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Basic Idea

• We consider optimization problems. In F , the set of feasible
solutions we must find an optimal element, i.e. an element where
c : F → R, the objective function takes minimal/maximal value.

• Very often the feasible solutions are subsets of a universe.

• An easy algorithm paste the elements of U (or the ”surviving”
elements of U). The MOST PROMISING element will be chosen
as the next element of the output. After pasting all elements of U
we will have an output.
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Basic Idea: Why greedy?

• Taking the most promising element is a natural decision. The
essence of greediness is that the above algorithm never overrules
previous decisions. In spite of being a promising element at some
point, later on we might realize that choosing that element is not a
wise decision. A greedy algorithm do not step back.

• Greedy algorithms are very simple to implement. They are very
fast. Unfortunately very often they are not able to guarantee that
the output is optimal.

• The above description is not a mathematical definition. It is a
scheme, that very often leads to good algorithms. Sometimes
(rarely) greediness makes us to be able to find the optimal solution.

• Let us see an example.
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The minimal cost spanning tree problem

The problem

Given a connected graph, for each edge we have a positive cost
(c : E (G )→ R++). This cost function can be naturally extended
to subsets of E (G ) (the cost of an edge set is the sum of the costs
of its elements).

Find a cheapest spanning tree of the input graph (the tree is
considered as a set of edges).

The following algorithm, first described by Kruskal is a
”

prototype”
of the greedy algorithm design.
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Kruskal’s algorithm

Kruskal’s algorithm (1956)

(SORTING STEP) Sort the edges of the input graph in ascending
order of cost. Let E (G ) : e1, e2, . . . , em, i.e. e1 is the cheapest
edge, em is the most expensive edge
(c(e1) ≤ c(e2) ≤ . . . ≤ c(em)).

(INITIALIZATION) Let F be the set of edges selected so far. At
the beginning of the algorithm F = ∅. // During the algorithm we
only take care that F is an edge set without cycle.
(TESTS) In the i th step, we examine ei . If F ∪ {ei} is cycle-free,
then we extend F : F ← F ∪ {ei}. If F ∪ {ei} contains a cycle,
then we do not change F .
(OUTPUT) After examining the last edge, we announce the
current F as the output.
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The main theorem

One can say: all our choices are the best decision at the time.
Later some of the edges have been discarded. After that it is
possible that we need to throw away an edge. This is a
questionable choice. It was based on the fact that the previously
selected edges form a part of the output. If our previous decisions
are overruled, then we could have chosen to use the currently
discarded edge (the cheapest edge of the remaining edge set). The
cost of the calculated spanning tree cannot simply be compared to
the tree calculated above.

Despite the huge question mark above, the calculated tree is
optimal.

Theorem (Kruskal’s Theorem)

The output of the above algorithm is a minimum cost spanning
tree of the input graph.
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Initial notations

• n = |V (G )|.
• Let e1, e2, . . . , e` be the elements of the output in the order of
their selection. Specifically

c(e1) ≤ c(e2) ≤ . . . ≤ c(e`−1) ≤ c(e`).

• Let F be an arbitrary spanning tree. We list the edges in
increasing order of cost: f1, . . . , fn−1, i.e.

c(f1) ≤ c(f2) ≤ . . . ≤ c(fn−1).

• Based on the connectivity of the input graph it is easy to see
that Kruskal’s algorithm computes a spanning tree, i.e. ` = n − 1.
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Strong form of Kruskal’s Theorem

Theorem (Strong form of Kruskal’s Theorem)

For i = 1, 2, . . . , n − 1 we have

c(ei ) ≤ c(fi ).
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The Main Lemma

Main Lemma

Let F ,F ′ be two cycle-free edge sets over V . Suppose that
|F | < |F ′|. Then there is an edge e in F ′ − F such that F ∪ {e} is
also cycle-free.

• Let GF be the cycle-free graph (forest) with vertex set V and
edge set F .
• We know that GF has n − |F | components: c(GF ) = n − |F |.
• Similarly let GF ′ be the cycle-free graph (forest) with vertex set
V and edge set F ′.
• We know that GF ′ has n − |F ′| components:
c(GF ′) = n − |F ′| < n − |F | = c(GF ).
• This can only be imagined if there is an edge e ∈ F ′ connecting
two different components of GF .
• Hence e 6∈ F and F ∪ {e} is cycle-free.
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Strong form of Kruskal’s Theorem: The proof

• Induction on i .

• c(e1) ≤ c(f1).

• Assume that for i(< n − 1)

c(e1) ≤ c(f1), c(e2) ≤ c(f2), . . . , c(ei ) ≤ c(fi )

• F := {e1, . . . , ei}, F ′ := {f1, . . . , fi , fi+1}. Apply the Main
Lemma. → f ∈ F ′.

• The Kruskal’s algorithm tests ei+1 not later than f .

•
c(ei+1) ≤ c(f ) ≤ c(fi+1).
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The analysis of Kruskal’s algorithm

• The cost of the sorting step is

O(|E | log |E |).

• The remaining part of algorithm is |E | testing on an edge set. In
each case the size of the edge set is is at most |V |. The cost of a
test is O(|V |).

• Cost of the complete run

O(|E | log |E |) + |E | · O(|V |) = O(|E | · |V |).

• We have performed an analysis of a naive implementation. There
are more clever solutions.
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Break
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The basic question

The computational problem

Given

(i)
−→
G directed graph,

(ii) ` : E (
−→
G )→ R++ length function,

(iii) s, t two distinguished.

Determine the distance of s and t.
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Refreshing memory

Definition: Walk in a directed graph

−→uv -walk in
−→
G :

−→
S : u = w0,

−→e 1,w1,
−→e 2, . . . ,wL−1,

−→e L,wL = v ,

where wi ∈ V (i = 0, 1, . . . , L), −→e i ∈ E (i = 1, . . . , L), ei is an
outgoing edge from wi−1, and ingoing edge in wi (i = 1, . . . , L).

In the case of the existence of an −→uv -walk we say that v is
reachable from u.

The graph theoretical length of
−→
S , an −→uv -walk is L.
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Refreshing memory (cont’d)

Length of a walk in a weighted graph

The (weighted) length of
−→
S , an −→uv -walk is

L∑
i=1

`(−→e i ).

Definition: The distance of two vertices in a weighted graph

d(u, v) denotes the distance of two vertices u and v , that is the
minimal length among the −→uv -walks. // d(u, v) =∞ is possible!

Observation

The shortest −→uv -walk will be a path.
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Initial remarks

• We assume the our graph has no loop. We assume that for any
two vertices there is at most one edge from u to v . I.e. we assume

that
−→
G is simple (in directed sense).
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The case of graph theoretical distance: unweighted case

• We solve a harder problem. The input will be (
−→
G , s). We

determine S , the set of vertices that are reachable from s.

• The set of reachable vertices will be S = S0∪̇S1∪̇ . . . ∪̇SL, where
Si contains exactly those vertices that are at distance i from s.

• L denotes the length of longest path starting at s.

• Each edge between S and S = V (G )− S are oriented from S to
S . This property will be a proof of the fact that the elements of S
are not reachable from s.
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Breadth first search algorithm

Breadth first search

(I) // Inicialization // Let S0 = {s}.
(E) // Extension cycle // While Si 6= ∅

•

Si+1 = {x ∈ V (G )− (S0 ∪ . . . ∪ Si ) : there is σ ∈ Si ,

such that −→σx ∈ E (G )}

• i ← i + 1.

end-while
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The basic idea Minimal cost spanning tree Shortest path, Dijkstra Huffman coding Matching problem

The correctness of breadth first search algorithm

Theorem

The above algorithm is correct. I.e.

(i) In the case of x ∈ Si the graph theoretical distance of s and x
is i .

(ii) If x 6∈ S , then x is not reachable from s.
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The basic idea Minimal cost spanning tree Shortest path, Dijkstra Huffman coding Matching problem

Breadth first search tree

See the following modification of the algorithm:

Breadth first search tree (modification)

(I∗) F := ∅

(E+) In cycle (E), when we insert x into Si+1 (i ≥ 0), then the
algorithm search for a suitable σ ∈ Si and find one: σx ∈ Si .
// Suitable means that −−→σxx is an edge.

(Extending F ) F ← F ∪ {−−→σxx}

Theorem

In the graph G |S the edge set F will be the edge set of a spanning
tree F . (F , s) is a rooted tree.

For each vertex x ∈ S there is exactly one −→sx -path in F . This one
of the (graph theoretically) shortest −→sx -path.
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The basic idea Minimal cost spanning tree Shortest path, Dijkstra Huffman coding Matching problem

Weighted case: The basic idea

• We also assume that all vertices are reachable from s.

• Assume that for a vertex set S ⊂ V (
−→
G ) we have

(o) s ∈ S ,

(i) for each v ∈ S we have the shortest −→sv path, and that is
inside S .

• The greedy algorithm chooses the most promising vertex from
S := V (G ) \ S . For this we assume that the following information
is also computed:

(ii) For each v ∈ S we have the shortest −→sv path, and that is

inside S except the last
−−→
v−v step (v− ∈ S).

• One should think about the promised information as a labeling,

c : V (
−→
G )→ R ∪ {∞}, of the vertices.
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Dijkstra’s algorithm

Dijkstra’s algorithm

(I) // Inicialization
S = {s}, c(s) = 0.
In the case of v 6∈ S , −→sv ∈ E we have c(v) = `(−→sv ).
In the case of v 6∈ S , −→sv 6∈ E we have c(v) =∞.

(E) // Extension (until S 6= ∅)
m ∈ S with smallest label in

−→
S .

S ← S ∪ {m}.
// S ← S \ {m}.

(U) // Update
We might change the label of n ∈ S in the case of −→mn ∈ E :

cnew(n) = min{cold(n), c(m) + `(−→mn)}.

If t 6∈ S (or S 6= ∅) back to (E).
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Correctness of the algorithm

Theorem

In each update step Dijkstra’s algorithm computes a correct
labeling. I.e.

(i) The label of v ∈ S is the length of shortest −→sv path.
Furthermore this shortest length can be realized by a −→sv -path
inside S .

(ii) The label of v ∈ S is the length of shortest −→sv path, that
leaves S only when it makes the last step.

• We prove by mathematical induction on |S |. Case |S | = 1 is
straight forward.

• For the induction step we need to prove two claims:

(i) The label of m is correct,

(ii) The label of x ∈ S is correct.
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Analysis of the algorithm

• Sfin denotes the set of nodes from S with finite label.

• Extension step: Delete the node with minimum label from Sfin.
The number of extension steps is at most |V | − 1.

• Label updates steps: Some vertex with label ”∞” enters Sfin.
Some labels in Sfin will be decreased by a value δ(> 0).
Computation for label updates is needed for at most |E | times.

• The total number of steps is

O(|V |2 + |E |).

• The above argument followed a naive implementation. There are
cleverer ways to implement Dijkstra’s high level description.
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Final remarks

• Every label has a corresponding edge, that is responsible for its
value.

• Changing the value of the label/updating: changing the
”responsible” node too.

• If we keep track of these edges responsible for the actual value
we will obtain a rooted, directed spanning tree of the original
graph (see the computation of breadth first search tree). This tree
maintains/contains for each vertex a shortest path leading to that
vertex.
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Break
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Coding texts

Definition of Text

Let Σ be a finite alphabet. The elements of Σ are called characters.
A text is a finite sequence of characters(∈ Σ?).

The length of a text is the number of characters in the text.

Coding texts

An algorithm/function c : Σ? → {0, 1}?

+

decoding algorithm d : {0, 1}? → Σ?.

Character based coding: c0 : Σ→ {0, 1}? coding of characters.
The code of a text is obtained by ”putting together” the codes of
its characters.
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Fixed-length codes, Example: ASCII (1972) (source: wiki)
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Variable-length codes, Example: Morse code (1837–44)
(source:wiki)
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Variable-length codes without comma: Prefix codes

Definition

Rooted binary plane tree.
Leaf of a rooted binary plane tree.

Definition: Prefix tree for Σ

Let (T , r) be a rooted binary plane tree. Let L be the set of leaves
of (T , r). pause (T , r , `) is a prefix tree for Σ, iff ` : Σ→ L is a
bijection.

The coding of the characters based on a prefix tree

k(∈ Σ) 7→ labels of the r -`(k) path in T
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Let (T , r) be a rooted binary plane tree. Let L be the set of leaves
of (T , r). pause (T , r , `) is a prefix tree for Σ, iff ` : Σ→ L is a
bijection.

The coding of the characters based on a prefix tree

k(∈ Σ) 7→ labels of the r -`(k) path in T
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The fundamental question

Problem

Given Σ alphabet and a text τ (→probability distribution over Σ /
frequency table(∈ NΣ)). Find a prefix tree over Σ, that minimize
the lenth of the code of τ .
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Huffman’s algorithm: Basic idea

• We consider the the characters as a one-node prefix trees. So we
start with |Σ| prefix trees.

• We choose two trees and merge them.Merging: We introduce a
new root-vertex. Its two children are the roots of the two merged
tree.

• Using merging steps we compute the output (equiv greediness).

• The initial trees have frequency values. During the algorithm
each tree has an f-vaule: The SUM of the frequencies assigned to
its leaves.

• ??? HOW TO CHOOSE THE TWO TREES TO MERGE ???

• The natural idea: choose the two trees with lowest frequencies.
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Huffman’s algorithm

Huffman’s algorithm (1951)

(INITIALIZATION) We construct a rooted binary plane tree for
each character.

Each tree has an f -value, the frequency of the
corresponding character.
// During the algorithm we always have a set of prefix trees with
f -values: T .
(CHOICE) (until |T | > 1) Take the two trees with the lowest
frequencies: T1, T2.
(Merge) Merge the two chosen trees → M(T1,T2).

T ← T − {T1,T2} ∪ {M(T1,T2)}.

The f -value of M(T1,T2) is the some of the f -values of the
merged two trees. Back to (CHOICE).
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The correctness of Huffman’s algorithm: the main idea

Huffman’s theorem

The output of the Huffman’s algorithm is a prefix tree the
produces the shortest prefix coding of the input text.

Let T be a prefix tree. Choose two leaves (`, `′) that are siblings
on the lowest level of T . Let k and k ′ be the two characters that
are in the first merge step when we run Huffman’s coding. Modify
T by changing the labels of the leaves. With at most two
transpositions we obtain T ′ where the label of ` is k, and the label
of `′ is k ′.
Let β′ be the code of τ based on T ′. Let β be the code of τ based
on T .

Observation

The length of β′ is at most the length of β.
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”this is an example of a huffman tree”

Source: wikipedia
Peter Hajnal Greedy algorithms, University of Szeged, 2023
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Break
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The greedy algorithm for matchings

Greedy algorithm for finding large matchings

(Initialization) Start with a matching M.
WHILE there is an edge e ∈ E (G )−M such that M ∪ {e} is a
matching too, do
(Greedy extension step) M ← M ∪ {e}.
(Halting) The actual matching is the output.
// At halting we have that each edge of E (G ) \M is neighbors of
an edge from M.

• There is no fear of infinite loop.

• We know that int the case of halting the output can’t be
augmented by extensions (by adding further edges to the output).
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Example

Figure: Our graph has four disjoint levels of equal sized vertex sets (let n
be the size of the levels, in our example n = 4). Between two adjacent
levels all possible edges are present and there are no further edges. It is
possible that the greedy algorithm first chooses the yellow edges,
matching the two middle levels. Then it halts. The green edges form a
perfect matching.
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Analysis

Theorem

Let νgreedy(G ) denote the size of the output of the greedy
algorithm. Then

ν(G )

2
≤ νgreedy(G ) ≤ ν(G ).

The second inequality is obvious since our algorithm computes a
matching.
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Analysis: the proof

• Let Mgreedy denote the output matching of the greedy algorithm.

• L = V (Mgreedy) is the set of matched vertices.

• It is obvious that L is a covering vertex set, and
|L| = 2νgreedy(G ).

• The size of L gives an upper bound on the size of an arbitrary
matching, hence ν(G ) ≤ |L| = 2νgreedy(G ).
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This is the end!

Thank you for your attention!

Peter Hajnal Greedy algorithms, University of Szeged, 2023


	The basic idea
	Minimal cost spanning tree
	Shortest path, Dijkstra
	Huffman coding
	Matching problem

