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The basic idea

• We are given a problem P. We introduce a multitude of
problems: P.

• We assume that P ∈ P. First, it seems that we are making our
life harder. We introduces extra problems in addition to the initial
one.

• We will have very easy problems in P.

• We can order the elements of P a way, that solving the actual
problem (following the order) will be always easy, based on the
answers given so far.
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The mathematical content

• We need some intuition to choose a good P. With a good
choice of a suitable (often very natural) ordering of our problems.

• Solving problems of P is very similar then proving a multitude of
claims by induction.
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Example: Fibonacci numbers

Definition: Fibonacci numbers

F1 = F2 = 1,

If n > 2, then
Fn = Fn−1 + Fn−2.

Example: the few first Fibonacci numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, . . .
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Fibonacci numbers and dynamic programming

• The following ”program” computes F(18):

var F(1..18): natural;

for i=1 to 18 do

if n = 1 or 2 then F(i) = 1

if i > 2 then F(i) = F(i-1) + F(i-2);

print F(18)

• It follows the logic of dynamic programming. It introduce an
array of length 18. At the end of the run the memory will contain
18 numbers, although only the last one, F18 is important for us.

• The speed strongly depends on how many subproblems we have.

• The dynamical programming solution of a problem very often
looks like just filling a sequence, or an array with numbers, and
announcing the last number as the output.
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The Fibonacci numbers and recursion

• The following ”program” computes the Fibonacci numbers too:

Fibonacci(n):

if n>2

return Fibonacci(n-1)+ Fibonacci(n-2)

else

return 1;

print Fibonacci(18).

• It is a procedure, that for large parameter refers to itself. What
does a machine do, when running this code? That is a hard
question.

• This program is much slower than the one, based on dynamic
programming.
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Break
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The basic problem

Maximum independent sets in trees

Given a tree T . Find the size of its largest independent vertex set.

Tree

A tree graph is a connected graph without cycle.

Independent vertex set

F ⊂ V (G ) is an independent set iff there is no uv edge, with
u, v ∈ F .
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Rooted trees

• (T , r) is a rooted tree, it T is a tree, an r is special vertex,
called root. This innocent notion enrich our language.

• V , the set of vertices can be classified into ”generations”
depending the distance from the root. Let Gi be the set of
vertices, of distance i from r . G0 = {r}, G1 is the vertex set
containing exactly the neighbors of the root.

For each edge, e there is an index/generation i ∈ N, that e
connects x ∈ Gi and y ∈ Gi+1. In this case we say that x is the
parent vertex, and y is the child vertex (according to e).
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connects x ∈ Gi and y ∈ Gi+1.

In this case we say that x is the
parent vertex, and y is the child vertex (according to e).
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Rooted trees (cont’d)

• If x is not the root then there is unique step towards the root.
This step leads to the only parent of x (often this parent is called
father).

• The root is the only vertex without a father.

• A vertex of a tree is called leaf if it has no children.
• The ancestors of a vertex (other than the root) are the vertices
in the path from the root to this vertex, excluding the vertex itself
and including the root. Descendants The descendants of a vertex
v are those vertices that have v as an ancestor.

• The root is an ancestor of any non-leaf vertex. Any non-root
vertex is a descendant of the root. ` is leaf iff it has no descendant.
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Rooted trees (cont’d)

• Any vertex x determines/generates a rooted subtree, Tx : Its
vertices are the vertex x and its descendants, its root is x .

• A rooted tree has |V | subtrees. Tr is the original tree. ` is a leaf
iff T` has only one vertex (`).

• The depth of a rooted tree is the length of the longest root-leaf
path. The depth is 0 if and only if the tree has only one vertex,
that vertex is a root and a leaf at the same time.

• Many of the graph theoretical slang, introduced above, are
originated in the language of family trees.
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Dynamics of the problem

• We are given a tree T . Take any vertex as a root. Note that
distinguishing a vertex doesn’t change the problem.

The multitude of problems

{Fx}x∈V (T ),

where Fx is the largest independent set problem for (Tx , x).

• We have |V (T )| problems in our collection of problems. One of
them is the original problem (when x is the original root, r).

Roll up the problems

We order the problems Fx by the depth of (Tx , x).
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The scheme

Algorithm

(0) We start with the problems (Tx , x), where the depth is 0, i.e. x
is leaf.

// Then we have 1 vertex in the tree, and 1 is the size of the
largest independent set.

(Ordering) We order our problems (Ti , ri ). In our order
depth(Ti , ri ) is increasing.

(Loop) For i = 1, 2, . . . , |V | do the same. Assume that (Ti , ri ) is
the actual problem.

(Computation) We solve the the actual problem assuming that the
previous problems are already solved.

(Output) Announce the answer for (Tr , r) as the output.
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The idea for (Computation)

• We classify the independent sets of the actual (Ti , ri ):

(a) The independent sets not containing ri , the root.

(b) The independent sets containing ri , the root.

We determine the largest size among the two types.
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Independent sets of type (a)

• Let s1, . . . , sd be the children of ri .

Observation

To obtain an independent set of type (a) in Tri take an arbitrary
independent set for each Ts1 ,Ts2 . . . ,Tsd and take their union.

• We can maximize the size of the independent set by taking a
maximum size independent set from each of the Tsi ’s. Let Mi be
the maximum size of independent sets in Tsi . The value of Mi is
known when solving the actual problem.

• The answer for the actual problem is
∑

i Mi .
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Independent sets of type (b)

• Let g1, . . . , gD be the grandchildren of ri , the root of the actual
tree.

Observation

To obtain an independent set of type (b) in Tri take an arbitrary
independent set for each (Tgi , gi ), take their union, and add to the
union the vertex ri .

• We can maximize the size of the independent set by taking a
maximum size independent set from each of the Tgi ’s. Let µi be
the maximum size of independent sets in Tsi . The value of µi is
known when solving the actual problem.

• The answer for the actual problem is 1 +
∑

i µi .
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The algorithm

Algorithm for finding the maximal size of independent sets

(0) Fix a root r , introduce the rooted subtrees. We start with the
problems (Tx , x), where the depth is 0, i.e. x is leaf. Output 1.

(Ordering) We order our problems (Ti , ri ). In our order
depth(Ti , ri ) is increasing.

Solve the problems following the order. Assume that (Ti , ri ) is the
actual ”problem”.

(Computation) From the solutions of the previous problems
compute max{

∑
i Mi , 1 +

∑
i µi}.

(Output) Print the solution for the rooted subtree (Tr , r)
(Tr = T ).
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Final remark

For the depth 0 initial case we know an optimal independent set
too.

Using the above ideas we can compute not only the maximal
size, but one of the optimal independent set too.
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This is the end!

Thank you for your attention!
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