT-SAT � SAT

We show that

CIRCUIT-SAT � BOOLEAN-EQUATION-SYSTEM-SAT � SAT.

Definition: Boolean Equation System

An equation system ϕi (x1, x2, . . . , xn) = ψi (x1, x2, . . . , xn),
i = 1, 2, . . . , `, is called a Boolean equation system if ϕi and ψi are
Boolean formulas. BOOLEAN-EQUATION-SYSTEM-SAT is the
language containing the encodings of solvable/satisfiable Boolean
equation systems.

Definition

BOOLEAN-EQUATION-SYSTEM-SAT is the language containing
the encodings of solvable/satisfiable Boolean equation systems.
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From Circuit to Equation System

Let H be a circuit. We identify each vertex with a variable. For
input vertices, this is the label of the vertex. For the remaining
vertices (gates), we assign distinct variables.

For each gate, we have an equation:

xg = ¬xh if g is a negation gate and receives input from gate
h.

xg = xh ∧ xh′ if g is an AND gate and receives inputs from
gates h and h′.

xg = xh ∨ xh′ if g is an OR gate and receives inputs from
gates h and h′.

xg = 1 if g is the output gate of the circuit.
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CIRCUIT-SAT �
BOOLEAN-EQUATION-SYSTEM-SAT � Proof

This gives us a Boolean equation system from the circuit.

If the circuit computes 1 for an assignment (proving the
satisfiability), then we obtain a solution for the equation system
together with the bits computed by the gates.

Conversely, if we find a solution for the equation system, we can
extract the assignment of the original input variables.

Thus, generating the code of xg = 1 (which can be done in L) is a
good reduction.
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BOOLEAN-EQUATION-SYSTEM-SAT � SAT Proof

Replacing ‘=’ with ‘↔’ logical symbols in the equations, we obtain
the formulas corresponding to each equation.

An assignment satisfies an equation if and only if it makes the
associated formula true.

Each resulting logical expression has at most three variables. It is
easy to convert them to CNF.

If we connect the CNF expressions obtained from all equations
with the ‘and’ logical symbol, we also obtain a CNF form.

This CNF formula is associated with the equation system.

The assignment of variables can be done in polynomial time.

The solvability of the equation system is equivalent to the
satisfiability of the formula.
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Where Are We, Where Are We Heading?

So far, we have seen complete problems for various complexity
classes (NL,P,NP).

The case of the NP class is different. For many seemingly
unrelated, important problems, it turned out that they are
NP-complete. The class is particularly important because if the

suspected P 6= NP holds, then there is no polynomial time
algorithm for these problems. In other words, we consider them
inherently difficult based on theoretical conjectures.
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CNF with 3-sized clauses, with clauses at most 3-sized

Let (= 3)-SAT be the set of encodings of satisfiable CNF formulas,
where each clause contains exactly 3 literals. Let (≤ 3)-SAT be
the set of encodings of satisfiable CNF formulas, where each clause
contains at most 3 literals.

Lemma

(= 3)-SAT�P (≤ 3)-SAT, and (≤ 3)-SAT�P (= 3)-SAT.
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Proof of the Lemma

The first reduction is obvious, as (= 3)-SAT is a special case of
(≤ 3)-SAT.

Conversely, let ϕ be a (≤ 3)-SAT input. We transform it into an
equivalent formula such that each clause has exactly three literals.

Keep the 3-sized clauses of ϕ, and for each small clause, perform
the following operation (in parallel): For a clause C : 〈`1, `2〉,
replace it with the clause pair 〈`1, `2, u〉, 〈`1, `2, u〉.

Repeat this for every small clause. What we obtain is an equivalent
3-CNF.

In the example above, the small clause had two literals. Our idea
can be applied to clauses with fewer literals. The result: an
equivalent formula with one larger clauses. We need to iterate our
idea.
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Equivalence

Definition

If two languages are polynomial-time reducible to each other, we
say that they are equivalent (with respect to polynomial reduction).

In this case, the two problems are considered equivalent. According
to the theorem, they are equivalent.

When we mention the language 3-SAT, we may refer to either of
the two languages mentioned above. Of course, when we reduce to
3-SAT, we assume that the input CNF is such that each clause has
exactly three literals. When reducing from 3-SAT, it doesn’t matter
if the reduction algorithm produces clauses smaller than three.
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3-SAT

Theorem

3-SAT is NP-complete.

3-SAT is trivially in NP (it is a special case of SAT).
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Reduction from SAT to 3-SAT

Reminder: What Are We Claiming?

For a SAT → 3-SAT reduction, we need a function that can be
computed in polynomial time, such that C ∈ SAT ⇔ C′ ∈ 3-SAT.

The assignment is as follows: for C = 〈`1, . . . , `k〉, introduce new
variables u1, . . . , uk−1, and add the following clauses to C′:

〈`1, u1〉, 〈u1, `2, u2〉, . . . , 〈ui−1, `i , ui 〉, . . . , 〈uk−2, `k−1, uk−1〉, 〈uk−1, `k〉

Do this for every clause in C. What we get is a 3-CNF.
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Proof

We need to establish the following:

(i) C′ can be computed in polynomial time (in the length of the
code of C). This is obvious.

(ii) C is satisfiable if and only if C′ is.

If C is satisfiable, consider a satisfying assignment. For a clause
C = 〈`1, . . . , `k〉, let `i be the first true literal in the clause.

For C , introduce new variables u1, . . . , uk−1 and add the following
clauses to C′:

〈`1, u1〉, 〈u1, `2, u2〉, . . . , 〈ui−1, `i , ui 〉, . . . , 〈uk−2, `k−1, uk−1〉, 〈uk−1, `k〉

Repeat this for every clause in C. What we obtain is a 3-CNF.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Proof

We need to establish the following:

(i) C′ can be computed in polynomial time (in the length of the
code of C). This is obvious.

(ii) C is satisfiable if and only if C′ is.

If C is satisfiable, consider a satisfying assignment. For a clause
C = 〈`1, . . . , `k〉, let `i be the first true literal in the clause.

For C , introduce new variables u1, . . . , uk−1 and add the following
clauses to C′:

〈`1, u1〉, 〈u1, `2, u2〉, . . . , 〈ui−1, `i , ui 〉, . . . , 〈uk−2, `k−1, uk−1〉, 〈uk−1, `k〉

Repeat this for every clause in C. What we obtain is a 3-CNF.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Proof

We need to establish the following:

(i) C′ can be computed in polynomial time (in the length of the
code of C). This is obvious.

(ii) C is satisfiable if and only if C′ is.

If C is satisfiable, consider a satisfying assignment. For a clause
C = 〈`1, . . . , `k〉, let `i be the first true literal in the clause.

For C , introduce new variables u1, . . . , uk−1 and add the following
clauses to C′:

〈`1, u1〉, 〈u1, `2, u2〉, . . . , 〈ui−1, `i , ui 〉, . . . , 〈uk−2, `k−1, uk−1〉, 〈uk−1, `k〉

Repeat this for every clause in C. What we obtain is a 3-CNF.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Proof

We need to establish the following:

(i) C′ can be computed in polynomial time (in the length of the
code of C). This is obvious.

(ii) C is satisfiable if and only if C′ is.

If C is satisfiable, consider a satisfying assignment. For a clause
C = 〈`1, . . . , `k〉, let `i be the first true literal in the clause.

For C , introduce new variables u1, . . . , uk−1 and add the following
clauses to C′:

〈`1, u1〉, 〈u1, `2, u2〉, . . . , 〈ui−1, `i , ui 〉, . . . , 〈uk−2, `k−1, uk−1〉, 〈uk−1, `k〉

Repeat this for every clause in C. What we obtain is a 3-CNF.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Proof

We need to establish the following:

(i) C′ can be computed in polynomial time (in the length of the
code of C). This is obvious.

(ii) C is satisfiable if and only if C′ is.

If C is satisfiable, consider a satisfying assignment. For a clause
C = 〈`1, . . . , `k〉, let `i be the first true literal in the clause.

For C , introduce new variables u1, . . . , uk−1 and add the following
clauses to C′:

〈`1, u1〉, 〈u1, `2, u2〉, . . . , 〈ui−1, `i , ui 〉, . . . , 〈uk−2, `k−1, uk−1〉, 〈uk−1, `k〉

Repeat this for every clause in C. What we obtain is a 3-CNF.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Proof

We need to establish the following:

(i) C′ can be computed in polynomial time (in the length of the
code of C). This is obvious.

(ii) C is satisfiable if and only if C′ is.

If C is satisfiable, consider a satisfying assignment.

For a clause
C = 〈`1, . . . , `k〉, let `i be the first true literal in the clause.

For C , introduce new variables u1, . . . , uk−1 and add the following
clauses to C′:

〈`1, u1〉, 〈u1, `2, u2〉, . . . , 〈ui−1, `i , ui 〉, . . . , 〈uk−2, `k−1, uk−1〉, 〈uk−1, `k〉

Repeat this for every clause in C. What we obtain is a 3-CNF.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Proof

We need to establish the following:

(i) C′ can be computed in polynomial time (in the length of the
code of C). This is obvious.

(ii) C is satisfiable if and only if C′ is.

If C is satisfiable, consider a satisfying assignment. For a clause
C = 〈`1, . . . , `k〉, let `i be the first true literal in the clause.

For C , introduce new variables u1, . . . , uk−1 and add the following
clauses to C′:

〈`1, u1〉, 〈u1, `2, u2〉, . . . , 〈ui−1, `i , ui 〉, . . . , 〈uk−2, `k−1, uk−1〉, 〈uk−1, `k〉

Repeat this for every clause in C. What we obtain is a 3-CNF.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Proof

We need to establish the following:

(i) C′ can be computed in polynomial time (in the length of the
code of C). This is obvious.

(ii) C is satisfiable if and only if C′ is.

If C is satisfiable, consider a satisfying assignment. For a clause
C = 〈`1, . . . , `k〉, let `i be the first true literal in the clause.

For C , introduce new variables u1, . . . , uk−1 and add the following
clauses to C′:

〈`1, u1〉, 〈u1, `2, u2〉, . . . , 〈ui−1, `i , ui 〉, . . . , 〈uk−2, `k−1, uk−1〉, 〈uk−1, `k〉

Repeat this for every clause in C. What we obtain is a 3-CNF.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Proof

We need to establish the following:

(i) C′ can be computed in polynomial time (in the length of the
code of C). This is obvious.

(ii) C is satisfiable if and only if C′ is.

If C is satisfiable, consider a satisfying assignment. For a clause
C = 〈`1, . . . , `k〉, let `i be the first true literal in the clause.

For C , introduce new variables u1, . . . , uk−1 and add the following
clauses to C′:

〈`1, u1〉, 〈u1, `2, u2〉, . . . , 〈ui−1, `i , ui 〉, . . . , 〈uk−2, `k−1, uk−1〉, 〈uk−1, `k〉

Repeat this for every clause in C. What we obtain is a 3-CNF.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Proof, The Other Direction

C′ has no satisfying assignment where, for some C clause
C = 〈`1, . . . , `k〉, all literals `1 = . . . = `k = h. Because the clause

〈u1〉, 〈u1, u2〉, . . . , 〈ui−1, ui 〉, . . . , 〈uk−2, uk−1〉〈uk−1〉

is unsatisfiable.
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k-SAT

Definition: k-SAT

Let k-SAT be the problem defined as follows: given a conjunctive
normal form where each clause has at most k literals (k-CNF), is it
satisfiable?

Note

The following reduction chain is evident:

2-SAT �P 3-SAT �P 4-SAT �P . . . �P k-SAT �P . . . �P SAT .

It is easy to see that 2-SAT ∈ P. Moreover, 2-SAT ∈ coNL.
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NOT-ALL-TRUE-SAT

Definition

An assignment makes a clause homogeneous if every literal in the
clause receives the same truth value. In other words, a clause
becomes non-homogeneous if it is satisfied (contains a true literal)
but not all literals are true.
Let

NOT-ALL-TRUE-SAT = {dϕe : ϕ is a CNF that is satisfiable

but has no clause

where all literals are true}
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The Theorem

Theorem

NOT-ALL-TRUE-SAT is NP-complete.

Trivially, NOT-ALL-TRUE-SAT ∈ NP.
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Reduction from SAT to NOT-ALL-TRUE-SAT

Reminder: What Are We Claiming?

For an SAT → NOT-ALL-TRUE-SAT reduction, we need a
function that can be computed in polynomial time, such that C ∈
SAT ⇔ C′ ∈ NOT-ALL-TRUE-SAT.

The assignment is as follows: for C = 〈`1, . . . , `k〉, introduce a
new variables s, and add the following clauses to C′:

〈`1, . . . , `k , s〉.

Do this for every clause in C. What we get is a
NOT-ALL-TRUE-SAT instance.
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The Theorem

Theorem

NOT-ALL-TRUE-SAT is NP-complete.

NOT-ALL-TRUE-SAT ∈ NP is trivial.

To complete the proof is an easy exercise.
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NOT-ALL-TRUE-3-SAT

Let NOT-ALL-TRUE-3-SAT be the set of CNFs in which every
clause contains at most three literals and there is an assignment of
truth values to variables such that every clause in ϕ is not
homogeneous.

Consequence

NOT-ALL-TRUE-3-SAT is NP-complete.

The proof will be a reduction from NOT-ALL-TRUE-SAT to
NOT-ALL-TRUE-3-SAT.
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Reduction from NOT-ALL-TRUE-SAT to
NOT-ALL-TRUE-3-SAT

Let’s replicate the SAT � 3-SAT reduction.

If we apply the previous reduction from NOT-ALL-TRUE-SAT ϕ,
we obtain a CNF formula R(ϕ) in which every clause contains at
most three literals.

Assume ϕ ∈ NOT-ALL-TRUE-SAT, meaning that for some
assignment of truth values to variables, each clause contains both
true and false literals.

Let C be a clause in ϕ such that `i is true, and `j is false. We can
assume i < j .

Examine what the reduction constructs from C :

〈`1, u1〉, 〈u1, `2, u2〉, . . . , 〈ui−1, `i , ui 〉, . . . , 〈uk−2, `k−1, uk−1〉, 〈uk−1, `k〉.

Keep the values of the original variables; below, we describe how
the new variables get their values.
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NOT-ALL-TRUE-SAT � NOT-ALL-TRUE-3-SAT
(continued)

After `i , the negation of a new variable is introduced. Assigning a
true value to the new variable makes the `i literal false and true in
the small clause. Moving right, assigning true values to the
subsequent new variables reaches the small clause for `j .
Meanwhile, every clause receives both true and false values.

The same can be achieved for the outermost clauses by moving
from the edges towards the center and distributing the values of
the new variables accordingly.

In summary, we have shown that

R(ϕ) ∈ NOT-ALL-TRUE-3-SAT.
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NOT-ALL-TRUE-SAT � NOT-ALL-TRUE-3-SAT
(continued)

Conversely, assume that R(ϕ) ∈ NOT-ALL-TRUE-3-SAT. We
have seen that an assignment satisfying every clause in R(ϕ)
(which is a non-all-true assignment) cannot result in the original
clauses having all true values.

We only need to rule out the possibility that R(ϕ) is a non-all-true
assignment to the original variables, restricting each clause of the
original ones to have every literal true.

This would imply that the

〈u1〉, 〈u1, u2〉, . . . , 〈ui−1, ui 〉, . . . , 〈uk−2, uk−1〉〈uk−1〉

clauses all need to be false. This (as before) is impossible.
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Break
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Coloring Problems

Definition

k-COLORABILITY is the following problem: given a graph, can it
be colored with k colors?

Theorem

3-COLORABILITY is NP-complete.

3-COLORABILITY ∈ NP: the witness is a coloring, and it can be
checked in polynomial time whether it is a valid coloring.
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3-SAT � 3-COLORABILITY Reduction

To each 3-CNF C, we assign a graph GC , with vertices n, h, the
variables of C, their negations, and for each C ∈ C clause, the
vertices C1, C2, C3, C4, C5. If C has n variables and m clauses
each containing 3 literals, then the number of vertices in G is
2 + 2n + 5m.

The edges of GC are as follows: nh, for each variable xi xixi , nxi
and nxi , and for each C = 〈z1, z2, z3〉 clause C1C2, C2C3, C3C4,
C4C5, C5C1, C1z1, C2z2, C3z3, C4h, C5h.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

3-SAT � 3-COLORABILITY Reduction

To each 3-CNF C, we assign a graph GC , with vertices n, h, the
variables of C, their negations, and for each C ∈ C clause, the
vertices C1, C2, C3, C4, C5.

If C has n variables and m clauses
each containing 3 literals, then the number of vertices in G is
2 + 2n + 5m.

The edges of GC are as follows: nh, for each variable xi xixi , nxi
and nxi , and for each C = 〈z1, z2, z3〉 clause C1C2, C2C3, C3C4,
C4C5, C5C1, C1z1, C2z2, C3z3, C4h, C5h.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

3-SAT � 3-COLORABILITY Reduction

To each 3-CNF C, we assign a graph GC , with vertices n, h, the
variables of C, their negations, and for each C ∈ C clause, the
vertices C1, C2, C3, C4, C5. If C has n variables and m clauses
each containing 3 literals, then the number of vertices in G is

2 + 2n + 5m.

The edges of GC are as follows: nh, for each variable xi xixi , nxi
and nxi , and for each C = 〈z1, z2, z3〉 clause C1C2, C2C3, C3C4,
C4C5, C5C1, C1z1, C2z2, C3z3, C4h, C5h.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

3-SAT � 3-COLORABILITY Reduction

To each 3-CNF C, we assign a graph GC , with vertices n, h, the
variables of C, their negations, and for each C ∈ C clause, the
vertices C1, C2, C3, C4, C5. If C has n variables and m clauses
each containing 3 literals, then the number of vertices in G is
2 + 2n + 5m.

The edges of GC are as follows: nh, for each variable xi xixi , nxi
and nxi , and for each C = 〈z1, z2, z3〉 clause C1C2, C2C3, C3C4,
C4C5, C5C1, C1z1, C2z2, C3z3, C4h, C5h.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

3-SAT � 3-COLORABILITY Reduction

To each 3-CNF C, we assign a graph GC , with vertices n, h, the
variables of C, their negations, and for each C ∈ C clause, the
vertices C1, C2, C3, C4, C5. If C has n variables and m clauses
each containing 3 literals, then the number of vertices in G is
2 + 2n + 5m.

The edges of GC are as follows: nh, for each variable xi xixi , nxi
and nxi , and for each C = 〈z1, z2, z3〉 clause C1C2, C2C3, C3C4,
C4C5, C5C1, C1z1, C2z2, C3z3, C4h, C5h.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

3-SAT � 3-COLORABILITY Reduction (Visual)
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3-SAT � 3-COLORABILITY Reduction (Visual)
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3-SAT � 3-COLORABILITY Reduction (Verbal)

It is easy to verify that GC can be determined in polynomial time,
and it is 3-colorable if and only if C is satisfiable (using the
observation that the 3-coloring of z1, z2, z3, h can be extended to a
valid coloring for the 5 vertices corresponding to the clause
C = 〈z1, z2, z3〉, if the colors of the 4 vertices are distinct).

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

3-SAT � 3-COLORABILITY Reduction (Verbal)

It is easy to verify that GC can be determined in polynomial time,
and it is 3-colorable if and only if C is satisfiable (using the
observation that the 3-coloring of z1, z2, z3, h can be extended to a
valid coloring for the 5 vertices corresponding to the clause
C = 〈z1, z2, z3〉, if the colors of the 4 vertices are distinct).

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Additional Coloring Problems

Remark

It can be easily checked that 2-COLORABILITY is in coNL.

Remark (Appel, Haken 1977)

4-COLORABILITY is trivial.

Definition

COLORING PROBLEM: given a graph G and a natural number k .
Is there a proper k-coloring of G?

Theorem

COLORING PROBLEM is NP-complete.
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Proof

COLORING PROBLEM ∈ NP: the witness is a coloring, and it
can be checked in polynomial time whether it is a proper coloring.

COLORING PROBLEM is NP-hard, as it generalizes
3-COLORABILITY.
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INDEPENDENT-VERTEX-SET

Definition

INDEPENDENT-VERTEX-SET: given a graph G and a natural
number k . Does G have an independent set of size k?

Theorem

INDEPENDENT-VERTEX-SET is NP-complete.

INDEPENDENT-VERTEX-SET ∈ NP: the witness is an
independent set.
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Proof I

Reduction from SAT:
C = (C1 = 〈z1,1, . . . , z1,r1〉, . . . ,Ck = 〈zk,1, . . . , zk,rk 〉) 7→ (GC , k)
(where (i , j) indicates the j-th literal in the i-th clause),
V (GC) = {(i , j) : i ≤ k, j ≤ ri},
E (GC) = {(i , j), (i ′, j ′) : i = i ′ or zi ,j = z i ′,j ′}.

It’s easy to see that GC can be determined in polynomial time, and
there is an independent set of size k in GC if and only if C is
satisfiable.

An assignment is satisfying if, for each clause, we can choose a
true literal (the edges ensure that the variable and its negation do
not appear together, and at most one literal is chosen from each
clause).
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Proof II

Reduction from the Coloring Problem: G 7→ (G ′, |V (G )|), where
V (G ′) = {(v , i) : v ∈ V (G ), i ∈ [3]} (here, (v , i) represents that
vertex v is assigned color i),
E (G ′) = {(v , i)(v ′, i ′) : v = v ′, i 6= i ′ or vv ′ ∈ E (G ), i = i ′} (i.e.,
edges are used to forbid, it is forbidden that a vertex receives more
than one color, or connected vertices receive the same color).
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Proof II in Figure
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Proof II in Words

It’s easy to see that G ′ and |V (G )| can also be determined in
polynomial time, and there is an independent set of size |V (G )| in
G ′ if and only if G is 3-colorable.
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Note

Note

In contrast to the Coloring Problem, if k is not part of the input
but a constant, then the resulting k-INDEPENDENT SET problem
can be solved in polynomial time (every n-vertex graph has
polynomially many k-element subsets if k is fixed).
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CLIQUE, VERTEX-COVER

Definition

CLIQUE problem: Given a graph G and a natural number k . Does
G have a clique of size k?

Definition

VERTEX-COVER problem: Given a graph G and a natural number
k . Does G have a vertex cover of size k?

Consequence

CLIQUE and VERTEX-COVER are NP-complete.

Equivalent to the INDEPENDENT SET problem.
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HAMILTON

Definition

HAMILTON, the language containing codes of graphs that have a
Hamiltonian cycle.

The decision problem for the language HAMILTON is to
determine, given a graph, whether it has a Hamiltonian cycle.

Theorem

HAMILTON is NP-complete.

HAMILTON is obviously in NP.
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Expanding the Statement

We demonstrate that VERTEX-COVER can be reduced to
HAMILTON. That is, given a graph G and k ∈ N, we can
effectively define a graph R such that R has a Hamiltonian cycle if
and only if G can be covered by k vertices.

We illustrate the reduction with an example/figure. The general,
formal description can be easily inferred from the figure, and we
leave that to the interested reader.
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Proof in Figure: G in red, k = 2, R in blue
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Proof in Figure: G in red, k = 2, R in blue
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Explaining the Figure

Each vertex in G corresponds to a path, divided into blocks of six
(enclosed by light blue ellipses) containing vertices (blue circular
vertices).

Each vertex in G corresponds to a path, divided into blocks of six
(enclosed by light blue ellipses) containing vertices (blue circular
vertices).

It is easy to check that for each edge, two blocks corresponding to
the edge can be crossed in two different ways, as illustrated on the
right.
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Explaining the Figure

(Left) Crossing occurs on a single edge. We traverse one path of a
vertex, but also traverse the other block of the edge. (Right) Crossing
occurs in two separate parts, each on the path of a vertex.
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(Left) Crossing occurs on a single edge. We traverse one path of a
vertex, but also traverse the other block of the edge. (Right) Crossing
occurs in two separate parts, each on the path of a vertex.
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Proof (continued)

Assume that there exists a Hamiltonian cycle in this graph. In that
case, the chosen k triangular vertices separate k vertices. The
paths corresponding to these vertices traverse k blocks, with
possible detours.

It’s easy to verify that each edge is associated with two hexagonal
blocks, and the Hamiltonian cycle can only cross these blocks in
two ways.

For k = 2, we added k = 2 new vertices (blue, triangular vertices).

We connect these by connecting the two end points of each path
assigned to a vertex.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Proof (continued)

Assume that there exists a Hamiltonian cycle in this graph. In that
case, the chosen k triangular vertices separate k vertices. The
paths corresponding to these vertices traverse k blocks, with
possible detours.

It’s easy to verify that each edge is associated with two hexagonal
blocks, and the Hamiltonian cycle can only cross these blocks in
two ways.

For k = 2, we added k = 2 new vertices (blue, triangular vertices).

We connect these by connecting the two end points of each path
assigned to a vertex.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Proof (continued)

Assume that there exists a Hamiltonian cycle in this graph. In that
case, the chosen k triangular vertices separate k vertices. The
paths corresponding to these vertices traverse k blocks, with
possible detours.

It’s easy to verify that each edge is associated with two hexagonal
blocks, and the Hamiltonian cycle can only cross these blocks in
two ways.

For k = 2, we added k = 2 new vertices (blue, triangular vertices).

We connect these by connecting the two end points of each path
assigned to a vertex.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Proof (continued)

Assume that there exists a Hamiltonian cycle in this graph. In that
case, the chosen k triangular vertices separate k vertices. The
paths corresponding to these vertices traverse k blocks, with
possible detours.

It’s easy to verify that each edge is associated with two hexagonal
blocks, and the Hamiltonian cycle can only cross these blocks in
two ways.

For k = 2, we added k = 2 new vertices (blue, triangular vertices).

We connect these by connecting the two end points of each path
assigned to a vertex.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Proof (continued)

Assume that there exists a Hamiltonian cycle in this graph. In that
case, the chosen k triangular vertices separate k vertices. The
paths corresponding to these vertices traverse k blocks, with
possible detours.

It’s easy to verify that each edge is associated with two hexagonal
blocks, and the Hamiltonian cycle can only cross these blocks in
two ways.

For k = 2, we added k = 2 new vertices (blue, triangular vertices).

We connect these by connecting the two end points of each path
assigned to a vertex.

Peter Hajnal Circuits, P- and NP-complete problems, SzTE, 2023



P-completeness NP-completeness Cook–Levin Theorem Logical Problems Graph theory Set systems Aritmethic problems

Proof (continued)

Now, these detours must be organized such that all other paths of
vertices, as well as their blocks, are traversed.

It can be easily seen that this can only be organized if the selected
k vertices form a covering set.

This argument can be easily reversed.

This completes the theoretical part of the reduction. The technical
details of implementation (polynomial time) are omitted.
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MAX-CUT

Cutting a graph involves dividing its vertices into two disjoint
parts. The cut’s edge set includes edges where one endpoint is in
one part, and the other endpoint is in the other part.

Definition

MAX-CUT problem: given a graph G and a natural number k .
Does G have a cut with at least k edges?

Theorem

MAX-CUT is NP-complete.

MAX-CUT ∈ NP: a witness is a red/blue coloring, the number of
edges can be calculated in polynomial time, and it can be
compared with k .
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Proof

MAX-CUT is NP-hard: We reduce NOT-ALL-TRUE-3-SAT to it.

To every 3-CNF C, we associate the graph GC , where vertices are
variables and their negations (the literals).

For each clause C ∈ C, we connect every three literals pairwise.
(We refer to these edges as clause-edges.) Each clause corresponds
to three clause-edges. If a literal appears in multiple clauses,
multiple edges will be created in the graph constructed by the
reduction.

For every variable x , we draw an edge between x and x . (We refer
to these edges as variable-edges.) This describes all the edges of
the GC graph.
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reduction.

For every variable x , we draw an edge between x and x . (We refer
to these edges as variable-edges.) This describes all the edges of
the GC graph.
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Proof (continued)

It is easy to verify that GC can be determined in polynomial time.

Furthermore, it has a cut with at least |V |+ 2|C| edges if and only
if there is an evaluation of the variables in which every clause in C
is non-homogeneous.

Indeed, every cut of GC has at most |V | literal-edges and each
clause has at most 2 out of three clause-edges. That is, |V |+ 2|C|
is an upper bound on the number of edges in any cut of GC .

If a cut (I ,H) achieves this upper bound, then every literal-edge is
included, meaning each variable x and x falls into either I or H.
Thus, the cut defines an evaluation of our variables.

Furthermore, every clause has two out of three clause-edges in the
cut, meaning the described evaluation satisfies every clause in C in
a non-all-true manner.
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CUT Notes

The MIN-CUT problem tests whether there is a cut with at most k
edges. This problem can be solved in polynomial time. Using the
theory of flows, the set of edges defining the smallest cut can be
determined.

We also note that our reduction created a graph whose optimal cut
was a balanced split. This implies that the MAX-BISECTION
problem is also NP-complete. Complementing this gives us that
the MAX-BISECTION and MIN-BISECTION problems are (in
polynomial time) equivalent. Specifically, the MIN-BISECTION
problem is also NP-complete.
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Break
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Set Systems

Definition: Simple Set System

H is a simple set system over the set V if H ⊆ P(V ). The
elements of H are the edges of the set system.

A k-uniform set system is a set system where all edges have size k .
Thus, simple graphs correspond precisely to 2-uniform set systems.

Definition: Set System

(V , E , I ) is a set system if I ⊂ V × E is a matching relation
between the vertex set V and the edge set E .

For every E ∈ E , there is a subset {v ∈ V : v ∈ E} that is a subset
of V .
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Alternative Descriptions of Set Systems

Observation

A set system H over V can be easily described by a bipartite graph
B. The two color classes are V (upper points) and H (lower
points). An element of the base set is connected to an element of
H if and only if it belongs to the corresponding edge.

The set system can be encoded by the vertex-edge incidence
matrix. This is an n ×m binary matrix, where n = |V | and
m = |H|.
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INDEPENDENT-NODES-IN-SET-SYSTEM

Definition

The concept of an independent node set in graph theory can be
extended to set systems in two ways:

I is independent if, for every E ∈ H, E 6⊆ I .

I is independent* if, for every E ∈ H, |E ∩ I | ≤ 1.

Definition

INDEPENDENT-NODES-IN-SET-SYSTEM=

{dV ,H, ke : there exists an independent node set I with |I | = k}.

INDEPENDENT∗-NODES-IN-SET-SYSTEM=

{dV ,H, ke : there exists an independent∗ node set I with |I | = k}.
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Set Systems Harder Than Graphs

Theorem

(i) INDEPENDENT-NODES �
INDEPENDENT-NODES-IN-SET-SYSTEM,

(ii) INDEPENDENT-NODES �
INDEPENDENT∗-NODES-IN-SET-SYSTEM.

Indeed, the graph-theoretical problem graph is a special case of set
systems. The concept of independence in graph theory is a special
case of both types of independence in set systems.
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INDEPENDENT-EDGES-IN-SET-SYSTEM

Definition

INDEPENDENT-EDGES-IN-SET-SYSTEM =

{dV ,H, ke : there exist k edges in H that are pairwise disjoint}.

Note: The problem INDEPENDENT-EDGES-IN-GRAPHS,
alternatively MATCHING = {dG , ke : ν(G ) ≥ k}, is easily
solvable. According to Edmonds’ algorithm, this problem is in P.
Hence, the case for graphs is manageable.

Theorem

INDEPENDENT∗-NODES-IN-SET-SYSTEM �
INDEPENDENT-EDGES-IN-SET-SYSTEM
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Set Systems: Duality

Based on the bipartite graph representation, it is easy to describe
independent∗ sets. For upper points in B, there exists a set I such
that V is not covered, i.e., there is a triple a ∈ A, f , f ′ ∈ I ⊂ F
where a is connected to both f and f ′.

Definition

Let B be a bipartite graph describing a set system. By exchanging
upper and lower roles, we obtain the dual graph B∗. Reading B∗

as a set system and restoring it, we get a dual set system with
V ∗ = H and H∗ = V .
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Proof

From V ,H, k , we create the dual set system, keeping the value k :
V ∗,H∗, k.

We need to decide whether there are k upper nodes in the original
set system described by the bipartite graph B, such that they do
not support ∨ shapes.

The bipartite graph V ∗,H∗ is precisely the upside-down version of
B. That is, the original decision problem is equivalent to finding k
lower nodes (k edges) in the upside-down B, such that they do not
support ∧, i.e., they are pairwise disjoint. In other words, we need
to solve the problem INDEPENDENT-EDGES-IN-SET-SYSTEM
for V ∗,H∗, k .

Thus, the initial transformation is the reduction proving the
theorem.
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support ∧, i.e., they are pairwise disjoint.

In other words, we need
to solve the problem INDEPENDENT-EDGES-IN-SET-SYSTEM
for V ∗,H∗, k .

Thus, the initial transformation is the reduction proving the
theorem.
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TILING

Definition

TILING = {dV ,He : there exist E1, . . . ,Ek pairwise disjoint

edges such that ∪̇Ei = V }

Theorem

INDEPENDENT-EDGES-IN-SET-SYSTEM � TILING.
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The Reduction

Let V ,H, k be the input. Let S be the maximum edge size
parameter. We need to decide whether there are k pairwise disjoint
edges.

The construction is done in multiple steps. First, transform H to
make it uniform: For every edge E , introduce S − |E | new vertices
(different vertices for different edges). The problem for the
modified set system is obviously equivalent to the original problem.

In the second step, assume that H is a S-uniform set system. In
this step, add |V (H)| − kS new vertices to V (H) (let Ṽ be the
resulting set), and the elements of H̃ are the elements of H plus
one set for each old-new vertex pair.
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The Reduction in Pictures

The second step of the reduction: |V | − kS = 8− 2 · 3 = 2. The two new
vertices and the corresponding graph edges are shown in red on the right.
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The Reduction in Words

Observation

To tile (Ṽ , H̃), we need to cover the |V | − kS new vertices, which
can only be done with |V | − kS new vertex pairs. The remaining
tiling edges can only be old edges, covering kS vertices. Thus, the
tiling gives k independent edges in H.

Inverting the reasoning of the observation completes the
theoretical part of the proof.
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Matchings: The Case of 3-Uniform Set Systems

Definition: 3-UNIFORM-SET-SYSTEM-PARTITION

Given a 3-uniform set system. Is there a subset that is a partition
of the base set?

Definition: PERFECT-TRIPLE

Given three sets A,B,C of size k each and their transversals
forming a 3-uniform set system (H ⊂ A× B × C ). Is there a set of
k pairwise disjoint triples in the set system?

Theorem

3-UNIFORM-SET-SYSTEM-PARTITION and PERFECT-TRIPLE
are both NP-complete.
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3-SAT � PERFECT-TRIPLE �
3-UNIFORM-SET-SYSTEM-PARTITION

It is sufficient to prove the first reduction.

For this, take a ϕ 3-SAT input. Assume that the variable x occurs
n times. From A ∪ B, select 2n vertices for x :
a0, b0, a1, b1, . . . , an−1, bn−1. Consider

X+ = {{a0, b0, cx0 }, . . . , {an−1, bn−1, cxn−1}},

X = {{a0, b0, cx0 }, . . . , {an−1, bn−1, cxn−1}},

Promise: The ai , bi vertices will only be in the triples.
Thus, if there is a perfect triple, either X or X is part of the triple.
Specifically, either all cxi or all cxi remain unmatched. The
unmatched ci indices can be considered as the value of the
evaluated literal. Define sets for each variable with disjoint vertex
sets. If there is a triple, it describes an assignment for the variables.
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Proof of 3-SAT � PERFECT-TRIPLE (continued)

Let C = 〈z1, z2, z3〉 be the ϕ, 3-SAT input clause.

Introduce a aC , bC vertex and choose a ci vertex, not chosen yet
for another clause, with the upper index z1. Do the same for the
other two literals of C .

By this, for clause C , we have introduced two new vertices and
three new triples. Repeat this for every clause.

If in the constructed triples we find a perfect triple that covers all a
and b vertices, then ϕ is satisfiable. The reasoning is reversible.
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If in the constructed triples we find a perfect triple that covers all a
and b vertices, then ϕ is satisfiable. The reasoning is reversible.
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Proof of 3-SAT � PERFECT-TRIPLE (continued)

In the constructed triple system, the number of a vertices and b
vertices is the same. If the number of c vertices is more, add new
a vertices and b vertices for balancing. If the number of c vertices
is less, add new c vertices for balancing.

If new a vertices and b vertices were added to our set system,
complete them with triples in all possible ways with the c vertices.

If new c vertices were added to our set system, the formula is
unsatisfiable. Leave the new vertices isolated.

The resulting 3-uniform balanced triple set system is the outcome
of the reduction. The reduction proves the theorem. The necessary
claims for this are easily verifiable.
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SET SYSTEM COLORING

Definition

SET SYSTEM COLORING: given a set system H and a natural
number k . Can the elements of V (H) be colored with k colors
such that no set in H is monochromatic?

Theorem

SET SYSTEM COLORING is NP-complete.

Generalization of graph coloring problem.
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SET SYSTEM 2-COLORABILITY

Reminder: For graphs, the case of 2-colorability was easy to
handle.

Definition

SET SYSTEM 2-COLORABILITY: Given a set system H. Decide:
Can the elements of V (H) be colored with 2 colors such that no
set in H is monochromatic?

Theorem

TILING � SET SYSTEM 2-COLORABILITY.
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The Reduction

Given an input V ,H for the tiling problem.

Construction: Ṽ = H ∪ {p, z}. For H̃, for every intersecting pair
E ,F of H edges, add ZE ,F = {E ,F , z} as an edge. For every

v ∈ V , add Rv = {E : v ∈ E ∈ H} ∪ {p} as an edge in H̃. Also,
add the edge {p, z}.
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The Reduction in Pictures

A,B,C , . . . ,H, I precisely represent the edges of our set system.
B,C ,D,E precisely represent edges containing the element a. C and F
are intersecting edges. The edges inferred from the above information are
drawn in the figure, which includes a fraction of the reduction.
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The Reduction in Words

Observation

In a 2-coloring of Ṽ , H̃, let p be colored red and z be colored green
(the edge {p, z} enforces using the entire palette). The green color
on the corresponding vertices of the original edges picks an edge
set.

Indeed, two intersecting edges would lead to a green-homogeneous
edge of type ZE ,F in the reduction. While an uncovered v vertex
(in the original set system) would create a red-homogeneous edge
Rv .

The reasoning is reversible, completing the proof.
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Break
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DIOPHANTINE INEQUALITY SYSTEM

Definition: DIOPHANTINE INEQUALITY SYSTEM

Given an integer-coefficient linear inequality system Ax ≤ b. Does
it have an integer solution?

Theorem

DIOPHANTINE INEQUALITY SYSTEM is NP-complete.

A witness for NP-completeness is an integer solution.
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SAT � DIOPHANTINE INEQUALITY SYSTEM

Given a conjunctive normal form.

For each variable xi , introduce the inequality 0 ≤ xi ≤ 1.

For each 〈z1, . . . , zk〉 clause, introduce the inequality
t1 + . . .+ tk ≥ 1, where ti = xj if zi = xj and ti = 1− xj if zi = x j .

It is easy to see that the resulting inequality system can be
constructed in polynomial time.

It is also easy to see that the resulting inequality system has an
integer solution if and only if the conjunctive normal form is
satisfiable.
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It is also easy to see that the resulting inequality system has an
integer solution if and only if the conjunctive normal form is
satisfiable.
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SUBSET SUM

Definition

SUBSET SUM=

{dA, be : A ⊂ N, b ∈ N, there exists a subset R ⊂ A,

such that the sum of numbers in R is b}.

A simple interpretation of the problem: A represents the values of
coins in our wallet. The code of A, b is accepted if and only if we
can pay exactly b from our wallet.

Theorem

SUBSET SUM is NP-complete.

The NP-completeness of the problem is obvious.
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TILING � SUBSET SUM

Let V ,H be the input for the TILING problem. Can we select a
set of disjoint tiles/edges that can be used to cover V ?

Construction: Let w : V → {1, a, a2, . . . , a|V |−1} be an arbitrary
bijection. Consider the value set as the place values in the a-based
number system.

For E ∈ H, let aE =
∑

v :v∈E w(v). Let A = {aE : E ∈ H} and
b = 11 . . . 1a =

∑
v :v∈V w(v). This describes an input for the

subset sum problem.
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Proof

Observation

If we choose a to be |H|+ 1, then the numbers ai ∈ A are such
that the carry-less calculation of any subset sum in the a-based
number system can be computed.

The observation immediately gives that finding a subset sum of all
1’s is equivalent to the original TILING problem on H (for a
sufficiently large a).

The largest number in the reduction is

S =
∑|V |−1

i=0 ai = a|V |−1
a−1 < a|V |. Its code length is

|V | log a = |V | log(|H|+ 1). Our reduction is polynomial.
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KNAPSACK

Definition

KNAPSACK: Given a set of items T . Each t ∈ T has a volume Vt

and a value vt (vt ,Vt ∈ N). Given a knapsack, which can hold at
most H total volume of items. Also given a value limit L.
(H, L ∈ N.) Can we select a subset of T to fit in the knapsack and
have a total value at least L?

The problem’s interpretation: The set A describes the volumes of
items. Given b boxes, each of which can hold at most c total
volume. Can we pack the items into the boxes?

Theorem

KNAPSACK is NP-complete.

The NP-completeness of the problem is obvious.
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SUBSET SUM � KNAPSACK

Given A ⊂ N as an input for the SUBSET SUM problem.

For each a ∈ A, take an item with volume and value both equal to
a.

The volume of our knapsack is b.

The value limit is also b.

Clearly, a subset of items can fit in the knapsack and achieve the
value limit if and only if the sum is exactly b.
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PARTITION

Definition

PARTITION: Given integers in set A. Can we split our numbers
into two equal-sum subsets? Can we partition A?

Theorem

PARTITION is NP-complete.

The NP-completeness of the problem is obvious.
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KNAPSACK � PARTITION

Given A ⊂ N as an input for the KNAPSACK problem.

Let S be the sum of numbers in A.

Examine the KNAPSACK problem on A, b = S/2, and c = S/2.

The knapsack can be filled with items such that both subsets have
the same total value if and only if A can be partitioned into two
equal-sum subsets.
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This is the end!

Thank you for your attention!
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