
Basic notions of algorithm theory

Peter Hajnal

Bolyai Institute, TTIK, University of Szeged, Hungary

Fall semester, 2023

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

The ”definition” of algorithm

• The algorithmic solution of a computational problem is a
process, that for any given data performs a well-defined sequence
of elementary steps and compute the corresponding answer. Every
elementary step is an obvious operation that can be executed by
everyone.

• In order to specify an algorithmic problem we need to describe
the following ”components”:

(1) Computational problem (data/answer relation),

(2) Set of elementary steps.

• The above description is a naive definition. The word naive, used
in an attributive form, means that we give up mathematical
precision.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

The language of algorithm theory

• As studying algorithm theory we need to learn the language of
algorithms.

• The given data is called input.

• The computed answer is called output.

• If we are given an input, say ω and an algorithm, while
performing the described elementary operations we say that we run
the algorithm on input ω.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Algorithms from school

• Performing multiplication, or addition is running a simple
algorithm. The elementary steps are the operations on digits.

• Finding the greatest common divisor of given two numbers is a
computational task. The Euclidean algorithm should be known
from BSc.

• Finding the factorization of a given number is a computational
task. The elementary steps are the basic arithmetical operations.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Refinements

• Let I be the set of possible inputs, and O be the set of possible
outputs.

Definition: Computational problem

An computational problem is a function f : I → O.

• A computational problem is ”just” a valuation of a known
function at certain position.

• We don’t say anything on the set of elementary steps. There are
several possibilities. The concrete set of basic operations depends
on the problem. But be aware this component. When discussing
an algorithmic problems you must always know this set.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

History

• The above description of the notion of algorithm is not a
mathematical definition. In the first half of the course we will see
many examples for algorithms.

• In the 30’s of the XXth century, after long work the mathematical
community defined the accepted mathematical notion of algorithm.
We will see that in the second half of the semester.

• The present notion is strongly connected to the design of
computers.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Example: Computational problems

We can say that we consider the computational problem of
FACTORIZATION. What do we mean?

Example: FACTORIZATION-I

Input: a positive integer. Output: its prime divisors with
multiplicity.

Example: FACTORIZATION-II

Input: a positive integer. Output: one prime divisor.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Example (cont’d): Computational problems

Example: FACTORIZATION-III

Input: a positive integer. Output: its smallest prime divisor.

Example: FACTORIZATION-IV

Input: a positive integer and a threshold value t. Output:
Determine whether our integer has a non-trivial positive divisor at
most t.

If one knows an algorithm for any of the four problem, then easy to
construct a solution to the other three. Only basic algorithmic
theoretical notions are required (for example iteration, binary
search).

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Coding: The size of input

• In practice we should describe the input for a machine. Also the
machine prints out a result, that we need to interpret as an
answer/output.

• The elements of I (inputs) and the elements of O (outputs)
should be coded. Coding of inputs means I ≡ Σ∗.

• If the inputs are coded, then the size of the input is an obvious
notion: The size is just character counting.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Coding: Example

Example: SORTING

Given n real numbers (x1, . . . , xn). Determine their ordered
sequence.

• The set R is set of cardinality c/continuum.

• Σ∗ is a set of cardinality ℵ0/countably infinite.

• ”Σ∗ is to small to handle all real numbers.”

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Coding: Example (cont’d)

• One possibility is that we think about a real number as a result
of a measurement. This is always a finite decimal approximation.

• The size immediately can be interpreted as the number of
characters we need to write down the input.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Coding: Example (cont’d)

• Talk about something different. One possible set of elementary
operation is ”comparison of two xi ’s”.

• Now coding can be ignored. We do not care how comparison is
performed by the machine. We say that the input is considered
with exact real arithmetic. The size of the input is n.

• One can say that we work with a virtual machine that has a
memory containing boxes. Each box contains a real number and
the machine is capable to perform arithmetical operations on the
contents.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Coding: Second example

The next problem is different.

Example

Given x1, x2, . . . , xn k digit numbers. Sort them.

The language is explicit. The input size is n · k. Elementary
operations are digit operations. A comparison costs k elementary
step.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Coding: Third example

Example

Given two integers, calculate their sum / difference / product.

• The elementary steps are the elementary operations between
digits.

• The size of the input character counting.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Coding: Fourth example

Example

Given two integers. Compute there greatest common divisor.

• The elementary steps are basic arithmetical operations on
integers.

• For example now taking subtraction is counted as one step.

• The size of the input is character counting.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

The relation of view points

• In the case of computing gcd we said that the natural point of
view is that the elementary steps are operations on integers.

• Can we consider digit operation as elementary steps? YES.

• Any high level algorithm can be transformed to digit level
algorithm by substituting x ← y − z step with the basic algorithm
of subtraction.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Example: Multiplication of matrices

Example

Given A,B ∈ Rn×n, two real matrices of size n× n. Compute A ·B.

• The language suggests ”exact real arithmetic”.

• Although our virtual machine doesn’t exist, counting
multiplications and additions makes sense.

• What is the size of the output? Elementary operations are at the
level of real numbers. The size of the input is 2n2. A strange but
often useful point of view is to consider n as the size.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Example: Counting triangles

Example

Given a simple graph G . Determine the number of triangles (cycles
of length 3) in G .

• How a simple graph is given? How we can code a simple graph?

• There are several possibilities. We highlight two of them.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Coding: Coding graphs I

• The first way to code a simple graph is to describe it adjacency
matrix.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Coding: Coding graphs II

• A second, alternative way to code a simple graph is to start with
the list-of-vertices .
• Each element of the list there is a list-of-neighbors.
• In the case of a list, an element of the list contains the ”address
of the next element” info. This is a so called pointer field. This
pointer can have the special value, called ”nil”, if there is no next
element.
• So in the vertex-list every vertex has a reserved memory location,
where the corresponding information is stored. This information is
structured. One can read out the address of the memory location,
where the next vertex is stored. Also one can read out the address
of the memory location, where the first neighbor is stored.
• Any vertex on one of the list-of-neighbors corresponds to
an edge. In the case of an edge weighted graph the weight of an
edge e = uv can be stored at the memory location of v in the
list-of-neighbors connected to u.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Coding: Coding graphs, size of the input

An interesting remark: Most often, we consider the size of the
graph as |V |+ |E |, or |V |2, or simply |V |.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Coding: Final words

• Coding is extremely important.

• In spite of this a high level description of an algorithm does not
need to specify it.

• Different coding implies different elementary steps.

• When we code a simple graph by it adjacency matrix, we can
assume that arithmetic operations are elementary steps.

• When we code a simple graph by lists, we can assume the going
to a memory location described by a pointer is an elementary step.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

To summarize

• Usually
(1) we will describe a computational problem, (2) we give a high
level description of an algorithm, (3) say a few words on coding,
(4) describe the elementary steps, although very often the coding
determines the most natural operations, that we can consider as
basic.

• The high level description of an algorithm A contains many
mathematical/algorithmic ideas. But to consider it as a sequence
of elementary steps we need additional ideas. Sometimes this is
neglected.

• The reason of this discussion is not to disturb you- The goal is to
stimulate you for asking questions, clarify details...

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Break

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Worst case analysis

• Our task: Let A be an algorithm. Given input ω, run the
algorithm and count/estimate the number of elementary steps, you
needed for computing the output.

Notation

tA(ω) denotes the exact number of elementary steps, needed to
compute the output.

• It should be obvious that tA(ω) strongly depends on the size of
ω.

Notation

I = ∪∞s=0Is , where Is denotes the set of inputs of size s.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Time analysis of algorithms

Definition

tA(n) = max{tA(ω) : ω ∈ In}.

• The definition, above, is very important. If we determine this
function, or estimate it then we say that we perform the worst case
analysis of our algorithm A.

• We consider all the elements of In. When tA(ω) < tA(ω′), the
input ω′ is more complex for A than ω. When we take the
maximum, we consider the worst element of In.

• We can propose any upper bound on tA(n) as a certificate of A.
We guarantee that A will not execute more elementary steps on
any input of size n than our bound.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Example: Counting triangles I

Algorithm

0) Let ∆ = 0.

1) Check out each edge, e = uv .

1e) For all edge e = uv we list the common neighbors of u and v .
For each common neighbor, we have found: ∆← ∆ + 1.

2) Print ∆/3. //We do this, after checking all edges.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Analysis: Counting triangles I

• We consider the input graph as a data structure describing a
graph G by lists.

• We perform 1e |E | times.

• 1e requires D2 elementary steps.(?)

• A bound on the complete number of elementary steps is

D2 · |E |.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Example: Counting triangles II

Algorithm

1) Compute A3
G .

2) Print TrA3
G/6.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Analysis: Counting triangles II

• We assume that the input G is given by it adjacency matrix, AG .

• We perform matrix multiplications based on the definition. For
one multiplication we |V |3 multiplications and |V |3 additions on
two real numbers.

• In order to compute A3 we perform 4|V |3 basic operations on
numbers.

• A bound on the total number of elementary step we need to do
on a graph on vertex set V is

4|V |3 + |V |.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Szünet

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

An important observation

• The exact analysis of a complicated algorithm leads to very
complex formulas.

• What we are interested in is the real time of the running the
algorithm of a specific input of known size.

• How ”counting elementary steps” and ”real time” are related?
There is a hidden constant that depends on the hardware we are
using.

• If we replace our five years old computer with an up-to-date, new
one, than the same algorithm will require less time on the new
machine.

• The answer of ”theory”: Constant factors don’t matter, we
ignore them.

• We need some mathematical notation to reflect this idea.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Big ”O” notation

Definition

Let t, f : N→ R. One writes t = O(f) when for a suitable
constant c > 0 and threshold value n0 we have that for any n > n0

|t(n)| ≤ cf (n)

• In this course very often t(n) is the exact worst case analysis of
an algorithm, so it is a non-negative function.

• f (n) is a
”

simple” function, like n, n2, n10, n log n, 2n, nn, 2n
2
.

• Stop. I wrote f (n) = n log n, and I did not specify the base of
the logarithm. What base did I use? Does it matter?

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Example

Example

18

(
n

6

)
+ 127n4 log n + log15(n124) · n + 144 = O(n6).

• n log n is not defined on N. We do not care about this, since the
n0 threshold in the definition.

• Algorithm theory balances between mathematical correctness and
transparency. Algorithm theory/algorithms are used everywhere.
Many outsiders are interested in algorithms. So transparency is
more important.

• If you have the feeling that mathematical precision is missing,
then stop. Ask questions, clarify the mathematical content, ask for
consultation . . .

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Big Omega notation

• n2 = O(2n) is obviously true.

• It is true, but at the same time it doesn’t give too much
information. We need additional notation in order to be able to
describe the order of magnitude of a function t(n).

Definition

Let t, f : N→ R. One writes t = Ω(f) when for a suitable
constant c > 0 and threshold value n0 we have that for any n > n0

cf (n) ≤ t(n).

• f (n) must be a function that is positive for a large enough n.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Big Theta notation

Definition

Let t, f : N→ R. One writes t = Θ(f) when for suitable constant
c , c ′ > 0 and threshold value n0 we have that for any n > n0

cf (n) ≤ t(n) ≤ c ′f (n).

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Example

Example

18

(
n

6

)
+ 127n4 log n + log15(n124) · n + 144 = Θ(n6).

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Notion of asymptotics

When we know the right order of magnitude of t(n), then we
might be interested in the hidden constants. Again we introduce a
new notion.

Definition

Let t, f : N→ R. One writes t(n) ∼ c · f (n)

lim
n→∞

t(n)/f (n) = c .

In other words the meaning of t(n) ∼ c · f (n) is that

t(n) = c · f (n) + o(f (n)).

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Little ”o” notion

Definition

Let t, f : N→ R. One writes t(n) = o(f (n))

lim
n→∞

t(n)/f (n) = 0.

For large enough n the term o(f (n)) in f (n) + o(f (n)) is an
error/remainder term next to f (n), the main term.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

Example

Example

18

(
n

6

)
+ 127n4 log n + log15(n124) · n + 144 ∼ 18

6!
n6,

or we can write

18

(
n

6

)
+ 127n4 log n + log15(n124) · n + 144 =

18

6!
n6 +O(n5),

to express more information.

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

This is the end!

Thank you for your attention!

Peter Hajnal, MSc lecture, Algorithms and their complexity Basic notions of algorithm theory, SzTE, 2020

