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Abstract

We give a list of 28 theorems which are all equivalent to Farkas’s
Lemma. This list includes Gordan’s Theorem, Stiemke’s Theorem (Fun-
damental Theorem of Asset Pricing), Slater’s Theorem, Gale’s Theo-
rem, Tucker’s Theorem, Ville’s Theorem (von Neumann’s Theorem of
the Alternative), von Neumann’s Minimax Theorem for matrix games,
Motzkin’s Theorem, the Strong Duality Theorem in linear program-
ming, and Broyden’s Theorem. For convenience of exposition, we also
mention three versions of Separating Hyperplane Theorems which are
equivalent to Farkas’s Lemma.

Mathematics Subject Classification: 15A39, 15A03, 15A04, 06F25

Keywords: Farkas’s lemma, Gordan’s theorem, Slater’s theorem, Stiemke’s
theorem, Gale’s theorem, Tucker’s theorem, von Neumann’s minimax theorem,
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1 Introduction

Farkas’s lemma is one of the theorems of the alternative that arise naturally
in solving linear inequalities. A typical approach in studying these theorems
is to develop a main theorem and then derive other results as its consequence.
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For example, Farkas’s lemma and other theorems of the alternative can be de-
rived by applying the strong duality theorem of linear programming ([4],[11]).
It has been a folklore knowledge that many such related theorems are in fact
equivalent. In this note, we make this precise by closely studying their mutual
relationship: we collect a list of such theorems and prove their equivalence.
This approach offers a way to understand these theorems better, and it offers
a way to bypass the difficulty of attacking a problem directly. For example,
if one knows that Farkas’s lemma is equivalent to Gordan’s theorem, then in
order to prove Farkas’s lemma, it suffices to prove Gordan’s theorem ([12]).
Similarly, by going through Sep I ⇒ Mangasarian ⇒ Theorem 17 ⇒ Broyden
(see Section 3 (d)), this gives a new proof of Broyden’s theorem. A more strik-
ing example is that the approach of this paper confirms the assertion about
the equivalence of LP strong duality theorem and the Minimax theorem (by
combining (1) the equivalence of Minimax and Ville, (2) the equivalence of LP
strong duality and Farkas, and (3) the equivalence of Ville and Farkas. For a
direct (but technical) reduction of LP strong duality theorem to Minimax, we
refer to [1].

We briefly explain the notations we will be using. For simplicity we will be
working on vectors or matrices over the real numbers even though the results
may still hold true for more general ordered fields. For a matrix A, we use
A′ = AT to denote the transpose of A. For two column vectors v, w, the
writing of vw means that vw = vTw = v · w. For two vectors v, w, v = w
(resp. v > w) means that vi = wi (resp. vi > wi) for each i, where vi means
the i-th component of v, while v ≥ w means that vi = wi for each i and for
at leat one i, vi > wi. Similar notations hold for the other inequalities. For
a vector subspace V in Rd, we use V ⊥ to denote the orthogonal complement
of V in Rd. A linear polyhedral cone is a space V generated by taking linear
combinations of a finite number of vectors using nonnegative coefficients. It is
convenient to identify a linear polyhedral cone V with a matrix A, thinking of
the row vectors or the column vectors to generate the polyhedral cone, thus it
makes sense to write yTV > 0 to mean yTA > 0, where V is the polyhedral
cone generated by the column vectors of A. A polyhedral cone A is pointed
if Ax = 0 for no x ≥ 0. In Section 2, we list the theorems which are all
equivalent. The proofs are given in Section 3.

2 A List of Theorems

1. Theorem. (Supporting Hyperplane Theorem) Let V be a pointed linear
polyhedral cone generated by v1, · · · , vk. Then there exists a vector y such that
y · vi < 0 for 1 ≤ i ≤ k (for simplicity we will write this as yTV < 0).
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2. Theorem. (Separation I) Let V be a pointed linear polyhedral cone and
S be a vector subspace such that V ∩S = {0}. Then there exists a hyperplane
H containing S such that H is a supporting hyperplane of V at {0}.

3. Theorem. (Separation II) Let V1, V2 be two nontrivial pointed linear poly-
hedral cones such that V1 ∩ V2 = {0}. Then there exists a hyperplane defined
by y such that yTV1 > 0 and yTV2 < 0.

4. Theorem (Gordan, 1873, [8]) For each given matrix A, exactly one of the
following is true.
I. Ax > 0 has a solution x.
II. A′y = 0, y ≥ 0 has a solution y.

5. Theorem (Farkas, 1902, [8]) For each given matrix A and each given vector
b, exactly one of the following is true.
I. Ax = b has a solution x = 0.
II. A′y = 0, yT b < 0 has a solution y.

6. Theorem. (Gale, Variant of Farkas, [3]) Exactly one of the following is
true.
I. ∃x,Ax 5 b, x = 0
II. ∃y, yTA = 0, y = 0 and yT b < 0.

7. Theorem. (Gale, 1960, [7]) Exactly one of the following is true.
I. ∃x,Ax 5 b
II. ∃y, y = 0, yTA = 0 and yT b < 0.

8. Theorem (Slater, 1951, [8]). Let A,B,C and D be given matrices, with
A and B being nonvacuous. Then exactly one of the following is true.
I. Ax > 0 Bx ≥ 0 Cx = 0 Dx = 0 has a solution x.

II.

〈 A′y1 +B′y2 + C ′y3 +D′y4 = 0
with
y1 ≥ 0, y2 = 0, y3 = 0 or
y1 = 0, y2 > 0, y3 = 0

〉
has a solution y1, y2, y3, y4.

9. Theorem (Tucker’s First Existence Theorem, 1956, [8]) For any given
matrix A, the systems
I. Ax = 0 and
II. A′y = 0, y = 0
possess solutions x and y satisfying Ax+ y > 0.

10. Theorem (Tucker’s Second Existence Theorem, 1956, [8]) The systems
(with A nonvacuous)
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I. Ax = 0, Bx = 0 and
II. A′y1 +B′y2 = 0, y1 = 0 possess solutions x, y1, y2 such that Ax+ y1 > 0.

11. Theorem (Motzkin, 1936, [8]) Let A,C and D be given matrices, with
A being nonvacuous. Then exactly one of the following is true.
I. Ax > 0 Cx = 0 Dx = 0 has a solution x.

II.

〈
A′y1 + C ′y3 +D′y4 = 0

y1 ≥ 0, y3 = 0

〉
has a solution y1, y3, y4.

12. Theorem. (Tucker’s theorem of the alternative, [8]) Exactly one of the
following is true (where B is nonvacuous).
I. Bx ≥ 0, Cx = 0, Dx = 0 has a solution x.

II.

〈
B′y2 + C ′y3 +D′y4 = 0

y2 > 0, y3 = 0

〉
has a solution y2, y3, y4.

13. Theorem. (Stiemke, 1915, [8]) For each given matrix B, exactly one of
the following is true.
I. Bx ≥ 0 has a solution x.
II. B′y = 0, y > 0 has a solution.

14. Theorem. (Nonhomogenous Farkas, Duffin 56, [8]) Exactly one of the
following is true (where β is a scalar).
I. bx > β,Ax 5 c has a solution x.

II.

〈
A′y = b, cy 5 β, y = 0, or
A′y = 0, cy < 0, y = 0

〉
has a solution y.

15. Theorem. (Minimax Theorem, von Neumann, 1928, [1]) Given B ∈
Rm×d, and denoting S(n) = {s ∈ Rn|eT s = 1, s ≥ 0}, where e is a vector of
1’s,

max
x∈S(d)

min
y∈S(m)

yTBx = min
y∈S(m)

max
x∈S(d)

yTBx.

Definition. A sign matrix is a diagonal matrix whose diagonal elements are
equal to either plus one or minus one.

16. Theorem. (Broyden, 1998, [5]) Let Q be an orthogonal matrix. Then
there exists a vector x > 0 and a unique sign matrix S such that Qx = Sx.

17. Theorem. Let Q be an orthogonal matrix. Then

∃x > 0 such that (I +Q)x = 0 and (I −Q)x = 0.

18. Theorem. (Tucker, 1956, [4]) Let A be a skew-symmetric matrix, i.e.
AT = −A. Then there exists u = 0 such that Au = 0 and u+ Au > 0.
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Definition. For a given A ∈ Rm×d, b ∈ Rm, c ∈ Rd, the linear programming
problem (in the canonical form) consists of the primal program

(P) : max cTx
subject to Ax 5 b

x = 0.

and the dual program

(D) : min bTy
subject to ATy = c

y = 0.

Remark. It is often useful to use other presentation of the linear programs.
For example, the primal linear program: max cTx subject to Ax = b, x = 0
has dual program with min bTy subject to ATy = c.

19. Theorem. (LP Strong Duality Theorem) If both the primal problem
(P) and the dual problem (D) are feasible, there exist a dual pair (x∗, y∗) of
feasible solutions such that cTx∗ = bTy∗.

20. Theorem. (Mangasarian, 1969, [8]) Exactly one of the following is true.

I. Ax ≤ 0, x = 0 has a solution x.

II. A′y = 0, y > 0 has a solution y.

21. Theorem. (Ville, Problem 14 on page 35 of [8]) Exactly one of the
following is true.

I. Ax < 0, x = 0 has a solution x.

II. A′y = 0, y ≥ 0 has a solution y.

22. Theorem. (Problem 15 on page 36 of [8]) Exactly one of the following is
true.

I. Ax < 0, x > 0 has a solution x.

II. A′y = 0, y ≥ 0 has a solution y.

23. Theorem. (Problem 17 on page 36 of [8]) Exactly one of the following is
true.

I. Ax 5 0, x ≥ 0 has a solution x.

II. A′y > 0, y ≥ 0 has a solution y.

24. Theorem. (Antosiewicz, [2]) Either A′u > 0, B′u = 0 for some u or
Ax+By = 0 for some x ≥ 0, y = 0, but never both.
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25. Theorem. (Antosiewicz, [2]) Either A′u ≥ 0, B′u = 0 for some u or
Ax+By = 0 for some x > 0, y = 0, but never both.

26. Theorem. (S. Morris, [9]) Let A be an m× n matrix. Let S be a family
of nonempty subsets of {1, · · · ,m}. Exactly one of the following alternatives
holds. Either there exists x and S ∈ S such that

Ax = 0, Aix > 0 for all i ∈ S

or there exists p such that

pA = 0, p = 0,
∑
i∈S

pi > 0 for all S ∈ S.

27. Theorem. (Selfdual Alternative Theorem, [6]) Let V be a vector subspace
of Rd, let V ⊥ be its orthogonal dual space, and let g be any fixed index in [d].
Then exactly one of the following is true.
I. ∃x ∈ V : x ≥ 0 and xg > 0.
II. ∃y ∈ V ⊥ : y ≥ 0 and yg > 0.

28. Theorem. (Corollary to Tucker’s Second Existence Theorem, [8]) Let
A,B,C and D be matrices of the same column index, with A,B or C nonva-
cuous. Then the systems
I. Ax = 0, Bx = 0, Cx = 0, Dx = 0 and
II. A′y1 +B′y2 + C ′y3 +D′y4 = 0, y1 = 0, y2 = 0, y3 = 0
possess solutions x, y1, y2, y3, y4 satisfying Ax+ y1 > 0, Bx+ y2 > 0 and Cx+
y3 > 0.

3 Proofs of Equivalence

Theorem. The list of 28 theorems in Section 2 are equivalent.

Proof. We remark first that for the proof of theorems of the alternative, it
is very easy to show that both statements cannot be simultaneously true: for
example, in the statement of Farkas (5), if x and y are the solutions, then
0 5 (yTA)x = yT (Ax) = yT b < 0 would yield a contradiction. In what follows,
we suppress the argument for this part. The notation I means the negation of
the statement I, etc.

(a) That 1, 2, 3, 4, and 5 are equivalent was proven in [12], where 1 and 4 are
essentially tautology.
(b) 5 ⇒ 7 ⇒ 6 ⇒ 5. (5 ⇒ 7) Assume 5. If 7 (II) has no solutions, then there
does not exist z = 0 such that zT [A b] = [0 −1]. By 5, there exists y such that

[A b]y = 0, and [0 − 1]y < 0.
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By scaling with a positive factor, we may assume that y =

[
y1
1

]
and [A b]

[
y1
1

]
=

0, which implies Ay1 + b = 0 ⇒ Ay1 = −b ⇒ A(−y1) 5 b, hence we may let
x = −y1 to conclude. (7 ⇒ 6) Assume 7. Note that

Ax 5 b, x = 0

⇔
[
A
−I

]
x 5

[
b
0

]
.

If 6 (I) is not true, then by 7, there exists z = 0, such that

zT
[
A
−I

]
= 0, zT

[
b
0

]
< 0.

Writing zT = [zT1 , z
T
2 ] = 0, the above conditions mean that

zT1 A = zT2 = 0, zT1 b < 0,

which proves 6. (6 ⇒ 5) Assume 6. Note that

Ax = b, x = 0

⇔ Ax = b, Ax 5 b, x = 0

⇔
[

A
−A

]
x 5

[
b
−b

]
, x = 0.

If 5 (I) is not true, then by 6, there exists y =

[
y1
y2

]
= 0, such that

yT
[

A
−A

]
= 0, yT

[
b
−b

]
< 0.

Letting z = y1 − y2, it is easy to see that the above conditions mean that
zTA = 0, and zT b < 0.
(c) 2 ⇒ 13 ⇒ 9 ⇒ 10 ⇒ 28 ⇒ 8 ⇒ 11 ⇒ 4. (2 ⇒ 13) Assume 2. We will
show that 13 (I)⇒ 13 (II). Let S be the vector space spanned by the column
vectors of B, and V be the linear polyhedral cone represented by the positive
orthant. Clearly V is pointed. But (I) means precisely that V ∩ S = {0}, so
by Separation I, there exists a supporting hyperplane H ⊇ S for V . Now it is
straightforward to check that one of the normal vectors of H satisfies 13 (II).
(13 ⇒ 9) This was proven in [10]. (9 ⇒ 10 ⇒ 28 ⇒ 8) These were proven in
[8]. (8⇒ 11) In 8, let A = B. (11⇒ 4) In the statement of 11, let C = D = 0.
(d) 2 ⇒ 20 ⇒ 17 ⇒ 16 ⇒ 18 ⇒ 9 ⇒ 27 ⇒ 5. (2 ⇒ 20) Assume 2. It suffices
to show that 20 (I)⇒ 20 (II). Let V be the linear polyhedral cone determined
by the column vectors of A. Then 20 (I) says that V intersects the negative
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orthant N at 0. We may decompose V as V = W + V0 (eg. see Lemma 4.1
of [12]), where W is a maximal linear subspace and V0 is pointed (the case
when V = W is easy, so we assume here that V0 6= {0}). By the properties
of V ∩ N = {0}, it is straightforward to check that N + (−1)V0 is pointed
and [N + (−1)V0] ∩W = {0}. So by Separation I, there exists a hyperplane
H containing W and H forms a supporting hyperplane for N + (−1)V0, i.e.
one of the normal vectors y of H satisfies v · y < 0 for any v ∈ N + (−1)V0, in
particular y > 0, and v0 ·y > 0 for every v0 ∈ V0, hence A′y ≥ 0. (20⇒ 17) Let

A′ =

[
Q+ I
−Q+ I

]
. If A′y = 0, y > 0 has no solutions, then by 20, there exists

a solution x such that [Q′+ I | −Q′+ I]x ≤ 0, x = 0. Letting x =

[
x1
x2

]
, the

last condition is equivalent to

x1 + x2 ≤ Q′(x2 − x1), x1 = 0, x2 = 0.

Necessarily this means that

‖x1 + x2‖ < ‖Q′(x2 − x1)‖ = ‖x2 − x1‖,

which is impossible, as it is clear that ‖x2−x1‖ 5 ‖x1+x2‖ under the conditions
x1 = 0 and x2 = 0 (here ‖ · ‖ denotes the length of a vector and we have used
the fact that orthogonal matrices preserve lengths). (17 ⇒ 16) In fact, these
two are equivalent. Note that ∃x > 0, Qx = Sx ⇔ ∃x > 0, |Qx| = x (where
| · | means taking absolute value in each component) ⇔ ∃x > 0, |Qx| 5 x (use
the property of orthogonal matrices mentioned above) ⇔ ∃x > 0 such that
(I + Q)x = 0 and (I − Q)x = 0. See also [13], where the authors gave two
proofs of Broyden’s theorem. (16 ⇒ 18 ⇒ 9) These were proven in [5]. (9 ⇒
27) In fact, these two are equivalent, which can be easily proven based on the
observation: If V = {x | Ax = 0}, then V ⊥ = {y | y = AT z for some z}. We
omit the details. (27 ⇒ 5) Assume 27. We will show that 5 (I) implies 5 (II).
Assume that Ax = b, x = 0 has no solutions. Consider B = [A − b]. Then

the system By = 0 has no solutions y :=

[
y1
y2

]
= 0 with y2 > 0, otherwise

x := y−12 y1 = 0 would be a solution of Ax = b. Then by 27 there exists

z :=

[
z1
z2

]
= 0 in the orthogonal complement of the kernel of B such that

z2 > 0. Using the observation mentioned right above, such z is of the form

z =

[
AT

−bT
]
u for some u. It follows that ATu = 0 and bTu < 0, as required.

(e) 5 ⇒ 19 ⇒ 15 ⇒ 21 ⇒ 4. For (5 ⇒ 19), see for example [8]. For (19
⇒ 15), see [4]. (15 ⇒ 21) See [1]. (21 ⇒ 4) Assume 21. It suffices to show
that if 4 (II) does not have a solution, then 4 (I) has a solution. We note that
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A′y = 0, y ≥ 0 does not have solutions implies that[
A′

−A′
]
y 5 0, y ≥ 0

does not have solutions. But now by 21, this implies that

[A − A]z > 0, z = 0

has a solution

z =

[
x1
x2

]
= 0

such that

[A − A]

[
x1
x2

]
> 0, i.e. A(x1 − x2) > 0.

It follows that x := x1 − x2 satisfies Ax > 0 so 4 (I) has a solution.
(f) Statements 21, 22, and 23 are equivalent. Reasons: In 21 (I), Ax < 0, x = 0
has a solution ⇔ Ax < 0, x > 0 has a solution (if Au < 0, u = 0, then
x = u+ εe > 0 satisfies Ax < 0 if ε > 0 is small enough, where e is the vector
of all 1’s). Similarly, in 23 (II), A′y > 0, y ≥ 0 has a solution⇔ A′y > 0, y > 0
has a solution.
(g) 11 ⇒ 14 ⇒ 5. For 11 ⇒ 14, See [8]. For 14 ⇒ 5, take β = 0 and c = 0 in
14.
(h) 24 ⇒ 5; 25 ⇒ 5; 11 ⇒ 24; 12 ⇒ 25. As noted in [2], each of 24 and 25
implies Farkas when A = −a is a column vector. However it is also easy to
show that 11 implies 24 and 12 implies 25.
(i) 9 ⇒ 26 ⇒ 13. (9 ⇒ 26) Assume that 26 (II) is not true. This means that
∃S ∈ S such that @p such that pA = 0, p = 0 with

∑
i∈S pi > 0. In particular,

pA = 0, p = 0 ⇒ pi = 0,∀i ∈ S. But by 9, there exist p = 0 and x such that
pA = 0, Ax = 0 and

p+ xTAT > 0.

It follows that (xTAT )i = (Ax)i > 0,∀i ∈ S, as required. (26 ⇒ 13) Take
S = {{1}, · · · , {m}} containing subsets of the singletons. Then it is clear that
the resulting statement of 26 becomes 13.
(j) 28 ⇒ 12. Assume 28. In 12, we will show I⇒ II. Following the method in
[8], we have

I⇒ 〈< Bx = 0, Cx = 0, Dx = 0 >⇒< Bx = 0 >〉 . (∗)

But by 28, the systems Bx = 0, Cx = 0, Dx = 0 and B′y2 + C ′y3 + D′y4 =
0, y2 = 0, y3 = 0 have solutions x, y2 = 0, y3 = 0, y4 such that Bx + y2 > 0
and Cx+y3 > 0. The condition (∗) then shows that y2 > 0, y3 = 0, as required.

Combining items (a) through (j), we conclude that all 28 theorems in the list
of Section 2 are equivalent.
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