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Computation vs. Reasoning

We defined the complexity of a computation. For example, a
decision problem L belonged to the class P if there existed a
Turing machine that could decide it with a guarantee that, for any
input w, the output/decision occurs within a polynomial number of
steps dependent on |w|.

However, sometimes we don't want to perform the entire
computation. We suffice with the machine somehow
demonstrating/showing/proving that w € L (assuming it is the
case).

The concept of computability discussed so far was such that for a
known input, it was clear what configuration sequence the machine
followed.

The human brain is not like that (we think). Thinking/reasoning
does not work this way.
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Determinism vs. Non-determinism

To the original computability, we add an adjective: the defined
Turing machine is deterministic.

There are also non-deterministic machines. Below, we provide two
alternative definitions for non-deterministic Turing machines.
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Non-determinism: Version |

Similar to deterministic Turing machines, there are tapes, heads,
states, etc. Here, we describe only the single tape version.

Definition: Non-deterministic TM
The transition function for a non-deterministic TM:

§:EXxT xS =P+, =} xTx{,.,—=}xS)\ {0}
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Non-determinism: Version |

That is, for a given configuration, not a single update rule is given,
but a set of update rules.

For a given configuration, it is not necessary to specify a single
succeeding configuration. Instead, a set of possible succeeding
configurations is provided (each element of the set described by the
transition function represents a possible succeeding configuration).
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Non-determinism: Version |

Thus, the run for the input w is not determined (in other words,
non-deterministic), i.e., from the initial configuration ro(w),
multiple possible configurations can be reached. Thus, a tree
rooted at ko(w) describes the possible runs of the machine.
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Non-determinism: Version |

To understand non-determinism, it is crucial to clarify when a
machine computes a language.

Definition

For a non-deterministic machine to accept a language, every run
must halt on every input.

The input w is accepted by the non-deterministic Turing machine
T if there exists a run leading to an ACCEPT state.

That is, rejecting w is equivalent to all runs on w leading to a
REJECT state.
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Non-determinism: Version Il

Definition

In this case, we have an additional tape to the input and work
tapes, called the witness/proof tape. We assume that its alphabet
is 2.

This tape is read-only, and the head can only move to the right.
The transition function is defined the same way as in the
deterministic case, and the run is deterministic. That is, w and 7
(the content of the witness tape) uniquely determine a
configuration sequence:

ko = ko(w,T) = K1 — K2 —> ...
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Non-determinism: Version |l in Picture

The following diagram is a photograph of a configuration of a
non-deterministic machine (I1).
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Non-determinism: Version Il

The problem arises again when we say that a non-deterministic
machine accepts an L language. For this, it is necessary that the
machine halts on any w input with arbitrary witness tape content.
The input w is accepted by a non-deterministic Turing machine if
there exists a witness tape content 7 for which the run reaches an
ACCEPT state.

During a witness tape 7, we may reach a REJECT state on the w
input. This does not necessarily mean that the input is incorrect.
If w € L, it means that 7 is a bad choice/unconvincing witness.
That's why in the non-deterministic case, we often give the name
NOT-CONVINCED to the REJECT state. Rejection occurs when
every T witness tape content leads to the NOT-CONVINCED state.
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Non-determinism: Relationship between the Two Versions

There is a significant difference between the two versions: in the
first one, non-determinism is scattered during the run, and the
final state is not determined until just before the last step.

In the second version, non-determinism occurs with the choice of
7. That is, we fix our possible decisions, alternatives, beforehand.
After that the run is deterministic.

L is decidable by I-non-deterministic TM if and only if it is
decidable by Il-non-deterministic TM.

We won't prove the theorem here, but an interested student can
easily do so.
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Language Classes Based on Non-deterministic
Computation
We can base our definitions on either version of non-determinism (so that
we arrive at the same language classes). We follow the second (witness

tape) perspective. Then TIME(w,7;T) and SPACE(w, 7;T) can be defined
by copying the deterministic case.

Definition: NTIME(w; T)
If w e L then NTIME(w; T) is defined as
min{ TIME(w, 7;T) : where 7 is such that T
reaches the ACCEPT state on w}.

If w¢& L then
NTIME(w; T) = min{ TIME(w, 7;T) : where 7 € ¥*}.

In other words, among accepting runs, the most brilliant witness tape
content determines the time limit.
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Language Classes Based on Non-deterministic
Computation

Definition
If w € L then NSPACE(w; T) is defined as
min{SPACE(w, 7;T) : where 7 is such that T
reaches the ACCEPT state on w}.

If w¢ L then
NSPACE(w; T) = min{ TIME(w, T;T) : where 7 € ¥*}.
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Most Common Classes

Definition

NP = {L : there exists a non-deterministic Turing machine T

that accepts L, and there exists i € N such that
for every w, NTIME(w;T) < |w| +i.}

NEXP = {L : there exists a non-deterministic Turing machine T
that accepts L, and there exists i € N such that

for every w, NTIME(w;T) < 2lI'+7 }

Peter Hajnal Non-determinism, SzTE, 2023



The Most Common Classes (Continued)

Definition

NL = {L: there exists a non-deterministic Turing machine T
that accepts L, and there exists i € N such that
for every w, NSPACE(w;T) < ilog(Jw|+ 1).}

NPSPACE = {L : there exists a non-deterministic Turing machine T
that accepts L, and there exists i € N such that

for every w, NSPACE(w;T) < |w|’ +i.}
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Most Common Classes (Continued)

Definition

NEXPSPACE = {L : there exists a non-deterministic Turing machine T
that accepts L, and there exists i € N such that

for every w, NSPACE(w;T) < 2|w|’+i_}

Again, note that defined classes are robust: if we slightly change the
definition of the Turing machine, the corresponding classes remain the same.

We could have introduced the above definitions based on the first version of
non-determinism as well.
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Complementation and Determinism

Observation
Deterministic classes are closed under complementation.
If L et P, then L =%* — L also belongs to P.

To prove this, let T be the Turing machine obtained from T with
the following simple modification: we change the transition
function so that if T reaches the ACCEPT state, then T (keeping
everything else the same) enters the REJECT state, and vice versa.

With this, T exactly accepts the inputs rejected by T. That is, the
computed language is the complement language.

The complexities of T and T are the same.
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Complementation and Non-determinism

The above observation is far from obvious in the non-deterministic
case, if true at all.

The following definitions are justified.

Definition

co NP={L:Le NP},
co NEXP ={L: L e NEXP},
coNL={L:LeNL},
co NPSPACE ={L : L € NPSPACE},
co NEXPSPACE ={L : L € NEXPSPACE},
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Obvious Inclusions

More time, more languages. More space, more languages.
The power of non-determinism is more languages.

These statements are obvious from the definitions (if more means
at least as many).

It is also natural that limited time implies limited space usage.
Based on these, the following inclusions are obvious for the existing

language classes:

NL NP C NPSPACE NEXP C NEXPSPACE
ul Ul Ul Ul Ul
L < P C PSPACE C EXP EXPSPACE

N
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Technical Definitions

Definition

A function t(n) : N — N is called a nice time function if there is a
Turing machine such that for every n-length input, it runs exactly
for t(n) time.

Definition

A function s(n) : N — N is called a nice space function if there is a
Turing machine such that for every n-length input, it halts and
touches exactly s(n) cells on the work tape.

The above are technical conditions. However, all functions used so
far are nice. For example, in the case of time, polynomial
functions, 2", or in the case of space, [log, n], are also nice.
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Example

Example

Assume t(n) is a nice time function. Let T be an arbitrary Turing
machine. Let w be an arbitrary n-length input.

Copy w to a work tape, then move the heads/hands back to the
left (2n time).

From here, simulate the run of T and with the help of the work
tape simulate a machine W that exhibits the niceness of t(n). The
ACCEPT/REJECT state of T halts our machine.

We call the halting state of W the BUZZ state. We think of W as
a clock. The BUZZ state stops the entire simulation.

So our new machine will definitely halt in 2n + t(n) time
(t(n) 4+ 2n and t(n) are of the same order of magnitude). It
performs the computations of T if they fit into t(n) time.
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Example

Example

Assume s(n) is a nice space function. Let T be an arbitrary Turing
machine. Let w be an arbitrary n-length input.

First, simulate the machine W exhibiting the niceness of s(n).
Then, overwrite the used cells with an empty symbol and put a
SO-FAR character behind them.

After that, start the simulation of the T machine. If we read the
SO-FAR character, we stop with a LOT-OF-MEMORY state.

The ACCEPT/REJECT state of T halts our machine. So our new
machine will use 1+ s(n) space (s(n) and s(n) + 1 are of the same
order of magnitude).

The new machine performs the computations of T if they fit into

s(n) space. Furthermore ther will be two halting congiguration on
any input (LOT-OF-MEMORY=REJECT=NON-CONVINCED).

Peter Hajnal Non-determinism, SzTE, 2023



Example

Example

Let T be a non-deterministic machine with a time complexity of
t(n) that computes the language L. It can have many runs of
which we do not know anything about the time.

Based on the example above, IF t(n) is nice, THEN it can be
assumed that our machine stops in t(n) ~ t(n) + 2n steps for
every run. The halted runs do not change the accepted language.
Due to the time complexity condition, if w € L, there will be a run
leading to the ACCEPT state that terminates before the BUZZ
state. The simulating machine detects this.
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Example

Example

Let s(n) be a nice space function. Let T be an s(n)
space-bounded machine. Then, we can achieve that our machine
has exactly two different halting configurations:

Run T. However, at the end of the computation, keep to ourselves
the result and before announcing the ACCEPT/REJECT states,
erase the work tape in s(n) length (due to niceness, this can be
easily done).

Move every head/hand to the left. After that, reach the halting
state corresponding to the computed result.

We have two different halting configurations (photo of the
machine), and of course, our machine computes the same thing as
the original.
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Remark

Note that we can also use the nice time function (let W be the
Turing machine proving this) to mark cells:

During the simulation of W, all other work tapes with
heads/hands continuously move to the right until the BUZZ state.
Then, beyond the tapes used by W, exactly t(n) cells are marked

on the other tapes.
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Goal

Our goal is to understand the following inclusion chain:
(2) 1) (2
LCNLCPCNPCPSPACE C NPSPACE CEXP C NEXP.

We numbered the still unproven inclusions.

Below, we will prove these. However, our goal is not to provide the
shortest justification, but to summarize the results and introduce
the methods for later use.
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Warm-Up

TIME(t(n)) C SPACE(t(n)).

Indeed, the time constraint limits how far the work tape
head/hand can move.

Triviality B

(i) TIME(t(n)) € NTIME(t(n)).
(i) SPACE(s(n)) € NSPACE(s(n)).

Indeed, determinism can be seen as a special case of
non-determinism.
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Observation

Observation

NTIME(t(n)) C SPACE(t(n)), where t(n) is a nice time

function.

Let L e NTZME(t(n)). Thatis, T is a witness-tape
deterministic Turing machine. In other words, T accepts the
language L and for every input w its time complexity is t(|w|).

To prove the statement, we construct a deterministic Turing
machine T based on T, which accepts the same language and has
a space limit of t(n).

For this, we keep the working tapes needed for the description of
T and add one that plays the role of the witness tape and another
that plays the role of a clock (t(n) is a nice time function).

Of course, the new machine does not possess the genius/guessing

property of non-deterministic machines.
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The Plan

To describe the operation of T, we outline how one of its runs
looks like. From this, the transition function (formal description)
can be read.

We assume that the length of our input is n.
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~

T: Initialization Phase

On the work tape playing the role of the witness tape, we mark
t(n) cells, which are closed with a special delimiter from I'. This is
a character used only for this purpose. When reading this
character, we know that within the space limit, we cannot move to
the right.

Since t(n) is a nice time function, we can take a clock that ticks
after t(n) steps (and, of course, can be wound up again).

With the help of this clock, we can easily mark the area of the
tape: we move to the right until the clock ticks.

On the work tape playing the role of the witness tape, we write the
first possible t(n) characters, which can be the beginning of a
witness.

// We don’t need more characters because a time-limited machine
cannot read more.
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T: Simulation Phase

On the tapes corresponding to the working tapes of the T Turing
machine, we simulate the run of T for the first witness for t(n)
time. The simulation either ends in the ACCEPT or the
NON-AGREE state, or the time runs out/we run out of t(n) time.
Even the latter is considered as rejecting the tested witness
(NON-AGREE state).

If the simulation reaches the ACCEPT state, we also accept the
input, and T stops. If it reaches the NON-AGREE state, then on
the tape playing the role of the witness tape, we overwrite its
content with the next possible t(n)-length witness beginning. We
clear the contents of the other tapes. We repeat the Simulation
phase.

If the next witness start cannot be generated because we have
tested all possible witness beginnings (the witnesses are
exhausted), then we stop with the DISAGREE state.
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T: Properties

Now, the following two statements easily follow from the previous
ones:

(1) T computes the language L,
(2) The space requirement of T is at most t(n).

With this observation, we have established the result.

Specifically, the containment marked with (1) is implied.
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Observation

The discussion of non-determinism previously showed that

SPACE(s(n)) C UeenTZME(cS(MFlogln+1)y

Now we extend this to the non-deterministic case.

The observation could be proven relatively quickly. However, we
choose a slower path. Our method will be crucial later. The
reasoning of the proof will be important later.

Observation

NSPACE(s(n)) C U TIME(cs(M+loe(n+1)) “where s(n) is a
ce

nice space function.
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Preparations

Let L e NSPACE(s(n)). Thatis, T is a non-deterministic
Turing machine in the first sense, meaning the transition function
is non-deterministic, the run can branch. T computes L and its
space requirement is s(n).

We can assume about T that upon halting, the input and work
head are positioned at the beginning of the tape, and the first s(n)
characters of the work tape are empty (the machine wipes out its
workspace). This way, two configurations can occur at the end of
the run. Specifically, in the case of an accepting run, we know
what the last configuration is.
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Reduced Configuration

A reduced configuration for an I-non-deterministic Turing machine
with space requirement s(n) on input w contains the following
components:

(1) position of the input and work head,

(2) the first s(n) characters of the work tape,

(3) the state of the machine.

Essentially, we have covered only the input tape content and the
guaranteed unread/untouched portion of the work tape in the
(full) configuration.

Let V be the set of reduced configurations. Then
VI<ar-(n+1)- 53"

From a configuration k, we can easily obtain the corresponding
reduced configuration p = red(x). If the w input is known, then
conversely, it is also true: w and the reduced configuration p

determine the full configuration x = conf(w, p).
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The Graph

Definition

Let T be a I-non-deterministic Turing machine and w an input.
Then 8w7r is the graph of reduced configurations associated with
(T,w). This is a directed graph where the set of vertices is the
above V set, and uv exists if and only if the transition function
allows the configuration konf(w, v) after the configuration

konf(w, u).

Let V have a special element vy = red(ko(w)) as the starting
reduced configuration.

Let v; be the reduced configuration corresponding to an accepting
halt.

Note that for a deterministic machine, the above concepts can also
be introduced. In this case, every vertex in the defined directed
graph would have outdegree 1.
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Observation

Observation

w € L holds if and only if there exists a directed path vgv; in gw,r.

Indeed: w € L is equivalent to the existence of an accepting run on
w. These runs can be paired with the directed paths starting from
vp. A run is accepting if the corresponding path leads to v;.

The graph defined above can be calculated efficiently.
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Lemma

Lemma

There exists a deterministic machine T1(T) that, on input w,
computes the code of the triple (G, 7, vo, v1).

Furthermore, the deterministic space requirement of T1(T) is

at(s(n) + log(n+ 1)).

The essence of the following statement is that for the computation
of the graph behind T,w, a very small amount of space on the
work tape is needed. There is no savings at this point. Its
significance will be revealed later.

The given space is sufficient to encode a constant number of
reduced configuration codes on the work tape.
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Proof of the Lemma

e For us, two spaces are needed for two reduced configurations. At
the beginning of the run, we designate two blocks at the beginning
of the work tape, each serving to store a reduced configuration
(s(n) nice space function).

e In the first block, we enumerate all possible code words. These
labels encode the vertices of our graph. For each label, we decide
whether it is the code of a reduced configuration. (After fixing a
natural encoding rule, this task can be easily solved.)

e If not, we move on to the next label. If yes, we copy it to the

output tape, followed by a “:". After that, we write down the
sequence of out-neighbors.
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Proof of the Lemma (Continued)

e In the second block of the work tape, we also begin the
enumeration of reduced configurations. If the codes of x and y
reduced configurations appear on the work tape, we decide
whether there is an edge from x to y. The input tape contains w,
and the T Turing machine — with a finite description — is known
to us. The implementation of this subtask is again simple.

o If we get an edge, we copy y to the output tape. If we don’t get
an edge, we immediately move on to the next y search.

o If y is exhausted, we move on to the next x search. If the x's are
also exhausted, then we have computed the code of ngr.
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Proof of the Lemma (Continued)

e Writing the codes of vy and v; onto the output tape is also easily
achievable.

e We did not detail the solution of the subproblems. During their
implementation, we do not need to exceed the given space
constraint.

e The Lemma follows.
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The Long-Awaited Proof

o LT NSPACE(s(n)). Run T1(T) on w and write down the
code of G, T, Vo, Vv1 on an additional work tape.

e We previously estimated the space requirement of this
deterministic procedure, but what we need now is an estimate of
its runtime. Its runtime is at most 287(s(M+log(n+1)) ' The |ength of
the calculated code is also at most 2°7(s(n)+log(n+1))

e Decide whether there is a directed path vgv; in 6%7.

e There are several solutions to this. For example, breadth-first
search.

e The algorithm can be realized on a Turing machine (T3). Its
runtime (without any special ideas) is polynomial in the length of
the input.

e T1(T) and T, together precisely decide the L language, and their
time complexity is 277(s(M+0g(n+1))  This completes the proof.
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Our Current Knowledge

We can supplement the proven inclusions with the classes of
complements of the non-deterministic classes:

NL
&
L
O
coNL

PSPACE

Peter Hajnal

NP
< &
P
O &
co NP

O

PSPACE
<

NSPACE
< O

EXP
O

co NSPACE

<

Non-determinism, SzTE, 2023



NL = coNL,

PSPACE = NPSPACE = coNPSPACE.

We will discuss these relationships later if time allows.



Further Genuine Inclusions

It is also true that with a substantial increase in time or space
constraints, we obtain larger classes:

L C PSPACE,

P CEXP.

However, more than this is not known.

The question of whether ,, The inclusion P C AP is proper, or an
equality holds?" is considered a central problem in 21st-century
mathematics.
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IDEAL-ELEMENT-TEST

Input: a finitely generated ideal in the polynomial ring
Q[x1, %2, ..., xn] and a polynomial p. The ideal is given by
generators g1, 82,...,8n- | he question is whether p belongs to
the ideal.

It is easy to describe the ideal: polynomials of the form

a181 + gy + ... + angn, where «; are polynomials as well. To
provide an efficient non-deterministic algorithm based on this, we
would need an estimate for the coefficients proving belonging to
the ideal (their degrees and coefficients). This is not simple.

Using Grobner bases theory, we can devise an algorithm with
complexity EXPSPACE. That is,

IDEAL-ELEMENT-TEST € EXPSPACE.
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IDEAL-COMPLETENESS

IDEAL-COMPLETENESS

Input: a finitely generated ideal in the polynomial ring

Q[x1, %2, ..., xn]. The ideal is given by generators g1, g2, ..., 8n-
The question is whether the ideal is the entire ring, i.e., whether 1
belongs to the ideal.

This is obviously a special case of the previous problem. lIts
complexity is at most the same as that of the previous question.

Using Grobner bases theory, we can devise an algorithm with
complexity PSPACE. That is,

IDEAL-COMPLETENESS € PSPACE.
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SLIDING-BLOCK-PUZZLE

SLIDING-BLOCK-PUZZLE

Input: an n x m grid with non-overlapping rectangles placed on it
(as the base path). The rectangles do not cover the entire grid,
allowing them to be slid around (parallel to the sides of the base
grid, respecting non-overlapping). We need to decide whether,
from the initial configuration, we can reach a target configuration
by sliding the rectangles. That is, is one of the target
configurations reachable (for example, can we move one of the
rectangles to a specified position)?
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HAMILTON

HAMILTON problem’s input is a graph. We need to decide if it
contains a Hamiltonian cycle.

Let's describe a non-deterministic Turing machine: We expect the
witness tape to contain a list of vertices. We must check that
consecutive vertices are connected in the graph, and the first and
last vertices are also connected. We also need to check the
»promise” that every vertex is listed exactly once.

Our tests can certainly be carried out in polynomial time. If all of
these tests pass, then the witness proves that there is a
Hamiltonian cycle in the input graph. On the other hand, for every
graph with a Hamiltonian cycle, a witness can be found. Thus, we
have that

HAMILTON € N'P.
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HAMILTON (continued)

For coN'P membership, we would need to efficiently justify the
absence of a Hamiltonian cycle.

It's easy to design a polynomial-time Turing machine that tests if
the content of the witness tape is a set U of vertices and if the
number of components of G — U is greater than the number of
elements in U.

If yes, then we can be sure that our graph does not have a
Hamiltonian cycle. Indeed, after removing U, the remaining edges
of the Hamiltonian cycle would guarantee that we don’t have more
components than |U]|.

However, the machine described above does NOT prove the coNP
membership of the HAMILTON language. It is not true that the
absence of a Hamiltonian cycle can be reliably proven in this way.
The Petersen graph, for example, does not have a Hamiltonian
cycle. The above machine would not accept it.
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LP-TESTING

LP-TESTING problem

Input: a matrix A € Q™*" and a column vector b € Qm*1.

We need to decide whether the Ax = b system of equations
(x = (x1,%2,...,x,) ") has a non-negative solution.

In fact, we can work with integers as well. We can multiply our
equations by the least common multiple of the denominators in the
input, effectively clearing the fractions. The size of the original
input system's coefficient description can be estimated as a
polynomial (square) of the original input size.
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LP-TESTING problem (continued)

The NP membership seems simple. We just need to write a
solution on the witness tape. The machine only checks this.

The problem is that the check is only polynomial in the size of the
witness numbers (instead of the input numbers).

That is, we must be careful not to have a witness significantly
longer than the input size. Such witnesses exist. The reasoning for
this is not presented here.

LP-TESTING € N'P.
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LP-TESTING problem (continued)

A method is described to establish the insolubility of an integer
system in non-negative numbers.

The multiple of our equations and their sum is a consequence of
the original system.

If we make this inference in a way that every coefficient in the
combined linear expression is non-negative, while a negative
number appears on the right side, it will be very transparent that
the deduced system has no non-negative solution. Thus, the
original system cannot have one either.

As with the previously unexplained reasoning, it can be shown that
among the conclusions of the proof, there is also one that can be
handled with combinable coefficients.
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LP-TESTING problem (continued)

So, it can be read from the witness tape and tested in polynomial
time. The strategy described above leads to an NP algorithm if it
is true that if an input system is unsolvable, such a proof can be
found for it. This is true, and this is the well-known Farkas’
Lemma.

Therefore,
LP-TESTING € coNP.
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LP-TESTING problem (continued)

Currently, there are several algorithms for linear programming that
run in polynomial time. That is,

LP-TESTING € P.

e Note that LP-TESTING is one decision version of the linear
programming optimization problem.

e |ts AP membership is based on classic estimates.

e lts coN’P membership is based on Farkas’ Lemma, published by
Gyula Farkas in 1902.

e The celebrated simplex algorithm for LP optimization was
published in 1947 (Dantzig).

e In 1972, Klee and Minty proved that the algorithm is not
polynomial (in fact, it is exponential).

e The first polynomial algorithm was given by Kachian in 1979.
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PRIME-TESTING

The input to the problem is a positive integer n (encoded, for
example, in base 10). We need to decide whether it is a prime
number.

In the context of PRIME-TESTING, the simple task is to prove
non-primality. For this, we only need to produce a proper divisor as
a witness. It is easy to verify divisibility (and truth) of the witness.

This implies that

PRIME-TESTING € coN'P.
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PRIME-TESTING (continued)

Pratt’s proof scheme (1975) shows that

PRIME-TESTING € N'P.

The Agrawal-Kayal-Saxena primality test leads to the following
theorem:
PRIME-TESTING € P.
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PERFECT-MATCHING-TESTING

PERFECT-MATCHING-TESTING

The input is a simple graph. We need to decide whether the input
contains a perfect matching.

We do not discuss the encoding of the input. However, we note
that in the above sense, v, the number of vertices, can also be
considered the size of the input (instead of the length of the code).
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PERFECT-MATCHING-TESTING (continued)

First, we describe a nondeterministic algorithm. We use the second
interpretation of nondeterminism, deciding acceptance with the
help of the content of a witness tape. The content of the witness
tape will be a set M of pairs of vertices.

The machine T tests whether the pairs of vertices are connected
by an edge, and each vertex appears in exactly one pair. If the
answer is yes for both tests, then we reach the ACCEPT state. If
the witness fails any of the tests, the machine transitions to the
REJECT state.

For the existence of a perfect matching, it is easy to provide a
proving witness. If there is no perfect matching, then each witness
will fail.

The tests can be easily performed in polynomial time. Thus, we
have that

PERFECT-MATCHING-TESTING € N'P.
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PERFECT-MATCHING-TESTING (continued)

With knowledge of Tutte's theorem, we have a simple task if we
want to prove the non-existence of a perfect matching.

Let the content of the witness tape be a set T. For w = G graph
and 7 = T set, the machine determines the components of G — T,
counts the components with odd size (number of vertices), and
compares this number with | T|. If | T| is smaller than the number
of odd-size components, the machine transitions to the ACCEPT
state (we define the machine for the complement language;
acceptance means that the complement language is an element,
i.e., there is no perfect matching). Otherwise, the machine
transitions to the REJECT state.

The proof of the polynomial realizability of the machine is left to
the reader.
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PERFECT-MATCHING-TESTING (continued)

The correctness of the algorithm (if there is no maximum matching
in G, then a suitable witness T proves it) is just Tutte's theorem.

Thus, we obtain the following

PERFECT-MATCHING-TESTING € coNP.
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PERFECT-MATCHING-TESTING (continued)

The implementation of the Edmonds algorithm on a Turing
machine is a polynomial algorithm.

This (the quite complex) algorithm leads to a stronger statement
than the previous two results:

PERFECT-MATCHING-TESTING € P.

Peter Hajnal Non-determinism, SzTE, 2023



DIRECTED-REACHABILITY

DIRECTED-REACHABILITY

Given a simple directed graph E and two vertices s and t, decide
if there is a directed st walk in G.

Naturally, we need to encode the input (8, s, t).
DIRECTED-REACHABILITY is the set of codes for which the
graph component contains an st walk.

The breadth-first search algorithm implies that

DIRECTED-REACHABILITY € P.
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DIRECTED-REACHABILITY (continued)

The algorithm we provide is a nondeterministic algorithm.

We can think of it as an algorithm for a wandering walker in the
graph. During the walk, we check if we are at t and count how
many steps we have taken so far.

If we reach t, we halt with the ACCEPT state.

If we don't reach t, we check if we have taken v steps. If yes, we
transition to the REJECT/NON-CONVVINCED state.

If we haven't taken so many steps, we nondeterministically choose
a vertex. We check if we can move from the previous vertex to this
one via an edge. If not, we again transition to the REJECT state.

If yes, we erase the previous vertex (!).
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DIRECTED-REACHABILITY

Of course, we keep the place of the erased vertex for the later part
of the walk. This ensures that there are at most two vertices on
the tape at any moment during the run and a counter with a value
of at most v. The required tape space is O(log v).

Thus, we have that

DIRECTED-REACHABILITY € N L.
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DIRECTED-REACHABILITY (continued)

We present another deterministic algorithm, which uses space very
economically:

DIRECTED-REACHABILITY € | J SPACE(arlog} n)
aeN

= SPACE(log? n).

This is proven by the following recursive algorithm.
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DIRECTED-REACHABILITY (continued)

Directed-Reachability:
BOUNDED-DIRECTED-REACHABILITY(x, y, 2)

// Given vertices x and y, it tests whether there is a walk between
them of at most 2¢ steps. We can think of this walk as a lazy
walk. At each step, we have two options: either move to a
neighbor or stay put. In a lazy walk, we can assume that the
length is exactly 2¢.

If £ =0, then test if x =y or >7)>/ is an edge. If the test succeeds,
halt with the ACCEPT state, otherwise halt with the REJECT
state.

If £ > 0, then For each k € V,

// k is the middle point of the lazy walk, meaning there is a lazy
walk of 271 steps from x to k and from k to y. We try all
possibilities.
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DIRECTED-REACHABILITY (continued)

Directed-Reachability:
BOUNDED-DIRECTED-REACHABILITY(x, y, 2¢) (continued)

(1) BOUNDED-DIRECTED-REACHABILITY(x, k, 2°1)
if NO, then next k and back to (1)
if NO and there is no next k (V exhausted), then REJECT.
if YES, then

(2) BOUNDED-DIRECTED-REACHABILITY (k, y,271)
if YES, then ACCEPT state and halt
if NO, then next k and back to (1)
if NO, and there is no next k (V exhausted), then back to (1)
to the NO branch.

The above algorithm, when run with ¢ = [log, |V(G)|], solves
reachability. The algorithm is implemented on a Savitch Turing
machine in a space-efficient way.
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DIRECTED-REACHABILITY (continued)

Savitch's Theorem

The recursive algorithm described above can be implemented on a

Turing machine in such a way that at any configuration, at most ¢
blocks are used on the work tape, where each block has a length of
at most O(log |V|) (enough to store a finite number of vertices).

We provide only ideas for the exact implementation:
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DIRECTED-REACHABILITY (Continuation)

e The structure of the recursion can be represented with a tree.

e The root of the tree is the DIRECTED-REACHABILITY
problem, i.e., whether there is a lazy walk of length 2.

e Every p=(u to v has a lazy walk of length 2¢) problem breaks
down into two subproblems.

e For a middle vertex w, pje(w)= (does a lazy walk of length
2=1 lead from u to w), and pight(w)= (does a lazy walk of length
2¢=1 lead from w to v) are the two subproblems of the p problem.

e The two tasks are siblings to each other.
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DIRECTED-REACHABILITY (Continuation)

s és t kozott vezet-e 8 hosszl lusta Ut?

Wy .
s és wpkozott vezet-e w, és t kozott vezet-e
4 hosszu lusta Gt? 4 hosszu lusta Gt?
wy l We
s €5 Wp kOz0tt | | woés wykozott | | wyés wg kzott | [wgés t kozott
vezet-e 2 vezet-e 2 vezet-e 2 vezet-e 2
hosszu lusta hosszu lusta hosszu lusta hosszu lusta
at? uat? at? ut?
[l Tl [»] [™
S, W- W w Wa W, Wy, We W 't
(A B s 3 N D] 4| |\ | [A5-We | VoW | 7
kozott | |kozott | [kozott | [kdzétt| |kozdtt :gzbtt :gzott kozott

lusta
1épés?|

lusta | llusta lusta lusta lusta | [lusta |]lusta
1épés? | [Iépés? [ |1épés? | |Iépés?| |1épés? | |lépés?| [Iépés?

The content of the work tape always represents a task (node in the tree)
along with the path to the root. One example is highlighted with shading.
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DIRECTED-REACHABILITY (Continuation)

The essence of the Savitch implementation is that the description
of the path in the figure fits into the memory required by the
theorem.

Furthermore, updating the path can be solved with a Turing
machine.

The details of the complete implementation go beyond the scope
of the course.
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Thank you for your attention! |




