
Halting problem, Universal Turing machines Outside D

Turing machines: Undecidable problems

Peter Hajnal

Bolyai Institute, SzTE, Szeged

2023 fall

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Technical problems

To talk about a computational problem and an algorithm, that
soves it first we need a finite alphabet Σ (and much more).

SET THEORY: The finite sets don”t form a set.

We can agree on that for coding we use one of the sets
{1, 2, , . . . , n} (n ∈ N+).

Also we can assume that for a description of an algorithm we use

(1) k ∈ N, the number of tapes,

(2) m ∈ N+, the set of states {1, 2, . . . ,m},
(3) ` ∈ N+, to describe Γ, the alphabet for the work tapes,

(4) δ, a transition function with finite domain and finite range
depending on our previous choices.

Observation

The number of TM’s/algorithms is countably infinite, ℵ0.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Technical problems

To talk about a computational problem and an algorithm, that
soves it first we need a finite alphabet Σ (and much more).

SET THEORY: The finite sets don”t form a set.

We can agree on that for coding we use one of the sets
{1, 2, , . . . , n} (n ∈ N+).

Also we can assume that for a description of an algorithm we use

(1) k ∈ N, the number of tapes,

(2) m ∈ N+, the set of states {1, 2, . . . ,m},
(3) ` ∈ N+, to describe Γ, the alphabet for the work tapes,

(4) δ, a transition function with finite domain and finite range
depending on our previous choices.

Observation

The number of TM’s/algorithms is countably infinite, ℵ0.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Technical problems

To talk about a computational problem and an algorithm, that
soves it first we need a finite alphabet Σ (and much more).

SET THEORY: The finite sets don”t form a set.

We can agree on that for coding we use one of the sets
{1, 2, , . . . , n} (n ∈ N+).

Also we can assume that for a description of an algorithm we use

(1) k ∈ N, the number of tapes,

(2) m ∈ N+, the set of states {1, 2, . . . ,m},
(3) ` ∈ N+, to describe Γ, the alphabet for the work tapes,

(4) δ, a transition function with finite domain and finite range
depending on our previous choices.

Observation

The number of TM’s/algorithms is countably infinite, ℵ0.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Technical problems

To talk about a computational problem and an algorithm, that
soves it first we need a finite alphabet Σ (and much more).

SET THEORY: The finite sets don”t form a set.

We can agree on that for coding we use one of the sets
{1, 2, , . . . , n} (n ∈ N+).

Also we can assume that for a description of an algorithm we use

(1) k ∈ N, the number of tapes,

(2) m ∈ N+, the set of states {1, 2, . . . ,m},
(3) ` ∈ N+, to describe Γ, the alphabet for the work tapes,

(4) δ, a transition function with finite domain and finite range
depending on our previous choices.

Observation

The number of TM’s/algorithms is countably infinite, ℵ0.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Technical problems

To talk about a computational problem and an algorithm, that
soves it first we need a finite alphabet Σ (and much more).

SET THEORY: The finite sets don”t form a set.

We can agree on that for coding we use one of the sets
{1, 2, , . . . , n} (n ∈ N+).

Also we can assume that for a description of an algorithm we use

(1) k ∈ N, the number of tapes,

(2) m ∈ N+, the set of states {1, 2, . . . ,m},
(3) ` ∈ N+, to describe Γ, the alphabet for the work tapes,

(4) δ, a transition function with finite domain and finite range
depending on our previous choices.

Observation

The number of TM’s/algorithms is countably infinite, ℵ0.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Technical problems

To talk about a computational problem and an algorithm, that
soves it first we need a finite alphabet Σ (and much more).

SET THEORY: The finite sets don”t form a set.

We can agree on that for coding we use one of the sets
{1, 2, , . . . , n} (n ∈ N+).

Also we can assume that for a description of an algorithm we use

(1) k ∈ N, the number of tapes,

(2) m ∈ N+, the set of states {1, 2, . . . ,m},
(3) ` ∈ N+, to describe Γ, the alphabet for the work tapes,

(4) δ, a transition function with finite domain and finite range
depending on our previous choices.

Observation

The number of TM’s/algorithms is countably infinite, ℵ0.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Corollary

Theorem

Fix a finite Σ

(i) the set of decidable languages (L ⊂ Σ∗) is a countably infinite
set,

(ii) the set of enumerable languages (L ⊂ Σ∗) is a countably
infinite set,

(iii) the set of all languages (P(Σ)∗) is set of cardinality
continuum.

Corollary

There exists non-enumerable, and hence undecidable language.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Corollary

Theorem

Fix a finite Σ

(i) the set of decidable languages (L ⊂ Σ∗) is a countably infinite
set,

(ii) the set of enumerable languages (L ⊂ Σ∗) is a countably
infinite set,

(iii) the set of all languages (P(Σ)∗) is set of cardinality
continuum.

Corollary

There exists non-enumerable, and hence undecidable language.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Coding TM’s

The set of TM’s is countably infinite. It gives a possibility to code
them.

It is easy to agree on a coding system.

Coding Turing Machines

One can code TM’s:
T 7→ dT e.

We can use to Σ = {0, 1} to code the inputs, outputs
(computational problem) and the Turing machines too.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Coding TM’s

The set of TM’s is countably infinite. It gives a possibility to code
them.

It is easy to agree on a coding system.

Coding Turing Machines

One can code TM’s:
T 7→ dT e.

We can use to Σ = {0, 1} to code the inputs, outputs
(computational problem) and the Turing machines too.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Coding TM’s

The set of TM’s is countably infinite. It gives a possibility to code
them.

It is easy to agree on a coding system.

Coding Turing Machines

One can code TM’s:
T 7→ dT e.

We can use to Σ = {0, 1} to code the inputs, outputs
(computational problem) and the Turing machines too.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Coding TM’s

The set of TM’s is countably infinite. It gives a possibility to code
them.

It is easy to agree on a coding system.

Coding Turing Machines

One can code TM’s:
T 7→ dT e.

We can use to Σ = {0, 1} to code the inputs, outputs
(computational problem) and the Turing machines too.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Coding TM’s

The set of TM’s is countably infinite. It gives a possibility to code
them.

It is easy to agree on a coding system.

Coding Turing Machines

One can code TM’s:
T 7→ dT e.

We can use to Σ = {0, 1} to code the inputs, outputs
(computational problem) and the Turing machines too.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Turing’s Theorem (universal TM)

Theorem (Alan Turing)

Assume the we have a coding of inputs and algorithms using the
alphabet Σ. There is an algorithm that simulates any algorithm.
There is a Turing machine that gets (dωe, dT e) as input. It
computes T (ω), if T stops on input ω. Furthermore it loops
infinitely if T doesn’t stop on ω

Definition: Universal Turing machine

A machine that is described in the previous theorem is called
UNIVERSAL TURING MACHINE.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Turing’s Theorem (universal TM)

Theorem (Alan Turing)

Assume the we have a coding of inputs and algorithms using the
alphabet Σ. There is an algorithm that simulates any algorithm.

There is a Turing machine that gets (dωe, dT e) as input. It
computes T (ω), if T stops on input ω. Furthermore it loops
infinitely if T doesn’t stop on ω

Definition: Universal Turing machine

A machine that is described in the previous theorem is called
UNIVERSAL TURING MACHINE.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Turing’s Theorem (universal TM)

Theorem (Alan Turing)

Assume the we have a coding of inputs and algorithms using the
alphabet Σ. There is an algorithm that simulates any algorithm.
There is a Turing machine that gets (dωe, dT e) as input. It
computes T (ω), if T stops on input ω. Furthermore it loops
infinitely if T doesn’t stop on ω

Definition: Universal Turing machine

A machine that is described in the previous theorem is called
UNIVERSAL TURING MACHINE.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Turing’s Theorem (universal TM)

Theorem (Alan Turing)

Assume the we have a coding of inputs and algorithms using the
alphabet Σ. There is an algorithm that simulates any algorithm.
There is a Turing machine that gets (dωe, dT e) as input. It
computes T (ω), if T stops on input ω. Furthermore it loops
infinitely if T doesn’t stop on ω

Definition: Universal Turing machine

A machine that is described in the previous theorem is called
UNIVERSAL TURING MACHINE.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

A dictionary

Complexity theory Everyday life

Turing machine Algorithm

An agreement how to code a
TM/algorithm

A programming language

dT e A program/code

Universal TM A computer that is capable to
run programs coded in certain
language.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Halting problem

Now we are ready to describe a natural language, that is
undecidable.

Definition: Halting problem

HALTING = {(dT e, dωe) : T halts on ω}.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Halting problem

Now we are ready to describe a natural language, that is
undecidable.

Definition: Halting problem

HALTING = {(dT e, dωe) : T halts on ω}.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Halting problem

Now we are ready to describe a natural language, that is
undecidable.

Definition: Halting problem

HALTING = {(dT e, dωe) : T halts on ω}.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Turing’s theorem on the Halting problem

Turing’s theorem

(i) HALTING ∈ S,

(ii) HALTING /∈ D.

The first part of the theorem is proven by the existence of the
universal TM.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Turing’s theorem on the Halting problem

Turing’s theorem

(i) HALTING ∈ S,

(ii) HALTING /∈ D.

The first part of the theorem is proven by the existence of the
universal TM.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Turing’s theorem on the Halting problem

Turing’s theorem

(i) HALTING ∈ S,

(ii) HALTING /∈ D.

The first part of the theorem is proven by the existence of the
universal TM.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof

Proof by contradiction. Assume the I is a TM that solve
HALTING.

We have a few technical assumptions.

We code (in a bijective manner) the possible inputs by
positive integers. Furthermore given i ∈ N+ we can compute
the input ωi , that is coded by i and vice versa.

We code (in a bijective manner) the TM’s. Furthermore given
i ∈ N+ we can compute the algorithm Ti , that is coded by i
and vice versa.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof

Proof by contradiction. Assume the I is a TM that solve
HALTING.

We have a few technical assumptions.

We code (in a bijective manner) the possible inputs by
positive integers. Furthermore given i ∈ N+ we can compute
the input ωi , that is coded by i and vice versa.

We code (in a bijective manner) the TM’s. Furthermore given
i ∈ N+ we can compute the algorithm Ti , that is coded by i
and vice versa.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof

Proof by contradiction. Assume the I is a TM that solve
HALTING.

We have a few technical assumptions.

We code (in a bijective manner) the possible inputs by
positive integers.

Furthermore given i ∈ N+ we can compute
the input ωi , that is coded by i and vice versa.

We code (in a bijective manner) the TM’s. Furthermore given
i ∈ N+ we can compute the algorithm Ti , that is coded by i
and vice versa.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof

Proof by contradiction. Assume the I is a TM that solve
HALTING.

We have a few technical assumptions.

We code (in a bijective manner) the possible inputs by
positive integers. Furthermore given i ∈ N+ we can compute
the input ωi , that is coded by i and vice versa.

We code (in a bijective manner) the TM’s.

Furthermore given
i ∈ N+ we can compute the algorithm Ti , that is coded by i
and vice versa.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof

Proof by contradiction. Assume the I is a TM that solve
HALTING.

We have a few technical assumptions.

We code (in a bijective manner) the possible inputs by
positive integers. Furthermore given i ∈ N+ we can compute
the input ωi , that is coded by i and vice versa.

We code (in a bijective manner) the TM’s. Furthermore given
i ∈ N+ we can compute the algorithm Ti , that is coded by i
and vice versa.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof II

Imagine that we have a table of type N+ × N+: In the position
(i , j) we have 1 iff Ti stops on ωj , otherwise we have ∞ (i.e. Ti

loops infinitely on ωj .

Based on I we can compute the table. We are hunting for a
contradiction.

The Turing machine E

(Átló): It gets ω = ωi , and coputes the diagonal element of the
previous table.

(Switch): If the diagonal element is ∞ the E halts immediately.

If the diagonal element is 1 the E runs an infinite loop.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof II

Imagine that we have a table of type N+ × N+: In the position
(i , j) we have 1 iff Ti stops on ωj , otherwise we have ∞ (i.e. Ti

loops infinitely on ωj .

Based on I we can compute the table. We are hunting for a
contradiction.

The Turing machine E

(Átló): It gets ω = ωi , and coputes the diagonal element of the
previous table.

(Switch): If the diagonal element is ∞ the E halts immediately.

If the diagonal element is 1 the E runs an infinite loop.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof II

Imagine that we have a table of type N+ × N+: In the position
(i , j) we have 1 iff Ti stops on ωj , otherwise we have ∞ (i.e. Ti

loops infinitely on ωj .

Based on I we can compute the table.

We are hunting for a
contradiction.

The Turing machine E

(Átló): It gets ω = ωi , and coputes the diagonal element of the
previous table.

(Switch): If the diagonal element is ∞ the E halts immediately.

If the diagonal element is 1 the E runs an infinite loop.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof II

Imagine that we have a table of type N+ × N+: In the position
(i , j) we have 1 iff Ti stops on ωj , otherwise we have ∞ (i.e. Ti

loops infinitely on ωj .

Based on I we can compute the table. We are hunting for a
contradiction.

The Turing machine E

(Átló): It gets ω = ωi , and coputes the diagonal element of the
previous table.

(Switch): If the diagonal element is ∞ the E halts immediately.

If the diagonal element is 1 the E runs an infinite loop.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof II

Imagine that we have a table of type N+ × N+: In the position
(i , j) we have 1 iff Ti stops on ωj , otherwise we have ∞ (i.e. Ti

loops infinitely on ωj .

Based on I we can compute the table. We are hunting for a
contradiction.

The Turing machine E

(Átló): It gets ω = ωi , and coputes the diagonal element of the
previous table.

(Switch): If the diagonal element is ∞ the E halts immediately.

If the diagonal element is 1 the E runs an infinite loop.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof II

Imagine that we have a table of type N+ × N+: In the position
(i , j) we have 1 iff Ti stops on ωj , otherwise we have ∞ (i.e. Ti

loops infinitely on ωj .

Based on I we can compute the table. We are hunting for a
contradiction.

The Turing machine E

(Átló): It gets ω = ωi , and coputes the diagonal element of the
previous table.

(Switch): If the diagonal element is ∞ the E halts immediately.

If the diagonal element is 1 the E runs an infinite loop.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof II

Imagine that we have a table of type N+ × N+: In the position
(i , j) we have 1 iff Ti stops on ωj , otherwise we have ∞ (i.e. Ti

loops infinitely on ωj .

Based on I we can compute the table. We are hunting for a
contradiction.

The Turing machine E

(Átló): It gets ω = ωi , and coputes the diagonal element of the
previous table.

(Switch): If the diagonal element is ∞ the E halts immediately.

If the diagonal element is 1 the E runs an infinite loop.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof III

E is a TM, i.e. E = Ti for certain i .

What happens if we run E on ωi?

It decodes i , Ti and computes the corresponding diagonal element
of our table. That is 1 iff E halts on ωi , ∞ otherwise.

1st option: E halts on ωi . By the definition of E it ruins forever: a
contradiction.

2nd option: E runs forever on ωi . By the definition of E it halts: a
contradiction.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof III

E is a TM, i.e. E = Ti for certain i .

What happens if we run E on ωi?

It decodes i , Ti and computes the corresponding diagonal element
of our table. That is 1 iff E halts on ωi , ∞ otherwise.

1st option: E halts on ωi . By the definition of E it ruins forever: a
contradiction.

2nd option: E runs forever on ωi . By the definition of E it halts: a
contradiction.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof III

E is a TM, i.e. E = Ti for certain i .

What happens if we run E on ωi?

It decodes i , Ti and computes the corresponding diagonal element
of our table. That is 1 iff E halts on ωi , ∞ otherwise.

1st option: E halts on ωi . By the definition of E it ruins forever: a
contradiction.

2nd option: E runs forever on ωi . By the definition of E it halts: a
contradiction.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof III

E is a TM, i.e. E = Ti for certain i .

What happens if we run E on ωi?

It decodes i , Ti and computes the corresponding diagonal element
of our table.

That is 1 iff E halts on ωi , ∞ otherwise.

1st option: E halts on ωi . By the definition of E it ruins forever: a
contradiction.

2nd option: E runs forever on ωi . By the definition of E it halts: a
contradiction.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof III

E is a TM, i.e. E = Ti for certain i .

What happens if we run E on ωi?

It decodes i , Ti and computes the corresponding diagonal element
of our table. That is 1 iff E halts on ωi , ∞ otherwise.

1st option: E halts on ωi . By the definition of E it ruins forever: a
contradiction.

2nd option: E runs forever on ωi . By the definition of E it halts: a
contradiction.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof III

E is a TM, i.e. E = Ti for certain i .

What happens if we run E on ωi?

It decodes i , Ti and computes the corresponding diagonal element
of our table. That is 1 iff E halts on ωi , ∞ otherwise.

1st option: E halts on ωi . By the definition of E it ruins forever:

a
contradiction.

2nd option: E runs forever on ωi . By the definition of E it halts: a
contradiction.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof III

E is a TM, i.e. E = Ti for certain i .

What happens if we run E on ωi?

It decodes i , Ti and computes the corresponding diagonal element
of our table. That is 1 iff E halts on ωi , ∞ otherwise.

1st option: E halts on ωi . By the definition of E it ruins forever: a
contradiction.

2nd option: E runs forever on ωi . By the definition of E it halts: a
contradiction.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof III

E is a TM, i.e. E = Ti for certain i .

What happens if we run E on ωi?

It decodes i , Ti and computes the corresponding diagonal element
of our table. That is 1 iff E halts on ωi , ∞ otherwise.

1st option: E halts on ωi . By the definition of E it ruins forever: a
contradiction.

2nd option: E runs forever on ωi . By the definition of E it halts:

a
contradiction.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Proof III

E is a TM, i.e. E = Ti for certain i .

What happens if we run E on ωi?

It decodes i , Ti and computes the corresponding diagonal element
of our table. That is 1 iff E halts on ωi , ∞ otherwise.

1st option: E halts on ωi . By the definition of E it ruins forever: a
contradiction.

2nd option: E runs forever on ωi . By the definition of E it halts: a
contradiction.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Break

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Hilbert’s X. Problem

Hilbert’s X. Problem

Let

DIOPHANTOS = {dp(x)e :p ∈ Z[x1, x2, . . . , xn],

p has an integer root}.

Matijaszevics (1970)

DIOPHANTOS 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Hilbert’s X. Problem

Hilbert’s X. Problem

Let

DIOPHANTOS = {dp(x)e :p ∈ Z[x1, x2, . . . , xn],

p has an integer root}.

Matijaszevics (1970)

DIOPHANTOS 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Hilbert’s X. Problem

Hilbert’s X. Problem

Let

DIOPHANTOS = {dp(x)e :p ∈ Z[x1, x2, . . . , xn],

p has an integer root}.

Matijaszevics (1970)

DIOPHANTOS 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Hilbert’s X. Problem: The history

1900 Hilbert presents the problem,

1935 Church announces the ”Church’ thesis”,

1936 Turing introduces the notion of TM, Church thesis is
accepted,

1950- Davies and Robinson introduce diophantine sets, and starts to
investigate them,

1970 Matijaszevics solves the last (hardest) step, he proves the
above theorem.

It is easy to see that DIOPHANTOSZ∈ S (why?).

There are special cases when the decision problem is solvable.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Hilbert’s X. Problem: The history

1900 Hilbert presents the problem,

1935 Church announces the ”Church’ thesis”,

1936 Turing introduces the notion of TM, Church thesis is
accepted,

1950- Davies and Robinson introduce diophantine sets, and starts to
investigate them,

1970 Matijaszevics solves the last (hardest) step, he proves the
above theorem.

It is easy to see that DIOPHANTOSZ∈ S (why?).

There are special cases when the decision problem is solvable.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Hilbert’s X. Problem: The history

1900 Hilbert presents the problem,

1935 Church announces the ”Church’ thesis”,

1936 Turing introduces the notion of TM, Church thesis is
accepted,

1950- Davies and Robinson introduce diophantine sets, and starts to
investigate them,

1970 Matijaszevics solves the last (hardest) step, he proves the
above theorem.

It is easy to see that DIOPHANTOSZ∈ S (why?).

There are special cases when the decision problem is solvable.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Hilbert’s X. Problem: The history

1900 Hilbert presents the problem,

1935 Church announces the ”Church’ thesis”,

1936 Turing introduces the notion of TM, Church thesis is
accepted,

1950- Davies and Robinson introduce diophantine sets, and starts to
investigate them,

1970 Matijaszevics solves the last (hardest) step, he proves the
above theorem.

It is easy to see that DIOPHANTOSZ∈ S (why?).

There are special cases when the decision problem is solvable.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Hilbert’s X. Problem: The history

1900 Hilbert presents the problem,

1935 Church announces the ”Church’ thesis”,

1936 Turing introduces the notion of TM, Church thesis is
accepted,

1950- Davies and Robinson introduce diophantine sets, and starts to
investigate them,

1970 Matijaszevics solves the last (hardest) step, he proves the
above theorem.

It is easy to see that DIOPHANTOSZ∈ S (why?).

There are special cases when the decision problem is solvable.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Hilbert’s X. Problem: The history

1900 Hilbert presents the problem,

1935 Church announces the ”Church’ thesis”,

1936 Turing introduces the notion of TM, Church thesis is
accepted,

1950- Davies and Robinson introduce diophantine sets, and starts to
investigate them,

1970 Matijaszevics solves the last (hardest) step, he proves the
above theorem.

It is easy to see that DIOPHANTOSZ∈ S (why?).

There are special cases when the decision problem is solvable.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Hilbert’s X. Problem: The history

1900 Hilbert presents the problem,

1935 Church announces the ”Church’ thesis”,

1936 Turing introduces the notion of TM, Church thesis is
accepted,

1950- Davies and Robinson introduce diophantine sets, and starts to
investigate them,

1970 Matijaszevics solves the last (hardest) step, he proves the
above theorem.

It is easy to see that DIOPHANTOSZ∈ S (why?).

There are special cases when the decision problem is solvable.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Hilbert’s X. Problem: The history

1900 Hilbert presents the problem,

1935 Church announces the ”Church’ thesis”,

1936 Turing introduces the notion of TM, Church thesis is
accepted,

1950- Davies and Robinson introduce diophantine sets, and starts to
investigate them,

1970 Matijaszevics solves the last (hardest) step, he proves the
above theorem.

It is easy to see that DIOPHANTOSZ∈ S (why?).

There are special cases when the decision problem is solvable.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word problem of groups

The input of the word problem is a (multiplicative) group.

How to input a group into an algorithm? One solution:
Combinatorial group theory.
• We start with a finite set of group elements: B.
• Expressions can be constructed from the elements of B, each
describing further elements of the group. For example: If
B = {a, b, c}, then abbaca−1ba−1 is such an expression. 1 is an
expression, the empty product, describing the identity element of
the group. So, our expressions, in technical terms, are our
”words”, constructed by multiplication/concatenation of elements
from B and B−1, the inverses of elements from B.
• Of course, different words can describe the same element. Group
theory guarantees that aa−1b and b describe the same element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word problem of groups

The input of the word problem is a (multiplicative) group.

How to input a group into an algorithm? One solution:
Combinatorial group theory.
• We start with a finite set of group elements: B.
• Expressions can be constructed from the elements of B, each
describing further elements of the group. For example: If
B = {a, b, c}, then abbaca−1ba−1 is such an expression. 1 is an
expression, the empty product, describing the identity element of
the group. So, our expressions, in technical terms, are our
”words”, constructed by multiplication/concatenation of elements
from B and B−1, the inverses of elements from B.
• Of course, different words can describe the same element. Group
theory guarantees that aa−1b and b describe the same element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word problem of groups

The input of the word problem is a (multiplicative) group.

How to input a group into an algorithm?

One solution:
Combinatorial group theory.
• We start with a finite set of group elements: B.
• Expressions can be constructed from the elements of B, each
describing further elements of the group. For example: If
B = {a, b, c}, then abbaca−1ba−1 is such an expression. 1 is an
expression, the empty product, describing the identity element of
the group. So, our expressions, in technical terms, are our
”words”, constructed by multiplication/concatenation of elements
from B and B−1, the inverses of elements from B.
• Of course, different words can describe the same element. Group
theory guarantees that aa−1b and b describe the same element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word problem of groups

The input of the word problem is a (multiplicative) group.

How to input a group into an algorithm? One solution:
Combinatorial group theory.

• We start with a finite set of group elements: B.
• Expressions can be constructed from the elements of B, each
describing further elements of the group. For example: If
B = {a, b, c}, then abbaca−1ba−1 is such an expression. 1 is an
expression, the empty product, describing the identity element of
the group. So, our expressions, in technical terms, are our
”words”, constructed by multiplication/concatenation of elements
from B and B−1, the inverses of elements from B.
• Of course, different words can describe the same element. Group
theory guarantees that aa−1b and b describe the same element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word problem of groups

The input of the word problem is a (multiplicative) group.

How to input a group into an algorithm? One solution:
Combinatorial group theory.
• We start with a finite set of group elements: B.

• Expressions can be constructed from the elements of B, each
describing further elements of the group. For example: If
B = {a, b, c}, then abbaca−1ba−1 is such an expression. 1 is an
expression, the empty product, describing the identity element of
the group. So, our expressions, in technical terms, are our
”words”, constructed by multiplication/concatenation of elements
from B and B−1, the inverses of elements from B.
• Of course, different words can describe the same element. Group
theory guarantees that aa−1b and b describe the same element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word problem of groups

The input of the word problem is a (multiplicative) group.

How to input a group into an algorithm? One solution:
Combinatorial group theory.
• We start with a finite set of group elements: B.
• Expressions can be constructed from the elements of B, each
describing further elements of the group.

For example: If
B = {a, b, c}, then abbaca−1ba−1 is such an expression. 1 is an
expression, the empty product, describing the identity element of
the group. So, our expressions, in technical terms, are our
”words”, constructed by multiplication/concatenation of elements
from B and B−1, the inverses of elements from B.
• Of course, different words can describe the same element. Group
theory guarantees that aa−1b and b describe the same element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word problem of groups

The input of the word problem is a (multiplicative) group.

How to input a group into an algorithm? One solution:
Combinatorial group theory.
• We start with a finite set of group elements: B.
• Expressions can be constructed from the elements of B, each
describing further elements of the group. For example: If
B = {a, b, c}, then abbaca−1ba−1 is such an expression.

1 is an
expression, the empty product, describing the identity element of
the group. So, our expressions, in technical terms, are our
”words”, constructed by multiplication/concatenation of elements
from B and B−1, the inverses of elements from B.
• Of course, different words can describe the same element. Group
theory guarantees that aa−1b and b describe the same element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word problem of groups

The input of the word problem is a (multiplicative) group.

How to input a group into an algorithm? One solution:
Combinatorial group theory.
• We start with a finite set of group elements: B.
• Expressions can be constructed from the elements of B, each
describing further elements of the group. For example: If
B = {a, b, c}, then abbaca−1ba−1 is such an expression. 1 is an
expression, the empty product, describing the identity element of
the group.

So, our expressions, in technical terms, are our
”words”, constructed by multiplication/concatenation of elements
from B and B−1, the inverses of elements from B.
• Of course, different words can describe the same element. Group
theory guarantees that aa−1b and b describe the same element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word problem of groups

The input of the word problem is a (multiplicative) group.

How to input a group into an algorithm? One solution:
Combinatorial group theory.
• We start with a finite set of group elements: B.
• Expressions can be constructed from the elements of B, each
describing further elements of the group. For example: If
B = {a, b, c}, then abbaca−1ba−1 is such an expression. 1 is an
expression, the empty product, describing the identity element of
the group. So, our expressions, in technical terms, are our
”words”, constructed by multiplication/concatenation of elements
from B and B−1, the inverses of elements from B.

• Of course, different words can describe the same element. Group
theory guarantees that aa−1b and b describe the same element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word problem of groups

The input of the word problem is a (multiplicative) group.

How to input a group into an algorithm? One solution:
Combinatorial group theory.
• We start with a finite set of group elements: B.
• Expressions can be constructed from the elements of B, each
describing further elements of the group. For example: If
B = {a, b, c}, then abbaca−1ba−1 is such an expression. 1 is an
expression, the empty product, describing the identity element of
the group. So, our expressions, in technical terms, are our
”words”, constructed by multiplication/concatenation of elements
from B and B−1, the inverses of elements from B.
• Of course, different words can describe the same element.

Group
theory guarantees that aa−1b and b describe the same element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word problem of groups

The input of the word problem is a (multiplicative) group.

How to input a group into an algorithm? One solution:
Combinatorial group theory.
• We start with a finite set of group elements: B.
• Expressions can be constructed from the elements of B, each
describing further elements of the group. For example: If
B = {a, b, c}, then abbaca−1ba−1 is such an expression. 1 is an
expression, the empty product, describing the identity element of
the group. So, our expressions, in technical terms, are our
”words”, constructed by multiplication/concatenation of elements
from B and B−1, the inverses of elements from B.
• Of course, different words can describe the same element. Group
theory guarantees that aa−1b and b describe the same element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Freely Generated Groups

• An elementary simplification of a word is the removal of
consecutive pairs xx−1 or x−1x .

• If in a word sequence w1,w2,w3, . . . ,wn any two consecutive
words are each other’s elementary simplification, then any two
elements of the sequence describe the same group element. We
say that w1 and wn are equivalent.

• This defines an equivalence relation on the set of group
expressions that can be written from B. It is easy to define
multiplication, inversion, and the identity class among equivalence
classes. Thus, we obtain a group.

• This is the freely generated group associated with the generator
set B. It is the largest group generated by B.

• For the freely generated group with respect to B, it is easy to
design an algorithm that determines whether two given words
describe the same group element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Freely Generated Groups

• An elementary simplification of a word is the removal of
consecutive pairs xx−1 or x−1x .

• If in a word sequence w1,w2,w3, . . . ,wn any two consecutive
words are each other’s elementary simplification, then any two
elements of the sequence describe the same group element. We
say that w1 and wn are equivalent.

• This defines an equivalence relation on the set of group
expressions that can be written from B. It is easy to define
multiplication, inversion, and the identity class among equivalence
classes. Thus, we obtain a group.

• This is the freely generated group associated with the generator
set B. It is the largest group generated by B.

• For the freely generated group with respect to B, it is easy to
design an algorithm that determines whether two given words
describe the same group element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Freely Generated Groups

• An elementary simplification of a word is the removal of
consecutive pairs xx−1 or x−1x .

• If in a word sequence w1,w2,w3, . . . ,wn any two consecutive
words are each other’s elementary simplification, then any two
elements of the sequence describe the same group element.

We
say that w1 and wn are equivalent.

• This defines an equivalence relation on the set of group
expressions that can be written from B. It is easy to define
multiplication, inversion, and the identity class among equivalence
classes. Thus, we obtain a group.

• This is the freely generated group associated with the generator
set B. It is the largest group generated by B.

• For the freely generated group with respect to B, it is easy to
design an algorithm that determines whether two given words
describe the same group element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Freely Generated Groups

• An elementary simplification of a word is the removal of
consecutive pairs xx−1 or x−1x .

• If in a word sequence w1,w2,w3, . . . ,wn any two consecutive
words are each other’s elementary simplification, then any two
elements of the sequence describe the same group element. We
say that w1 and wn are equivalent.

• This defines an equivalence relation on the set of group
expressions that can be written from B. It is easy to define
multiplication, inversion, and the identity class among equivalence
classes. Thus, we obtain a group.

• This is the freely generated group associated with the generator
set B. It is the largest group generated by B.

• For the freely generated group with respect to B, it is easy to
design an algorithm that determines whether two given words
describe the same group element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Freely Generated Groups

• An elementary simplification of a word is the removal of
consecutive pairs xx−1 or x−1x .

• If in a word sequence w1,w2,w3, . . . ,wn any two consecutive
words are each other’s elementary simplification, then any two
elements of the sequence describe the same group element. We
say that w1 and wn are equivalent.

• This defines an equivalence relation on the set of group
expressions that can be written from B.

It is easy to define
multiplication, inversion, and the identity class among equivalence
classes. Thus, we obtain a group.

• This is the freely generated group associated with the generator
set B. It is the largest group generated by B.

• For the freely generated group with respect to B, it is easy to
design an algorithm that determines whether two given words
describe the same group element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Freely Generated Groups

• An elementary simplification of a word is the removal of
consecutive pairs xx−1 or x−1x .

• If in a word sequence w1,w2,w3, . . . ,wn any two consecutive
words are each other’s elementary simplification, then any two
elements of the sequence describe the same group element. We
say that w1 and wn are equivalent.

• This defines an equivalence relation on the set of group
expressions that can be written from B. It is easy to define
multiplication, inversion, and the identity class among equivalence
classes. Thus, we obtain a group.

• This is the freely generated group associated with the generator
set B. It is the largest group generated by B.

• For the freely generated group with respect to B, it is easy to
design an algorithm that determines whether two given words
describe the same group element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Freely Generated Groups

• An elementary simplification of a word is the removal of
consecutive pairs xx−1 or x−1x .

• If in a word sequence w1,w2,w3, . . . ,wn any two consecutive
words are each other’s elementary simplification, then any two
elements of the sequence describe the same group element. We
say that w1 and wn are equivalent.

• This defines an equivalence relation on the set of group
expressions that can be written from B. It is easy to define
multiplication, inversion, and the identity class among equivalence
classes. Thus, we obtain a group.

• This is the freely generated group associated with the generator
set B.

It is the largest group generated by B.

• For the freely generated group with respect to B, it is easy to
design an algorithm that determines whether two given words
describe the same group element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Freely Generated Groups

• An elementary simplification of a word is the removal of
consecutive pairs xx−1 or x−1x .

• If in a word sequence w1,w2,w3, . . . ,wn any two consecutive
words are each other’s elementary simplification, then any two
elements of the sequence describe the same group element. We
say that w1 and wn are equivalent.

• This defines an equivalence relation on the set of group
expressions that can be written from B. It is easy to define
multiplication, inversion, and the identity class among equivalence
classes. Thus, we obtain a group.

• This is the freely generated group associated with the generator
set B. It is the largest group generated by B.

• For the freely generated group with respect to B, it is easy to
design an algorithm that determines whether two given words
describe the same group element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Freely Generated Groups

• An elementary simplification of a word is the removal of
consecutive pairs xx−1 or x−1x .

• If in a word sequence w1,w2,w3, . . . ,wn any two consecutive
words are each other’s elementary simplification, then any two
elements of the sequence describe the same group element. We
say that w1 and wn are equivalent.

• This defines an equivalence relation on the set of group
expressions that can be written from B. It is easy to define
multiplication, inversion, and the identity class among equivalence
classes. Thus, we obtain a group.

• This is the freely generated group associated with the generator
set B. It is the largest group generated by B.

• For the freely generated group with respect to B, it is easy to
design an algorithm that determines whether two given words
describe the same group element.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Finitely Presented Groups

More general groups can be described by generalizing the above
method.

• Specify word equalities that cannot be derived through
elementary simplifications (and, of course, inverses of elementary
simplifications). If we provide a set of such relations, there
corresponds a group to it: the concept of elementary
simplification/complication can be extended by rewriting the
expression on one side of the equality to the expression on the
other side.

• So, if we have a set B and a set of equalities T (with a word on
each side), we have described a group G = 〈B;T 〉.

• If B and T are finite, then the groups described in this way are
finitely presented groups.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Finitely Presented Groups

More general groups can be described by generalizing the above
method.

• Specify word equalities that cannot be derived through
elementary simplifications (and, of course, inverses of elementary
simplifications). If we provide a set of such relations, there
corresponds a group to it: the concept of elementary
simplification/complication can be extended by rewriting the
expression on one side of the equality to the expression on the
other side.

• So, if we have a set B and a set of equalities T (with a word on
each side), we have described a group G = 〈B;T 〉.

• If B and T are finite, then the groups described in this way are
finitely presented groups.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Finitely Presented Groups

More general groups can be described by generalizing the above
method.

• Specify word equalities that cannot be derived through
elementary simplifications (and, of course, inverses of elementary
simplifications).

If we provide a set of such relations, there
corresponds a group to it: the concept of elementary
simplification/complication can be extended by rewriting the
expression on one side of the equality to the expression on the
other side.

• So, if we have a set B and a set of equalities T (with a word on
each side), we have described a group G = 〈B;T 〉.

• If B and T are finite, then the groups described in this way are
finitely presented groups.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Finitely Presented Groups

More general groups can be described by generalizing the above
method.

• Specify word equalities that cannot be derived through
elementary simplifications (and, of course, inverses of elementary
simplifications). If we provide a set of such relations, there
corresponds a group to it: the concept of elementary
simplification/complication can be extended by rewriting the
expression on one side of the equality to the expression on the
other side.

• So, if we have a set B and a set of equalities T (with a word on
each side), we have described a group G = 〈B;T 〉.

• If B and T are finite, then the groups described in this way are
finitely presented groups.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Finitely Presented Groups

More general groups can be described by generalizing the above
method.

• Specify word equalities that cannot be derived through
elementary simplifications (and, of course, inverses of elementary
simplifications). If we provide a set of such relations, there
corresponds a group to it: the concept of elementary
simplification/complication can be extended by rewriting the
expression on one side of the equality to the expression on the
other side.

• So, if we have a set B and a set of equalities T (with a word on
each side), we have described a group G = 〈B;T 〉.

• If B and T are finite, then the groups described in this way are
finitely presented groups.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Finitely Presented Groups

More general groups can be described by generalizing the above
method.

• Specify word equalities that cannot be derived through
elementary simplifications (and, of course, inverses of elementary
simplifications). If we provide a set of such relations, there
corresponds a group to it: the concept of elementary
simplification/complication can be extended by rewriting the
expression on one side of the equality to the expression on the
other side.

• So, if we have a set B and a set of equalities T (with a word on
each side), we have described a group G = 〈B;T 〉.

• If B and T are finite, then the groups described in this way are
finitely presented groups.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Examples of Finitely Presented
Groups

Example

〈a, b; ab = ba〉 is a group.

It can be easily verified that this is (Z,+)× (Z,+).

Example

〈a, b; an = b2 = abab = 1〉 is a group.

It can be easily verified that this is Dn.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Examples of Finitely Presented
Groups

Example

〈a, b; ab = ba〉 is a group.

It can be easily verified that this is (Z,+)× (Z,+).

Example

〈a, b; an = b2 = abab = 1〉 is a group.

It can be easily verified that this is Dn.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Examples of Finitely Presented
Groups

Example

〈a, b; ab = ba〉 is a group.

It can be easily verified that this is (Z,+)× (Z,+).

Example

〈a, b; an = b2 = abab = 1〉 is a group.

It can be easily verified that this is Dn.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Examples of Finitely Presented
Groups

Example

〈a, b; ab = ba〉 is a group.

It can be easily verified that this is (Z,+)× (Z,+).

Example

〈a, b; an = b2 = abab = 1〉 is a group.

It can be easily verified that this is Dn.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: Examples of Finitely Presented
Groups

Example

〈a, b; ab = ba〉 is a group.

It can be easily verified that this is (Z,+)× (Z,+).

Example

〈a, b; an = b2 = abab = 1〉 is a group.

It can be easily verified that this is Dn.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: The Theorem

The problem informally: Given a finite generating set B, a finite
set of relations T (thus given is a finitely presented group
G = G (B;T )). Also given are two words built from B. Decide
whether they describe the same group element.

Definition

WORD PROBLEM = {dB,T ;w1 = w2e : in the 〈B;T 〉 group,

the group elements represented

by w1 and w2 are the same}

Theorem (Novikov (1955), Boone (1958))

The problem is undecidable,

WORD PROBLEM 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: The Theorem

The problem informally: Given a finite generating set B, a finite
set of relations T (thus given is a finitely presented group
G = G (B;T )). Also given are two words built from B. Decide
whether they describe the same group element.

Definition

WORD PROBLEM = {dB,T ;w1 = w2e : in the 〈B;T 〉 group,

the group elements represented

by w1 and w2 are the same}

Theorem (Novikov (1955), Boone (1958))

The problem is undecidable,

WORD PROBLEM 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: The Theorem

The problem informally: Given a finite generating set B, a finite
set of relations T (thus given is a finitely presented group
G = G (B;T )). Also given are two words built from B. Decide
whether they describe the same group element.

Definition

WORD PROBLEM = {dB,T ;w1 = w2e : in the 〈B;T 〉 group,

the group elements represented

by w1 and w2 are the same}

Theorem (Novikov (1955), Boone (1958))

The problem is undecidable,

WORD PROBLEM 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Word Problem for Groups: The Theorem

The problem informally: Given a finite generating set B, a finite
set of relations T (thus given is a finitely presented group
G = G (B;T )). Also given are two words built from B. Decide
whether they describe the same group element.

Definition

WORD PROBLEM = {dB,T ;w1 = w2e : in the 〈B;T 〉 group,

the group elements represented

by w1 and w2 are the same}

Theorem (Novikov (1955), Boone (1958))

The problem is undecidable,

WORD PROBLEM 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism

HOMEOMORPHISM takes as input two topological spaces. We
need to determine whether they are homeomorphic.

Again, the essential question: How do we encode topological
spaces? The simplest solution for describing a broad class of
topological spaces is recursion: Starting from simple, well-known
topological spaces, we build further, more complex ones with
simple operations.

Perhaps the most combinatorial option is to start with simplices.
Simplices are points, line segments, triangles, tetrahedra. These
are precisely the simplices up to three dimensions. For every
natural number d , a d-dimensional simplex can be defined, for
example, as the convex hull of the origin and the standard basis
elements ei in Rd .

An operation that can be used for construction is gluing along
faces of simplices.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism

HOMEOMORPHISM takes as input two topological spaces. We
need to determine whether they are homeomorphic.

Again, the essential question: How do we encode topological
spaces? The simplest solution for describing a broad class of
topological spaces is recursion: Starting from simple, well-known
topological spaces, we build further, more complex ones with
simple operations.

Perhaps the most combinatorial option is to start with simplices.
Simplices are points, line segments, triangles, tetrahedra. These
are precisely the simplices up to three dimensions. For every
natural number d , a d-dimensional simplex can be defined, for
example, as the convex hull of the origin and the standard basis
elements ei in Rd .

An operation that can be used for construction is gluing along
faces of simplices.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism

HOMEOMORPHISM takes as input two topological spaces. We
need to determine whether they are homeomorphic.

Again, the essential question: How do we encode topological
spaces?

The simplest solution for describing a broad class of
topological spaces is recursion: Starting from simple, well-known
topological spaces, we build further, more complex ones with
simple operations.

Perhaps the most combinatorial option is to start with simplices.
Simplices are points, line segments, triangles, tetrahedra. These
are precisely the simplices up to three dimensions. For every
natural number d , a d-dimensional simplex can be defined, for
example, as the convex hull of the origin and the standard basis
elements ei in Rd .

An operation that can be used for construction is gluing along
faces of simplices.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism

HOMEOMORPHISM takes as input two topological spaces. We
need to determine whether they are homeomorphic.

Again, the essential question: How do we encode topological
spaces? The simplest solution for describing a broad class of
topological spaces is recursion:

Starting from simple, well-known
topological spaces, we build further, more complex ones with
simple operations.

Perhaps the most combinatorial option is to start with simplices.
Simplices are points, line segments, triangles, tetrahedra. These
are precisely the simplices up to three dimensions. For every
natural number d , a d-dimensional simplex can be defined, for
example, as the convex hull of the origin and the standard basis
elements ei in Rd .

An operation that can be used for construction is gluing along
faces of simplices.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism

HOMEOMORPHISM takes as input two topological spaces. We
need to determine whether they are homeomorphic.

Again, the essential question: How do we encode topological
spaces? The simplest solution for describing a broad class of
topological spaces is recursion: Starting from simple, well-known
topological spaces, we build further, more complex ones with
simple operations.

Perhaps the most combinatorial option is to start with simplices.
Simplices are points, line segments, triangles, tetrahedra. These
are precisely the simplices up to three dimensions. For every
natural number d , a d-dimensional simplex can be defined, for
example, as the convex hull of the origin and the standard basis
elements ei in Rd .

An operation that can be used for construction is gluing along
faces of simplices.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism

HOMEOMORPHISM takes as input two topological spaces. We
need to determine whether they are homeomorphic.

Again, the essential question: How do we encode topological
spaces? The simplest solution for describing a broad class of
topological spaces is recursion: Starting from simple, well-known
topological spaces, we build further, more complex ones with
simple operations.

Perhaps the most combinatorial option is to start with simplices.

Simplices are points, line segments, triangles, tetrahedra. These
are precisely the simplices up to three dimensions. For every
natural number d , a d-dimensional simplex can be defined, for
example, as the convex hull of the origin and the standard basis
elements ei in Rd .

An operation that can be used for construction is gluing along
faces of simplices.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism

HOMEOMORPHISM takes as input two topological spaces. We
need to determine whether they are homeomorphic.

Again, the essential question: How do we encode topological
spaces? The simplest solution for describing a broad class of
topological spaces is recursion: Starting from simple, well-known
topological spaces, we build further, more complex ones with
simple operations.

Perhaps the most combinatorial option is to start with simplices.
Simplices are points, line segments, triangles, tetrahedra. These
are precisely the simplices up to three dimensions.

For every
natural number d , a d-dimensional simplex can be defined, for
example, as the convex hull of the origin and the standard basis
elements ei in Rd .

An operation that can be used for construction is gluing along
faces of simplices.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism

HOMEOMORPHISM takes as input two topological spaces. We
need to determine whether they are homeomorphic.

Again, the essential question: How do we encode topological
spaces? The simplest solution for describing a broad class of
topological spaces is recursion: Starting from simple, well-known
topological spaces, we build further, more complex ones with
simple operations.

Perhaps the most combinatorial option is to start with simplices.
Simplices are points, line segments, triangles, tetrahedra. These
are precisely the simplices up to three dimensions. For every
natural number d , a d-dimensional simplex can be defined, for
example, as the convex hull of the origin and the standard basis
elements ei in Rd .

An operation that can be used for construction is gluing along
faces of simplices.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism

HOMEOMORPHISM takes as input two topological spaces. We
need to determine whether they are homeomorphic.

Again, the essential question: How do we encode topological
spaces? The simplest solution for describing a broad class of
topological spaces is recursion: Starting from simple, well-known
topological spaces, we build further, more complex ones with
simple operations.

Perhaps the most combinatorial option is to start with simplices.
Simplices are points, line segments, triangles, tetrahedra. These
are precisely the simplices up to three dimensions. For every
natural number d , a d-dimensional simplex can be defined, for
example, as the convex hull of the origin and the standard basis
elements ei in Rd .

An operation that can be used for construction is gluing along
faces of simplices.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism (continued)

It is easy to prove that the dimension of the initial simplices and
the knowledge of the faces used in gluing are sufficient to
determine the homomorphism type of the described topological
space.

To describe this, we identify simplices and their faces with the set
of their vertices. The simplicial complex becomes a set system over
a finite set V . The simplicial complex can be characterized by a
single property: every subset belonging to it also belongs to the set
(the vertex set of any subset of a simplex is the vertex set of a
well-defined face, which is also a simplex).

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism (continued)

It is easy to prove that the dimension of the initial simplices and
the knowledge of the faces used in gluing are sufficient to
determine the homomorphism type of the described topological
space.

To describe this, we identify simplices and their faces with the set
of their vertices. The simplicial complex becomes a set system over
a finite set V . The simplicial complex can be characterized by a
single property: every subset belonging to it also belongs to the set
(the vertex set of any subset of a simplex is the vertex set of a
well-defined face, which is also a simplex).

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism (continued)

It is easy to prove that the dimension of the initial simplices and
the knowledge of the faces used in gluing are sufficient to
determine the homomorphism type of the described topological
space.

To describe this, we identify simplices and their faces with the set
of their vertices.

The simplicial complex becomes a set system over
a finite set V . The simplicial complex can be characterized by a
single property: every subset belonging to it also belongs to the set
(the vertex set of any subset of a simplex is the vertex set of a
well-defined face, which is also a simplex).

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism (continued)

It is easy to prove that the dimension of the initial simplices and
the knowledge of the faces used in gluing are sufficient to
determine the homomorphism type of the described topological
space.

To describe this, we identify simplices and their faces with the set
of their vertices. The simplicial complex becomes a set system over
a finite set V .

The simplicial complex can be characterized by a
single property: every subset belonging to it also belongs to the set
(the vertex set of any subset of a simplex is the vertex set of a
well-defined face, which is also a simplex).

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism (continued)

It is easy to prove that the dimension of the initial simplices and
the knowledge of the faces used in gluing are sufficient to
determine the homomorphism type of the described topological
space.

To describe this, we identify simplices and their faces with the set
of their vertices. The simplicial complex becomes a set system over
a finite set V . The simplicial complex can be characterized by a
single property: every subset belonging to it also belongs to the set
(the vertex set of any subset of a simplex is the vertex set of a
well-defined face, which is also a simplex).

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism: The Theorem

Theorem

The SIMPLICIAL-COMPLEXES-HOMEOMORPHISM problem is
undecidable. In other words,

HOMEOMORPHISM 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Homeomorphism: The Theorem

Theorem

The SIMPLICIAL-COMPLEXES-HOMEOMORPHISM problem is
undecidable. In other words,

HOMEOMORPHISM 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Post’s Domino Problem

In the POST problem, we are given a finite alphabet Σ. The input
is a set of dominoes: Finite types of dominoes, where each type
has a bottom and a top pattern, each being a word in Σ∗. For
each type, we have infinitely many dominoes at our disposal. The
question is whether we can arrange our dominoes into a (finite)
row in such a way that when the bottom and top patterns are read
together (concatenated), they form the same word.

Our description was elementary. Instead, the problem can be
formulated in the language of semigroups, often referred to in the
literature as a problem on semigroups.

The problem is undecidable.

Theorem (Post)

POST 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Post’s Domino Problem

In the POST problem, we are given a finite alphabet Σ.

The input
is a set of dominoes: Finite types of dominoes, where each type
has a bottom and a top pattern, each being a word in Σ∗. For
each type, we have infinitely many dominoes at our disposal. The
question is whether we can arrange our dominoes into a (finite)
row in such a way that when the bottom and top patterns are read
together (concatenated), they form the same word.

Our description was elementary. Instead, the problem can be
formulated in the language of semigroups, often referred to in the
literature as a problem on semigroups.

The problem is undecidable.

Theorem (Post)

POST 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Post’s Domino Problem

In the POST problem, we are given a finite alphabet Σ. The input
is a set of dominoes: Finite types of dominoes, where each type
has a bottom and a top pattern, each being a word in Σ∗.

For
each type, we have infinitely many dominoes at our disposal. The
question is whether we can arrange our dominoes into a (finite)
row in such a way that when the bottom and top patterns are read
together (concatenated), they form the same word.

Our description was elementary. Instead, the problem can be
formulated in the language of semigroups, often referred to in the
literature as a problem on semigroups.

The problem is undecidable.

Theorem (Post)

POST 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Post’s Domino Problem

In the POST problem, we are given a finite alphabet Σ. The input
is a set of dominoes: Finite types of dominoes, where each type
has a bottom and a top pattern, each being a word in Σ∗. For
each type, we have infinitely many dominoes at our disposal.

The
question is whether we can arrange our dominoes into a (finite)
row in such a way that when the bottom and top patterns are read
together (concatenated), they form the same word.

Our description was elementary. Instead, the problem can be
formulated in the language of semigroups, often referred to in the
literature as a problem on semigroups.

The problem is undecidable.

Theorem (Post)

POST 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Post’s Domino Problem

In the POST problem, we are given a finite alphabet Σ. The input
is a set of dominoes: Finite types of dominoes, where each type
has a bottom and a top pattern, each being a word in Σ∗. For
each type, we have infinitely many dominoes at our disposal. The
question is whether we can arrange our dominoes into a (finite)
row in such a way that when the bottom and top patterns are read
together (concatenated), they form the same word.

Our description was elementary. Instead, the problem can be
formulated in the language of semigroups, often referred to in the
literature as a problem on semigroups.

The problem is undecidable.

Theorem (Post)

POST 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Post’s Domino Problem

In the POST problem, we are given a finite alphabet Σ. The input
is a set of dominoes: Finite types of dominoes, where each type
has a bottom and a top pattern, each being a word in Σ∗. For
each type, we have infinitely many dominoes at our disposal. The
question is whether we can arrange our dominoes into a (finite)
row in such a way that when the bottom and top patterns are read
together (concatenated), they form the same word.

Our description was elementary. Instead, the problem can be
formulated in the language of semigroups, often referred to in the
literature as a problem on semigroups.

The problem is undecidable.

Theorem (Post)

POST 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Post’s Domino Problem

In the POST problem, we are given a finite alphabet Σ. The input
is a set of dominoes: Finite types of dominoes, where each type
has a bottom and a top pattern, each being a word in Σ∗. For
each type, we have infinitely many dominoes at our disposal. The
question is whether we can arrange our dominoes into a (finite)
row in such a way that when the bottom and top patterns are read
together (concatenated), they form the same word.

Our description was elementary. Instead, the problem can be
formulated in the language of semigroups, often referred to in the
literature as a problem on semigroups.

The problem is undecidable.

Theorem (Post)

POST 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Post’s Domino Problem

In the POST problem, we are given a finite alphabet Σ. The input
is a set of dominoes: Finite types of dominoes, where each type
has a bottom and a top pattern, each being a word in Σ∗. For
each type, we have infinitely many dominoes at our disposal. The
question is whether we can arrange our dominoes into a (finite)
row in such a way that when the bottom and top patterns are read
together (concatenated), they form the same word.

Our description was elementary. Instead, the problem can be
formulated in the language of semigroups, often referred to in the
literature as a problem on semigroups.

The problem is undecidable.

Theorem (Post)

POST 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Tiling Problems

Divide a square into four quarter-squares with two diagonals. Color
each of the resulting squares with a color. This square is called a
tile type.

Divide the plane with parallel horizontal and vertical lines into
square-sized tiles.

Tiling Problem

Given finitely many tile types. For each type, we have infinitely
many tiles. Can we tile the plane (can we place a tile in each

square of the above partition) in such a way that at the edges
meeting an edge, the corresponding two quarters of the tiles have
the same color?

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Tiling Problems

Divide a square into four quarter-squares with two diagonals. Color
each of the resulting squares with a color.

This square is called a
tile type.

Divide the plane with parallel horizontal and vertical lines into
square-sized tiles.

Tiling Problem

Given finitely many tile types. For each type, we have infinitely
many tiles. Can we tile the plane (can we place a tile in each

square of the above partition) in such a way that at the edges
meeting an edge, the corresponding two quarters of the tiles have
the same color?

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Tiling Problems

Divide a square into four quarter-squares with two diagonals. Color
each of the resulting squares with a color. This square is called a
tile type.

Divide the plane with parallel horizontal and vertical lines into
square-sized tiles.

Tiling Problem

Given finitely many tile types. For each type, we have infinitely
many tiles. Can we tile the plane (can we place a tile in each

square of the above partition) in such a way that at the edges
meeting an edge, the corresponding two quarters of the tiles have
the same color?

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Tiling Problems

Divide a square into four quarter-squares with two diagonals. Color
each of the resulting squares with a color. This square is called a
tile type.

Divide the plane with parallel horizontal and vertical lines into
square-sized tiles.

Tiling Problem

Given finitely many tile types. For each type, we have infinitely
many tiles. Can we tile the plane (can we place a tile in each

square of the above partition) in such a way that at the edges
meeting an edge, the corresponding two quarters of the tiles have
the same color?

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Tiling Problems

Divide a square into four quarter-squares with two diagonals. Color
each of the resulting squares with a color. This square is called a
tile type.

Divide the plane with parallel horizontal and vertical lines into
square-sized tiles.

Tiling Problem

Given finitely many tile types. For each type, we have infinitely
many tiles.

Can we tile the plane (can we place a tile in each

square of the above partition) in such a way that at the edges
meeting an edge, the corresponding two quarters of the tiles have
the same color?

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Tiling Problems

Divide a square into four quarter-squares with two diagonals. Color
each of the resulting squares with a color. This square is called a
tile type.

Divide the plane with parallel horizontal and vertical lines into
square-sized tiles.

Tiling Problem

Given finitely many tile types. For each type, we have infinitely
many tiles. Can we tile the plane (can we place a tile in each

square of the above partition) in such a way that at the edges
meeting an edge, the corresponding two quarters of the tiles have
the same color?

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Tiling Problems: Wang Tiles

Wang Tiling Problem

Given finitely many tile types. Place one tile of each type side by
side on the plane. For each type, we have infinitely many tiles.

Can we tile the plane (can we place a tile in each square of the

above partition) in such a way that the placement of individual
tiles can be obtained from the placements of the types by shifting,
and at the edges meeting an edge, the corresponding two quarters
of the tiles have the same color?

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Tiling Problems: Wang Tiles

Wang Tiling Problem

Given finitely many tile types.

Place one tile of each type side by
side on the plane. For each type, we have infinitely many tiles.

Can we tile the plane (can we place a tile in each square of the

above partition) in such a way that the placement of individual
tiles can be obtained from the placements of the types by shifting,
and at the edges meeting an edge, the corresponding two quarters
of the tiles have the same color?

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Tiling Problems: Wang Tiles

Wang Tiling Problem

Given finitely many tile types. Place one tile of each type side by
side on the plane.

For each type, we have infinitely many tiles.

Can we tile the plane (can we place a tile in each square of the

above partition) in such a way that the placement of individual
tiles can be obtained from the placements of the types by shifting,
and at the edges meeting an edge, the corresponding two quarters
of the tiles have the same color?

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Tiling Problems: Wang Tiles

Wang Tiling Problem

Given finitely many tile types. Place one tile of each type side by
side on the plane. For each type, we have infinitely many tiles.

Can we tile the plane (can we place a tile in each square of the

above partition) in such a way that the placement of individual
tiles can be obtained from the placements of the types by shifting,
and at the edges meeting an edge, the corresponding two quarters
of the tiles have the same color?

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Tiling Problems: Wang Tiles

Wang Tiling Problem

Given finitely many tile types. Place one tile of each type side by
side on the plane. For each type, we have infinitely many tiles.

Can we tile the plane (can we place a tile in each square of the

above partition) in such a way that the placement of individual
tiles can be obtained from the placements of the types by shifting,
and at the edges meeting an edge, the corresponding two quarters
of the tiles have the same color?

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Tiling Problems: The Theorems

Theorem

TILING 6∈ D.

Theorem

WANG -TILING 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Tiling Problems: The Theorems

Theorem

TILING 6∈ D.

Theorem

WANG -TILING 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

Tiling Problems: The Theorems

Theorem

TILING 6∈ D.

Theorem

WANG -TILING 6∈ D.

Peter Hajnal Non-computablity, SzTE, 2023



Halting problem, Universal Turing machines Outside D

This is the end!

Thank you for your attention!

Peter Hajnal Non-computablity, SzTE, 2023


	Halting problem, Universal Turing machines
	Outside D

