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Preface

The theory of convex sets is a vibrant and classical field of modern mathe-

matics with rich applications in economics and optimization.

The material in these notes is introductory starting with a small chapter

on linear inequalities and Fourier-Motzkin elimination. The aim is to show

that linear inequalities can be solved and handled with very modest means.

At the same time you get a real feeling for what is going on, instead of plow-

ing through tons of formal definitions before encountering a triangle.

The more geometric aspects of convex sets are developed introducing no-

tions such as extremal points and directions, convex cones and their duals,

polyhedra and separation of convex sets by hyperplanes.

The emphasis is primarily on polyhedra. In a beginning course this seems

to make a lot of sense: examples are readily available and concrete computa-

tions are feasible with the double description method ([7], [3]).

The main theoretical result is the theorem of Minkowski and Weyl on

the structure of polyhedra. We stop short of introducing general faces of

polyhedra.

I am grateful to Markus Kiderlen and Jesper Funch Thomsen for very

useful comments on these notes.

v





Notation

• Z denotes the set of integers . . . ,−2,−1, 0, 1, 2, . . . and R the set of real

numbers.

• Rn denotes the set of all n-tuples (or vectors) {(x1, . . . , xn) | x1, . . . , xn ∈
R} of real numbers. This is a vector space over R — you can add vec-

tors and multiply them by a real number. The zero vector (0, . . . , 0) ∈
Rn will be denoted 0.

• Let u, v ∈ Rn. The inequality u ≤ v means that ≤ holds for every

coordinate. For example (1, 2, 3) ≤ (1, 3, 4), since 1 ≤ 1, 2 ≤ 3 and

3 ≤ 4. But (1, 2, 3) ≤ (1, 2, 2) is not true, since 3 � 2.

• When x ∈ Rn, b ∈ Rm and A is an m × n matrix, the m inequalities,

Ax ≤ b, are called a system of linear inequalities. If b = 0 this system is

called homogeneous.

• Let u, v ∈ Rn. Viewing u and v as n × 1 matrices, the matrix product

ut v is nothing but the usual inner product of u and v. In this setting,

ut u = |u|2, where |u| is the usual length of u.

vii





Chapter 1

Introduction

You probably agree that it is quite easy to solve the equation

2x = 4. (1.1)

This is an example of a linear equation in one variable having the unique

solution x = 2. Perhaps you will be surprised to learn that there is essen-

tially no difference between solving a simple equation like (1.1) and the more

complicated system

2x + y + z = 7

x + 2y + z = 8 (1.2)

x + y + 2z = 9

of linear equations in x, y and z. Using the first equation 2x + y + z = 7 we

solve for x and get

x = (7 − y − z)/2. (1.3)

This may be substituted into the remaining two equations in (1.2) and we get

the simpler system

3y + z = 9

y + 3z = 11

of linear equations in y and z. Again using the first equation in this system

we get

y = (9 − z)/3 (1.4)

to end up with the simple equation

8z = 24.

1
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This is a simple equation of the type in (1.1) giving z = 3. Now z = 3 gives

y = 2 using (1.4). Finally y = 2 and z = 3 gives x = 1 using (1.3). So solving a

seemingly complicated system of linear equations like (1.2) is really no more

difficult than solving the simple equation (1.1).

We wish to invent a similar method for solving systems of linear inequal-

ities like
x ≥ 0

x + 2y ≤ 6

x + y ≥ 2

x − y ≤ 3

y ≥ 0

(1.5)

1.1 Linear inequalities

Let us start out again with the simplest case: linear inequalities in just one

variable. Take as an example the system

2x + 1 ≤ 7

3x − 2 ≤ 4

−x + 2 ≤ 3

x ≥ 0

(1.6)

This can be rewritten to
x ≤ 3

x ≤ 2

−1 ≤ x

0 ≤ x

This system of linear inequalities can be reduced to just two linear inequali-

ties:
x ≤ min(2, 3) = 2

max(−1, 0) = 0 ≤ x

or simply 0 ≤ x ≤ 2. Here you see the real difference between linear equa-

tions and linear inequalities. When you reverse = you get =, but when you

reverse ≤ after multiplying by −1, you get ≥. This is why solving linear

inequalities is more involved than solving linear equations.

1.1.1 Two variables

Let us move on to the more difficult system of linear inequalities given in

(1.5). We get inspiration from the solution of the system (1.2) of linear equa-

tions and try to isolate or eliminate x. How should we do this? We rewrite
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(1.5) to

0 ≤ x

x ≤ 6 − 2y

2 − y ≤ x

x ≤ 3 + y

along with the inequality 0 ≤ y which does not involve x. Again, just like in

one variable, this system can be reduced just two inequalities

x ≤ min(6 − 2y, 3 + y)

max(0, 2 − y) ≤ x
(1.7)

carrying the inequality 0 ≤ y along. Here is the trick. We can eliminate x

from the two inequalities in (1.7) to get the system

max(0, 2 − y) ≤ min(6 − 2y, 3 + y). (1.8)

You can solve (1.7) in x and y if and only if you can solve (1.8) in y. If

you think about it for a while you will realize that (1.8) is equivalent to the

following four inequalities

0 ≤ 6 − 2y

0 ≤ 3 + y

2 − y ≤ 6 − 2y

2 − y ≤ 3 + y

These inequalities can be solved just like we solved (1.6). We get

y ≤ 3

−3 ≤ y

y ≤ 4

− 1
2 ≤ y

0 ≤ y

where the inequality y ≥ 0 from before is attached. This system can be re-

duced to

0 ≤ y ≤ 3

Through a lot of labor we have proved that two numbers x and y solve the

system (1.5) if and only if

0 ≤ y ≤ 3

max(0, 2 − y) ≤ x ≤ min(6 − 2y, 3 + y)

If you phrase things a bit more geometrically, we have proved that the projec-

tion of the solutions to (1.5) on the y-axis is the interval [0, 3]. In other words,

if x, y solve (1.5), then y ∈ [0, 3] and if y ∈ [0, 3], there exists x ∈ R such that

x, y form a solution to (1.5). This is the context for the next section.
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1.2 Polyhedra

Let us introduce precise definitions. A linear inequality in n variables x1, . . . , xn

is an inequality of the form

a1x1 + · · · + anxn ≤ b,

where a1, . . . , an, b ∈ R.

DEFINITION 1.2.1

The set of solutions

P =

{

(x1, . . . , xn) ∈ Rn

∣

∣

∣

∣

∣

a11x1 + · · · + a1nxn ≤ b1

...

am1x1 + · · · + amnxn ≤ bm

}

to a system

a11x1 + · · · + a1nxn ≤ b1

...

am1x1 + · · · + amnxn ≤ bm

of finitely many linear inequalities (here aij and bi are real numbers) is called a poly-

hedron. A bounded polyhedron is called a polytope.

A polyhedron is an extremely important special case of a convex subset

of Rn. We will return to the definition of a convex subset in the next chapter.

The proof of the following important theorem may look intimidating at

first. If this is so, then take a look at §1.1.1 once again. Do not get fooled by the

slick presentation here. In its purest form the result goes back to a paper by

Fourier1 from 1826 (see [2]). It is also known as Fourier-Motzkin elimination,

simply because you are eliminating the variable x1 and because Motzkin2

rediscovered it in his dissertation “Beiträge zur Theorie der linearen Ungle-

ichungen” with Ostrowski3 in Basel, 1933 (not knowing the classical paper

by Fourier). The main result in the dissertation of Motzkin was published

much later in [6].

THEOREM 1.2.2

Consider the projection π : Rn → Rn−1 given by

π(x1, . . . , xn) = (x2, . . . , xn).

If P ⊂ Rn is a polyhedron, then π(P) ⊂ Rn−1 is a polyhedron.

1Jean Baptiste Joseph Fourier (1768 – 1830), French mathematician.
2Theodore Samuel Motzkin (1908 – 1970), American mathematician.
3Alexander Markowich Ostrowski (1893 – 1986), Russian mathematician
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Proof. Suppose that P is the set of solutions to

a11x1 + · · · + a1nxn ≤ b1

...

am1x1 + · · · + amnxn ≤ bm

We divide the m inequalities into

G = {i | ai1 > 0}
Z = {i | ai1 = 0}
L = {i | ai1 < 0}

Inequality number i reduces to

x1 ≤ a′i2x2 + · · · + a′inxn + b′i,

if i ∈ G and to

a′j2x2 + · · · + a′jnxn + b′j ≤ x1,

if j ∈ L, where a′ik = −aik/ai1 and b′i = bi/ai1 for k = 2, . . . , n. So the inequal-

ities in L and G are equivalent to the two inequalities

max
(

a′i2x2 + · · · + a′inxn + b′i
∣

∣

∣
i ∈ L

)

≤ x1

≤ min
(

a′j2x2 + · · · + a′jnxn + b′j
∣

∣

∣
j ∈ G

)

.

Now (x2, . . . , xn) ∈ π(P) if and only if there exists x1 such that (x1, . . . , xn) ∈
P. This happens if and only if (x2, . . . , xn) satisfies the inequalities in Z and

max
(

a′i2x2 + · · ·+ a′inxn + b′i
∣

∣

∣
i ∈ L

)

≤ min
(

a′j2x2 + · · · + a′jnxn + b′j
∣

∣

∣
j ∈ G

)

This inequality expands to the system of |L| |G| inequalities in x2, . . . , xn con-

sisting of

a′i2x2 + · · · + a′inxn + b′i ≤ a′j2x2 + · · · + a′jnxn + b′j

or rather

(a′i2 − a′j2)x2 + · · · + (a′in − a′jn)xn ≤ b′j − b′i

where i ∈ L and j ∈ G. Adding the inequalities in Z (where x1 is not present)

we see that π(P) is the set of solutions to a system of |L| |G| + |Z| linear

inequalities i.e. π(P) is a polyhedron.

To get a feeling for Fourier-Motzkin elimination you should immediately

immerse yourself in the exercises. Perhaps you will be surprised to see that

Fourier-Motzkin elimination can be applied to optimize the production of

vitamin pills.
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1.3 Exercises

(1) Let

P =

{

(x, y, z) ∈ R3

∣

∣

∣

∣

∣

−x − y − z ≤ 0

3x − y − z ≤ 1

−x + 3y − z ≤ 2

−x − y + 3z ≤ 3

}

and π : R3 → R2 be given by π(x, y, z) = (y, z).

(i) Compute π(P) as a polyhedron i.e. as the solutions to a set of linear

inequalities in y and z.

(ii) Compute η(P), where η : R3 → R is given by η(x, y, z) = x.

(iii) How many integral points4 does P contain?

(2) Find all solutions x, y, z ∈ Z to the linear inequalities

−x + y − z ≤ 0

− y + z ≤ 0

− z ≤ 0

x − z ≤ 1

y ≤ 1

z ≤ 1

by using Fourier-Motzkin elimination.

(3) Let P ⊆ Rn be a polyhedron and c ∈ Rn. Define the polyhedron P′ ⊆
Rn+1 by

P′ = {
(

m

x

)

| ct x = m, x ∈ P, m ∈ R},

where ctx is the (usual inner product) matrix product of c transposed (a

1 × n matrix) with x (an n × 1 matrix) giving a 1 × 1 matrix (also known

as a real number!).

(i) Show how projection onto the m-coordinate (and Fourier-Motzkin

elimination) in P′ can be used to solve the (linear programming)

problem of finding x ∈ P, such that ctx is minimal (or proving that

such an x does not exist).

4An integral point is simply a vector (x, y, z) with x, y, z ∈ Z
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(ii) Let P denote the polyhedron from Exercise 1. You can see that

(0, 0, 0), (−1,
1

2
,

1

2
) ∈ P

have values 0 and −1 on their first coordinates, but what is the min-

imal first coordinate of a point in P.

(4) A vitamin pill P is produced using two ingredients M1 and M2. The pill

needs to satisfy two requirements for the vital vitamins V1 and V2. It

must contain at least 6 mg and at most 15 mg of V1 and at least 5 mg and

at most 12 mg of V2. The ingredient M1 contains 3 mg of V1 and 2 mg of

V2 per gram. The ingredient M2 contains 2 mg of V1 and 3 mg of V2 per

gram.

We want a vitamin pill of minimal weight satisfying the requirements.

How many grams of M1 and M2 should we mix?





Chapter 2

Basics

The definition of a convex subset is quite elementary and profoundly impor-

tant. It is surprising that such a simple definition can be so far reaching.

2.1 Convex subsets of Rn

Consider two vectors u, v ∈ Rn. The line through u and v is given para-

metrically as

f (λ) = u + λ(v − u) = (1 − λ)u + λv,

where λ ∈ R. Notice that f (0) = u and f (1) = v. Let

[u, v] = { f (λ) | λ ∈ [0, 1]} = {(1 − λ)u + λv | λ ∈ [0, 1]}

denote the line segment between u and v.

DEFINITION 2.1.1

A subset S ⊆ Rn is called convex if

[u, v] ⊂ S

for every u, v ∈ S.

EXAMPLE 2.1.2

Two subsets S1, S2 ⊆ R2 are sketched below. Here S2 is convex, but S1 is not.

9
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S1 u

v

S2 u

v

The triangle S2 in Example 2.1.2 above is a prominent member of the special

class of polyhedral convex sets. Polyhedral means “cut out by finitely many

half-spaces”. A non-polyhedral convex set is for example a disc in the plane:

These non-polyhedral convex sets are usually much more complicated than

their polyhedral cousins especially when you want to count the number of

integral points1 inside them. Counting the number N(r) of integral points

inside a circle of radius r is a classical and very difficult problem going back

to Gauss2. Gauss studied the error term E(r) = |N(r)− πr2| and proved that

E(r) ≤ 2
√

2πr.

Counting integral points in polyhedral convex sets is difficult but theo-

retically much better understood. For example if P is a convex polygon in

the plane with integral vertices, then the number of integral points inside P

is given by the formula of Pick3 from 1899:

|P ∩ Z2| = Area(P) +
1

2
B(P) + 1,

where B(P) is the number of integral points on the boundary of P. You can

easily check this with a few examples. Consider for example the convex poly-

1Point with coordinates in Z.
2Carl Friedrich Gauss (1777–1855), German mathematician. Probably the greatest mathe-

matician that ever lived.
3Georg Alexander Pick (1859–1942), Austrian mathematician.
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gon P:

By subdivision into triangles it follows that Area(P) = 55
2 . Also, by an easy

count we get B(P) = 7. Therefore the formula of Pick shows that

|P ∩ Z2| =
55

2
+

1

2
· 7 + 1 = 32.

The polygon contains 32 integral points. You should inspect the drawing to

check that this is true!

2.2 The convex hull

Take a look at the traingle T below.

v1

v2

v3

v
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We have marked the vertices v1, v2 and v3. Notice that T coincides with the

points on line segments from v2 to v, where v is a point on [v1, v3] i.e.

T = {(1 − λ)v2 + λ((1 − µ)v1 + µv3) | λ ∈ [0, 1], µ ∈ [0, 1]}
= {(1 − λ)v2 + λ(1 − µ)v1 + λµv3 | λ ∈ [0, 1], µ ∈ [0, 1]}

Clearly (1 − λ) ≥ 0, λ(1 − µ) ≥ 0, λµ ≥ 0 and

(1 − λ) + λ(1 − µ) + λµ = 1.

It is not too hard to check that (see Exercise 2)

T = {λ1v1 + λ2v2 + λ3v3 | λ1, λ2, λ3 ≥ 0, λ1 + λ2 + λ3 = 1}.

With this example in mind we define the convex hull of a finite set of vec-

tors.

DEFINITION 2.2.1

Let v1, . . . , vm ∈ Rn. Then we let

conv({v1, . . . , vm}) := {λ1v1 + · · ·+ λmvm | λ1, . . . , λm ≥ 0, λ1 + · · ·+ λm = 1}.

We will occasionally use the notation

conv(v1, . . . , vm)

for conv({v1, . . . , vm}).

EXAMPLE 2.2.2

To get a feeling for convex hulls, it is important to play around with (lots of)

examples in the plane. Below you see a finite subset of points in the plane.

To the right you have its convex hull.
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Let us prove that conv(v1, . . . , vm) is a convex subset. Suppose that u, v ∈
conv(v1, . . . , vm) i.e.

u = λ1v1 + · · · + λmvm

v = µ1v1 + · · · + µmvm,

where λ1, . . . , λm, µ1, . . . , µm ≥ 0 and

λ1 + · · · + λm = µ1 + · · · + µm = 1.

Then (for 0 ≤ α ≤ 1)

αu + (1 − α)v = (αλ1 + (1 − α)µ1)v1 + · · · + (αλm + (1 − α)µm)vm

where

(αλ1 + (1 − α)µ1) + · · · + (αλm + (1 − α)µm) =

α(λ1 + · · · + λm) + (1 − α)(µ1 + · · · + µm) = α + (1 − α) = 1.

This proves that conv(v1, . . . , vm) is a convex subset. It now makes sense to

introduce the following general definition for the convex hull of an arbitrary

subset X ⊆ Rn.

DEFINITION 2.2.3

If X ⊆ Rn, then

conv(X) =
⋃

m≥1

v1,...,vm∈X

conv(v1, . . . , vm).

The convex hull conv(X) of an arbitrary subset is born as a convex subset

containing X: consider u, v ∈ conv(X). By definition of conv(X),

u ∈ conv(u1, . . . , ur)

v ∈ conv(v1, . . . , vs)

for u1, . . . , ur, v1, . . . , vs ∈ X. Therefore u and v both belong to the convex

subset conv(u1, . . . , ur, v1, . . . , vs) and

αu + (1 − α)v ∈ conv(u1, . . . , ur, v1, . . . , vs) ⊆ conv(X)

where 0 ≤ α ≤ 1, proving that conv(X) is a convex subset.

What does it mean for a subset S to be the smallest convex subset con-

taining a subset X? A very natural condition is that if C is a convex subset

with C ⊇ X, then C ⊇ S. The smallest convex subset containing X is a subset

of every convex subset containing X!
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THEOREM 2.2.4

Let X ⊆ Rn. Then conv(X) is the smallest convex subset containing X.

The theorem follows from the following proposition (see Exercise 4).

PROPOSITION 2.2.5

If S ⊆ Rn is a convex subset and v1, . . . , vm ∈ S, then

conv(v1, . . . , vm) ⊆ S.

Proof. We must show that

λ1v1 + · · · + λm−1vm−1 + λmvm ∈ S,

where v1, . . . , vm ∈ S, λ1, . . . , λm ≥ 0 and

λ1 + · · · + λm−1 + λm = 1.

For m = 2 this is the definition of convexity. The general case is proved using

induction on m. For this we may assume that λm 6= 1. Then the identity

λ1v1 + · · · + λm−1vm−1 + λmvm =

(λ1 + · · · + λm−1)

(

λ1

(λ1 + · · · + λm−1)
v1 + · · · + λm−1

(λ1 + · · · + λm−1)
vm−1

)

+ λmvm

and the convexity of S proves the induction step. Notice that the induction

step is the assumption that we already know conv(v1, . . . , vm−1) ⊆ S for m −
1 vectors v1, . . . , vm−1 ∈ S.

2.2.1 Intersections of convex subsets

The smallest convex subset containing X ⊆ Rn is the intersection of the con-

vex subsets containing X. What do we mean by an aritrary intersection of

subsets of Rn?

The intersection of finitely many subsets X1, . . . , Xm of Rn is

X1 ∩ · · · ∩ Xm = {x ∈ Rn | x ∈ Xi, for every i = 1, . . . , m}

– the subset of elements common to every X1, . . . , Xm. This concept makes

perfectly sense for subsets Xi indexed by an arbitrary, not necessarily finite

set I. The definition is practically the same:

⋂

i∈I

Xi = {x ∈ Rn | x ∈ Xi, for every i ∈ I}.
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Here (Xi)i∈I is called a family of subsets. In the above finite case,

{X1, . . . , Xm} = (Xi)i∈I

with I = {1, . . . , m}. With this out of the way we can state the following.

PROPOSITION 2.2.6

The intersection of a family of convex subsets of Rn is a convex subset.

The proof of this proposition is left to the reader as an exercise in the defi-

nition of the intersection of subsets. This leads us to the following “modern”

formulation of conv(X):

PROPOSITION 2.2.7

The convex hull conv(X) of a subset X ⊆ Rn equals the convex subset

⋂

C∈IX

C,

where IX = {C ⊆ Rn | C convex subset and X ⊆ C}.

Clearly this intersection is the smallest convex subset containing X.

2.3 Extremal points

DEFINITION 2.3.1

A point z in a convex subset C ⊆ Rn is called extreme or an extremal point if

z ∈ [x, y] =⇒ z = x or z = y

for every x, y ∈ C. The set of extremal points in C is denoted ext(C).

So an extremal point in a convex subset C is a point, which is not located

in the interior of a line segment in C. This is the crystal clear mathematical

definition of the intuitive notion of a vertex or a corner of set.

Perhaps the formal aspects are better illustrated in getting rid of super-

fluous vectors in a convex hull

X = conv(v1, . . . , vN)

of finitely many vectors v1, . . . , vN ∈ Rn. Here a vector vj fails to be extremal

if and only if it is contained in the convex hull of the other vectors (it is su-

perfluous). It is quite instructive to carry out this proof (see Exercise 9).

Notice that only one of the points in triangle to the right in Example 2.2.2

fails to be extremal. Here the extremal points consists of the three corners

(vertices) of the triangle.
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2.4 The characteristic cone for a convex set

To every convex subset of Rn we have associated its characteristic cone4 of

(infinite) directions:

DEFINITION 2.4.1

A vector d ∈ Rn is called an (infinite) direction for a convex set C ⊆ Rn if

x + λ d ∈ C

for every x ∈ C and every λ ≥ 0. The set of (infinite) directions for C is called the

characteristic cone for C and is denoted ccone(C).

Just as we have extremal points we have the analogous notion of extremal

directions. An infinite direction d is extremal if d = d1 + d2 implies that d =

λd1 or d = λd2 for some λ > 0.

Why do we use the term cone for the set of infinite directions? You can

check that d1 + d2 ∈ ccone(C) if d1, d2 ∈ ccone(C) and λd ∈ ccone(C) if

λ ≥ 0 and d ∈ ccone(C).

This leads to the next section, where we define this extremely important

class of convex sets.

2.5 Convex cones

A mathematical theory is rarely interesting if it does not provide tools or algo-

rithms to compute with the examples motivating it. A very basic question is:

how do we decide if a vector v is in the convex hull of given vectors v1, . . . , vm.

We would like to use linear algebra i.e. the theory of solving systems of lin-

ear equations to answer this question.To do this we need to introduce convex

cones.

DEFINITION 2.5.1

A (convex) cone in Rn is a subset C ⊆ Rn with x + y ∈ C and λx ∈ C for every

x, y ∈ C and λ ≥ 0.

It is easy to prove that a cone is a convex subset. Notice that any d ∈ C

is an infinite direction for C and ccone(C) = C. An extremal ray of a convex

cone C is just another term for an extremal direction of C.

In analogy with the convex hull of finitely many points, we define the

cone generated by v1, . . . , vm ∈ Rn as

4Some people use the term recession cone instead of characteristic cone.
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DEFINITION 2.5.2

cone(v1, . . . , vm) := {λ1v1 + · · · + λmvm | λ1, . . . , λm ≥ 0}.

Clearly cone(v1, . . . , vm) is a cone. Such a cone is called finitely generated.

There is an intimate relation between finitely generated cones and convex

hulls. This is the content of the following lemma.

LEMMA 2.5.3

v ∈ conv(v1, . . . , vm) ⇐⇒
(

v

1

)

∈ cone
(

(

v1

1

)

, . . . ,

(

vm

1

)

)

.

Proof. In Exercise 14 you are asked to prove this.

EXAMPLE 2.5.4

A triangle T is the convex hull of 3 non-collinear points

(x1, y1), (x2, y2), (x3, y3)

in the plane. Lemma 2.5.3 says that a given point (x, y) ∈ T if and only if







x

y

1






∈ cone

(







x1

y1

1






,







x2

y2

1






,







x3

y3

1







)

(2.1)

You can solve this problem using linear algebra! Testing (2.1) amounts to

solving the system







x1 x2 x3

y1 y2 y3

1 1 1













λ1

λ2

λ3






=







x

y

1






(2.2)

of linear equations. So (x, y) ∈ T if and only if the unique solution to (2.2)

has λ1 ≥ 0, λ2 ≥ 0 and λ3 ≥ 0.

Why does (2.2) have a unique solution? This question leads to the concept

of affine independence. How do we express precisely that three points in the

plane are non-collinear?
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2.6 Affine independence

DEFINITION 2.6.1

A set {v1, . . . , vm} ⊆ Rn is called affinely independent if

{

(

v1

1

)

, . . . ,

(

vm

1

)

}

⊆ Rn+1

is linearly independent.

As a first basic example notice that −1, 1 ∈ R are affinely independent (but

certainly not linearly independent).

LEMMA 2.6.2

Let v1, . . . , vm ∈ Rn. Then the following conditions are equivalent.

(i) v1, . . . , vm are affinely independent.

(ii) If

λ1v1 + · · · + λmvm = 0

and λ1 + · · · + λm = 0, then λ1 = · · · = λm = 0.

(iii)

v2 − v1, . . . , vm − v1

are linearly independent in Rn.

Proof. Proving (i) =⇒ (ii) is the definition of affine independence. For

(ii) =⇒ (iii), assume for µ2, . . . , µm ∈ R that

µ2(v2 − v1) + · · · + µm(vm − v1) = 0.

Then

λ1v1 + · · · + λm = 0

with λ2 = µ2, . . . , λm = µm and

λ1 = −(µ2 + · · · + µm).

In particular, λ1 + · · · + λm = 0 and it follows that λ1 = · · · = λm = 0 and

thereby µ2 = · · · = µm = 0. For (iii) =⇒ (i) assume that

λ1

(

v1

1

)

+ · · · + λm

(

vm

1

)

= 0.
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Then

0 = λ1v1 + · · · + λmvm = λ1v1 + · · · + λmvm − (λ1 + · · · + λm)v1

= λ2(v2 − v1) + · · · + λm(vm − v1)

By assumption this implies that λ2 = · · · = λm = 0 and thereby also λ1 = 0.

DEFINITION 2.6.3

The convex hull

conv(v1, . . . , vm+1)

of m + 1 affinely independent vectors is called an m-simplex.

So a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is

a triangle, a 3 simplex is a tetrahedron, . . . In a sense, simplices (= plural of

simplex) are building blocks for all convex sets. Below you see a picture of

(the edges of) a tetrahedron, the convex hull of 4 affinely independent points

in R3.
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2.7 Carathéodory’s theorem

A finitely generated cone cone(v1, . . . , vm) is called simplicial if v1, . . . , vm are

linearly independent vectors. These cones are usually easy to manage.

Every finitely generated cone is the union of simplicial cones. This is the

content of the following very important result essentially due to Carathéodory5.

THEOREM 2.7.1 (Carathéodory)

Let v1, . . . , vm ∈ Rn. If

v ∈ cone(v1, . . . , vm)

then v belongs to the cone generated by a linearly independent subset of {v1, . . . , vm}.

Proof. Suppose that

v = λ1v1 + · · · + λmvm

with λ1, . . . , λm ≥ 0 and v1, . . . , vm linearly dependent. The linear depen-

dence means that there exists µ1, . . . , µm ∈ R not all zero such that

µ1v1 + · · · + µmvm = 0. (2.3)

We may assume that at least one µi > 0 multiplying (2.3) by −1 if necessary.

But

v = v − θ · 0 = v − θ(µ1v1 + · · · + µmvm)

= (λ1 − θµ1)v1 + · · · + (λm − θµm)vm. (2.4)

Let

θ∗ = min{θ ≥ 0 | λi − θµi ≥ 0, for every i = 1, . . . , m}

= min
{ λi

µi
| µi > 0, i = 1, . . . , m

}

.

When you insert θ∗ into (2.4), you discover that v also lies in the subcone gen-

erated by a proper subset of {v1, . . . , vm}. Now keep repeating this procedure

until the proper subset consists of linearly independent vectors. Basically we

are varying θ in (2.4) ensuring non-negative coefficients for v1, . . . , vm until

“the first time” we reach a zero coefficient in front of some vj. This (or these)

vj is (are) deleted from the generating set. Eventually we end up with a lin-

early independent subset of vectors from {v1, . . . , vm}.

5Constantin Carathéodory (1873–1950), Greek mathematician.
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A special case of the following corollary is: if a point in the plane is in the

convex hull of 17364732 points, then it is in the convex hull of at most 3 of

these points. When you play around with points in the plane, this seems very

obvious. But in higher dimensions you need a formal proof of the natural

generalization of this!

COROLLARY 2.7.2

Let v1, . . . , vm ∈ Rn. If

v ∈ conv(v1, . . . , vm)

then v belongs to the convex hull of an affinely independent subset of {v1, . . . , vm}.

Proof. If v ∈ conv(v1, . . . , vm), then

(

v

1

)

∈ cone
(

(

v1

1

)

, . . . ,

(

vm

1

)

)

by Lemma 2.5.3. Now use Theorem 2.7.1 to conclude that

(

v

1

)

∈ cone
(

(

u1

1

)

, . . . ,

(

uk

1

)

)

,

where
{

(

u1

1

)

, . . . ,

(

uk

1

)

}

⊆
{

(

v1

1

)

, . . . ,

(

vm

1

)

}

.

is a linearly independent subset. By Lemma 2.5.3 we get u ∈ conv(u1, . . . , uk).

But by definition
(

u1

1

)

, . . . ,

(

uk

1

)

are linearly independent if and only if u1, . . . , uk are affinely independent.

2.8 The dual cone

A hyperplane in Rn is given by

H = {x ∈ Rn | αtx = 0}

for α ∈ Rn \ {0}. Such a hyperplane divides Rn into the two half spaces

{x ∈ Rn | αtx ≤ 0}
{x ∈ Rn | αtx ≥ 0}.
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DEFINITION 2.8.1

If C ⊆ Rn is a convex cone, we call

C∗ = {α ∈ Rn | αtx ≤ 0, for every x ∈ C}

the dual cone of C.

The subset C∗ ⊆ Rn is clearly a convex cone. One of the main results of these

notes is that C∗ is finitely generated if C is finitely generated. If C is finitely

generated, then

C = cone(v1, . . . , vm)

for suitable v1, . . . , vm ∈ Rn. Therefore

C∗ = {α ∈ Rn | αtv1 ≤ 0, . . . , αtvm ≤ 0}. (2.5)

The notation in (2.5) seems to hide the basic nature of the dual cone. Let us

unravel it. Suppose that

v1 =









a11

...

an1









, . . . , vm =









a1m

...

anm









and

α =









x1

...

xn









.

Then (2.5) merely says that C∗ is the set of solutions to the inequalities

a11x1 + · · · + an1xn ≤ 0

... (2.6)

a1mx1 + · · · + anmxn ≤ 0.

The main result on finitely generated convex cones says that there always

exists finitely many solutions u1, . . . , uN from which any other solution to

(2.6) can be constructed as

λ1u1 + · · · + λNuN,

where λ1, . . . , λN ≥ 0. This is the statement that C∗ is finitely generated in

down to earth terms. Looking at it this way, I am sure you see that this is a

non-trivial result. If not, try to prove it from scratch!
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EXAMPLE 2.8.2

C

C∗

In the picture above we have sketched a finitely generated cone C along with

its dual cone C∗. If you look closer at the drawing, you will see that

C = cone
(

(

2

1

)

,

(

1

2

)

)

and C∗ = cone
(

(

1

−2

)

,

(

−2

1

)

)

.

Notice also that C∗ encodes the fact that C is the intersection of the two affine

half planes

{

(

x

y

)

∈ R2
∣

∣

∣

(

1

−2

)t (

x

y

)

≤ 0
}

and
{

(

x

y

)

∈ R2
∣

∣

∣

(

−2

1

)t (

x

y

)

≤ 0
}

.
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2.9 Exercises

(1) Draw the half plane H = {(x, y)t ∈ R2 | a x + b y ≤ c} ⊆ R2 for a = b =

c = 1. Show, without drawing, that H is convex for every a, b, c. Prove in

general that the half space

H = {(x1, . . . , xn)
t ∈ Rn | a1x1 + · · · + anxn ≤ c} ⊆ Rn

is convex, where a1, . . . , an, c ∈ R.

(2) Let v1, v2, v3 ∈ Rn. Show that

{(1 − λ)v3 + λ((1 − µ)v1 + µv2) | λ ∈ [0, 1], µ ∈ [0, 1]} =

{λ1v1 + λ2v2 + λ3v3 | λ1, λ2, λ3 ≥ 0, λ1 + λ2 + λ3 = 1}.

(3) Prove that conv(v1, . . . , vm) is a closed subset of Rn.

(4) Prove that Theorem 2.2.4 is a consequence of Proposition 2.2.5.

(5) Draw the convex hull of

S = {(0, 0), (1, 0), (1, 1)} ⊆ R2.

Write conv(S) as the intersection of 3 half planes.

(6) Let u1, u2, v1, v2 ∈ Rn. Show that

conv(u1, u2) + conv(v1, v2) = conv(u1 + v1, u1 + v2, u2 + v1, u2 + v2).

Here the sum of two subsets A and B of Rn is A + B = {x + y | x ∈
A, y ∈ B}.

(7) Let S ⊆ Rn be a convex set and v ∈ Rn. Show that

conv(S, v) := {(1 − λ)s + λv | λ ∈ [0, 1], s ∈ S}

(the cone over S) is a convex set.

(8) Prove Proposition 2.2.6.

(9) Let X = conv(v1, . . . , vN), where v1, . . . , vN ∈ Rn.

(i) Prove that if z ∈ X is an extremal point, then z ∈ {v1, . . . , vN}.

(ii) Prove that v1 is not an extremal point in X if and only if

v1 ∈ conv(v2, . . . , vN).
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This means that the extremal points in a convex hull like X consists of the

“indispensable vectors” in spanning the convex hull.

(10) What are the extremal points of the convex subset

C = {(x, y) ∈ R2 | x2 + y2 ≤ 1}

of the plane R2? Can you prove it?

(11) What is the characteristic cone of a bounded convex subset?

(12) Can you give an example of an unbounded convex set C with ccone(C) =

{0}?

(13) Draw a few examples of convex subsets in the plane R2 along with their

characteristic cones, extremal points and extremal directions.

(14) Prove Lemma 2.5.3

(15) Give an example of a cone that is not finitely generated.

(16) Prove that you can have no more than m + 1 affinely independent vectors

in Rm.

(17) The vector v =

(

7
4

19
8

)

is the convex combination

1

8

(

1

1

)

+
1

8

(

1

2

)

+
1

4

(

2

2

)

+
1

2

(

2

3

)

of 4 vectors in R2.

(i) Write v as a convex compbination of 3 of the 4 vectors.

(ii) Can you write v as the convex combination of 2 of the vectors?

(18) Let

C = cone
(

(

2

1

)

,

(

1

2

)

)

.

(i) Show that

C∗ = cone
(

(

1

−2

)

,

(

−2

1

)

)

.
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(ii) Suppose that

C = cone
(

(

a

c

)

,

(

b

d

)

)

,

where
(

a b

c d

)

is an invertible matrix. How do you compute C∗?
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Separation

A linear function f : Rn → R is given by f (v) = αtv for α ∈ Rn. For every

β ∈ R we have an affine hyperplane given by

H = {v ∈ Rn | f (v) = β}.

We will usually omit “affine” in front of hyperplane. Such a hyperplane di-

vides Rn into two (affine) half spaces given by

H≤ = {v ∈ Rn | f (v) ≤ β}
H≥ = {v ∈ Rn | f (v) ≥ β}.

Two given subsets S1 and S2 of Rn are separated by H if S1 ⊆ H≤ and S2 ⊆ H≥.

A separation of S1 and S2 given by a hyperplane H is called proper if S1 * H

or S2 * H (the separation is not too interesting if S1 ∪ S2 ⊆ H).

A separation of S1 and S2 given by a hyperplane H is called strict if S1 ⊆
H< and S2 ⊆ H>, where

H< = {v ∈ Rn | f (v) < β}
H> = {v ∈ Rn | f (v) > β}.

Separation by half spaces shows the important result that (closed) convex

sets are solutions to systems of (perhaps infinitely many) linear inequalities.

Let me refer you to Appendix B for refreshing the necessary concepts from

analysis like infimum, supremum, convergent sequences and whatnot.

The most basic and probably most important separation result is strict

separation of a closed convex set C from a point x 6∈ C. We need a small

preliminary result about closed (and convex) sets.

27
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LEMMA 3.0.1

Let F ⊆ Rn be a closed subset. Then there exists x0 ∈ F such that

|x0| = inf
{

|x|
∣

∣

∣x ∈ F
}

.

If F in addition is convex, then x0 is unique.

Proof. Let

β = inf
{

|x|
∣

∣

∣
x ∈ F

}

.

We may assume from the beginning that F is bounded. Now construct a

sequence (xn) of points in F with the property that |xn| − β < 1/n. Such

a sequence exists by the definition of infimum. Since F is bounded, (xn)

has a convergent subsequence (xni
). Let x0 be the limit of this convergent

subsequence. Then x0 ∈ F, since F is closed. Also, as x 7→ |x| is a continuous

function from F to R we must have |x0| = β. This proves the existence of x0.

If F in addition is convex, then x0 is unique: suppose that y0 ∈ F is another

point with |y0| = |x0|. Consider

z =
1

2
(x0 + y0) =

1

2
x0 +

1

2
y0 ∈ F.

But in this case, |z| = 1
2 |x0 + y0| ≤ 1

2 |x0|+ 1
2 |y0| = |x0|. Therefore |x0 + y0| =

|x0| + |y0|. From the triangle inequality it follows that x0 are y0 collinear

i.e. there exists λ ∈ R such that x0 = λy0. Then λ = ±1. In both cases we

have x0 = y0.

COROLLARY 3.0.2

Let F ⊆ Rn be a closed subset and z ∈ Rn. Then there exists x0 ∈ F such that

|x0 − z| = inf
{

|x − z|
∣

∣

∣x ∈ F
}

.

If F in addition is convex, then x0 is unique.

Proof. If F is closed (convex) then

F − z = {x − z | z ∈ F}

is also closed (convex). Now the results follow from applying Lemma 3.0.1

to F − z.

If F ⊆ Rn is a closed subset with the property that to each point of Rn

there is a unique nearest point in F, then one may prove that F is convex!

This result is due to Bunt (1934)1 and Motzkin (1935).

1L. N. H. Bunt, Dutch mathematician
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3.1 Separation of a point from a closed convex set

The following lemma is at the heart of almost all of our arguments.

LEMMA 3.1.1

Let C be a closed convex subset of Rn and let

|x0| = inf
{

|x|
∣

∣

∣
x ∈ C

}

,

where x0 ∈ C. If 0 6∈ C, then

xt
0 z > |x0|2/2

for every z ∈ C.

Proof. First notice that x0 exists and is unique by Lemma 3.0.1. We argue by

contradiction. Suppose that z ∈ C and

xt
0 z ≤ |x0|2/2 (3.1)

Then using the definition of x0 and the convexity of C we get for 0 ≤ λ ≤ 1

that

|x0|2 ≤ |(1 − λ)x0 + λz|2 = (1 − λ)2|x0|2 + 2(1 − λ)λ xt
0 z + λ2|z|2

≤ (1 − λ)2|x0|2 + (1 − λ)λ|x0|2 + λ2|z|2,

where the assumption (3.1) is used in the last inequality. Subtracting |x0|2
from both sides gives

0 ≤ −2λ|x0|2 + λ2|x0|2 + (1 − λ)λ|x0|2 + λ2|z|2 = λ(−|x0|2 + λ|z|2).

Dividing by λ > 0 leads to

|x0|2 ≤ λ|z|2

for every 0 < λ ≤ 1. Letting λ → 0, this implies that x0 = 0 contradicting

our assumption that 0 6∈ C.

If you study Lemma 3.1.1 closer, you will discover that we have separated

{0} from C with the hyperplane

{z ∈ Rn | xt
0 z =

1

2
|x0|2}.



30 Chapter 3. Separation

C

x0

0

xt

0
z = |x0|2/2

There is nothing special about the point 0 here. The general result says

the following.

THEOREM 3.1.2

Let C be a closed convex subset of Rn with v 6∈ C and let x0 be the unique point in

C closest to v. Then

(x0 − v)t (z − v) >
1

2
|x0 − v|2

for every z ∈ C: the hyperplane H = {x ∈ Rn | αtx = β} with α = x0 − v and

β = (x0 − v)tv + |x0 − v|2/2 separates {v} strictly from C.

Proof. Let C′ = C − v = {x − v | x ∈ C}. Then C′ is closed and convex and

0 6∈ C′. The point closest to 0 in C′ is x0 − v. Now the result follows from

Lemma 3.1.1 applied to C′.

With this result we get one of the key properties of closed convex sets.

THEOREM 3.1.3

A closed convex set C ⊆ Rn is the intersection of the half spaces containing it.

Proof. We let J denote the set of all half spaces

H≤ = {x ∈ Rn | αt x ≤ β}

with C ⊆ H≤. One inclusion is easy:

C ⊆
⋂

H≤∈J

H≤.

In the degenerate case, where C = Rn we have J = ∅ and the above intersec-

tion is Rn. Suppose that there exists

x ∈
⋂

H≤∈J

H≤ \ C. (3.2)
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Then Theorem 3.1.2 shows the existence of a hyperplane H with C ⊆ H≤ and

x 6∈ H≤. This contradicts (3.2).

This result tells an important story about closed convex sets. A closed

half space H≤ ⊆ Rn is the set of solutions to a linear inequality

a1x1 + · · · + anxn ≤ b.

Therefore a closed convex set really is the set of common solutions to a (pos-

sibly infinite) set of linear inequalities. If C happens to be a (closed) convex

cone, we can say even more.

COROLLARY 3.1.4

Let C ⊆ Rn be a closed convex cone. Then

C =
⋂

α∈C∗
{x ∈ Rn | αt x ≤ 0}.

Proof. If C is contained in a half space {x ∈ Rn | αt x ≤ β} we must have

β ≥ 0, since 0 ∈ C. We cannot have αtx > 0 for any x ∈ C, since this would

imply that αt(λx) = λ(αtx) → ∞ for λ → ∞. As λx ∈ C for λ ≥ 0 this

violates αtx ≤ β for every x ∈ C. Therefore α ∈ C∗ and β = 0. Now the result

follows from Theorem 3.1.3.

3.2 Supporting hyperplanes

With some more attention to detail we can actually prove that any convex set

C ⊆ Rn (not necessarily closed) is always contained on one side of an affine

hyperplane “touching” C at its boundary. Of course here you have to assume

that C 6= Rn.

First we need to prove that the closure of a convex subset is also convex.

PROPOSITION 3.2.1

Let S ⊆ Rn be a convex subset. Then the closure, S, of S is a convex subset.

Proof. Consider x, y ∈ S. We must prove that z := (1 − λ)x + λy ∈ S for

0 ≤ λ ≤ 1. By definition of the closure S there exists convergent sequences

(xn) and (yn) with xn, yn ∈ S such that xn → x and yn → y. Now form the

sequence ((1 − λ)xn + λyn). Since S is convex this is a sequence of vectors in

S. The convergence of (xn) and (yn) allows us to conclude that

(1 − λ)xn + λyn → z.

Since z is the limit of a convergent sequence with vectors in S, we have shown

that z ∈ S.
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DEFINITION 3.2.2

A supporting hyperplane for a convex set C ⊆ Rn at a boundary point z ∈ ∂C is

hyperplane H with z ∈ H and C ⊆ H≤. Here H≤ is called a supporting half space

for C at z.

Below you see an example of a convex subset C ⊆ R2 along with sup-

porting hyperplanes at two of its boundary points u and v. Can you spot any

difference between u and v?

u

vC

THEOREM 3.2.3

Let C ⊆ Rn be a convex set and z ∈ ∂C. Then there exists a supporting hyperplane

for C at z.

Proof. The fact that z ∈ ∂C means that there exists a sequence of points (zn)

with zn 6∈ C, such that zn → z (z can be approximated outside of C). Proposi-

tion 3.2.1 says that C is a convex subset. Therefore we may use Lemma 3.0.1

to conclude that C contains a unique point closest to any point. For each zn

we let xn ∈ C denote the point closest to zn and put

un =
zn − xn

|zn − xn|
.

Theorem 3.1.2 then shows that

ut
n (x − zn) >

1

2
|zn − xn| (3.3)

for every x ∈ C. Since (un) is a bounded sequence, it has a convergent subse-

quence. Let u be the limit of this convergent subsequence. Then (3.3) shows

that H = {x ∈ Rn | ut x = ut z} is a supporting hyperplane for C at z, since

|zn − xn| ≤ |zn − z| → 0 as n → ∞.
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3.3 Separation of disjoint convex sets

THEOREM 3.3.1

Let C1, C2 ⊆ Rn be disjoint (C1 ∩ C2 = ∅) convex subsets. Then there exists a

separating hyperplane

H = {u ∈ Rn | αt u = β}

for C1 and C2.

Proof. The trick is to observe that C1 − C2 = {x − y | x ∈ C1, y ∈ C2} is a

convex subset and 0 6∈ C1 − C2. T here exists α ∈ Rn \ {0} with

αt(x − y) ≥ 0

or α · x ≥ α · y for every x ∈ C1, y ∈ C2. Here is why. If 0 6∈ C1 − C2 this is

a consequence of Lemma 3.1.1. If 0 ∈ C1 − C2 we get it from Theorem 3.2.3

with z = 0.

Therefore β1 ≥ β2, where

β1 = inf{αt x | x ∈ C1}
β2 = sup{αt y | y ∈ C2}

and

H = {u ∈ Rn | αtu = β1}

is the desired hyperplane.

The separation in the theorem does not have to be proper (example?).

However, if C◦
1 6= ∅ or C◦

2 6= ∅ then the separation is proper (why?).

3.4 An application

We give the following application, which is a classical result [4] due to Gor-

dan2 dating back to 1873.

THEOREM 3.4.1

Let A be an m × n matrix. Then precisely one of the following two conditions holds

(i) There exists an n-vector x, such that

Ax < 0.

2Paul Gordan (1837–1912), German mathematician.
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(ii) There exists a non-zero m-vector y ≥ 0 such that

yt A = 0

Proof. Define the convex subsets

C1 = {Ax | x ∈ Rn} and

C2 = {y ∈ Rm | y < 0}

of Rm. If Ax < 0 is unsolvable, then C1 ∩ C2 = ∅ and Theorem 3.3.1 implies

the existence of a separating hyperplane

L = {x ∈ Rn | αt x = β}

such that

C1 ⊆ {x ∈ Rn | αt x ≥ β} (3.4)

C2 ⊆ {x ∈ Rn | αt x ≤ β}. (3.5)

These containments force strong retrictions on α and β: β ≤ 0 by (3.4), since

0 ∈ C1 and β ≥ 0 by (3.5) as αt y → 0 for y → 0 and y ∈ C2. Therefore β = 0.

Also from (3.5) we must have α ≥ 0 to ensure that αt y ≤ β holds for every y

in the unbounded set C2. We claim that the result follows by putting y = α.

Assume on the contrary that αA 6= 0. Then the containment

C1 = {Ax | x ∈ Rn} ⊆ {x ∈ Rn | αt x ≥ 0}

fails!

3.5 Farkas’ lemma

The lemma of Farkas3 is an extremely important result in the theory of convex

sets. Farkas published his result in 1901 (see [1]). The lemma itself may be

viewed as the separation of a finitely generated cone

C = cone(v1, . . . , vr) (3.6)

from a point v 6∈ C. In the classical formulation this is phrased as solving

linear equations with non-negative solutions. There is no need to use our

powerful separation results in proving Farkas’ lemma. It follows quite easily

3Gyula Farkas (1847–1930), Hungarian mathematician.
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from Fourier-Motzkin elimination. Using separation in this case, only com-

plicates matters and hides the “polyhedral” nature of the convex subset in

(3.6).

In teaching convex sets last year, I tried to convince the authors of a cer-

tain engineering textbook, that they really had to prove, that a finitely gen-

erated cone (like the one in (3.6)) is a closed subset of Rn. After 3 or 4 email

notes with murky responses, I gave up.

The key insight is the following little result, which is the finite analogue

of Corollary 3.1.4.

LEMMA 3.5.1

A finitely generated cone

C = cone(v1, . . . , vr) ⊆ Rn

is a finite interesection of half spaces i.e. there exists an m × n matrix A, such that

C = {v ∈ Rn | Av ≤ 0}.

Proof. Let B denote the n × r-matrix with v1, . . . , vr as columns. Consider the

polyhedron

P = {(x, y) ∈ Rr+n | y = Bx, x ≥ 0}

=

{

(x, y) ∈ Rr+n

∣

∣

∣

∣

∣

y − Bx ≤ 0

Bx − y ≤ 0

−x ≤ 0

}

and let π : Rr+n → Rn be the projection defined by π(x, y) = y. Notice that

P is deliberately constructed so that π(P) = C.

Theorem 1.2.2 now implies that C = π(P) = {y ∈ Rn | Ay ≤ b} for

b ∈ Rm and A an m× n matrix. Since 0 ∈ C we must have b ≥ 0. In fact b = 0

has to hold: an x ∈ C with Ax � 0 means that a coordinate, z = (Ax)j > 0.

Since λx ∈ C for every λ ≥ 0 this would imply λz = (A(λx))j is not bounded

for λ → ∞ and we could not have Ax ≤ b for every x ∈ C (see also Exercise

5).

A cone of the form {v ∈ Rn | Av ≤ 0} is called polyhedral (because it

is a polyhedron in the sense of Definition 1.2.1). Lemma 3.5.1 shows that

a finitely generated cone is polyhedral. A polyhedral cone is also finitely

generated. We shall have a lot more to say about this in the next chapter.

The following result represents the classical Farkas lemma in the lan-

guage of matrices.
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LEMMA 3.5.2 (Farkas)

Let A be an m × n matrix and b ∈ Rm. Then precisely one of the following two

conditions is satisfied.

(i) The system

Ax = b

of linear equations is solvable with x ∈ Rn with non-negative entries.

(ii) There exists y ∈ Rm such that

yt A ≥ 0 and yt b < 0.

Proof. The properties (i) and (ii) cannot be true at the same time. Suppose

that they both hold. Then we get that

yt b = yt (Ax) = (yt A)x ≥ 0

since yt A ≥ 0 and x ≥ 0. This contradicts yt b < 0. The real surprise is the

existence of y if Ax = b cannot be solved with x ≥ 0. Let v1, . . . , vm denote

the m columns in A. Then the key observation is that Ax = b is solvable with

x ≥ 0 if and only if

b ∈ C = cone(v1, . . . , vm).

So if Ax = b, x ≥ 0 is non-solvable we must have b 6∈ C. Lemma 3.5.1 shows

that b 6∈ C implies you can find y ∈ Rn with ytb < 0 and yt A ≥ 0 simply by

using the description of C as a finite intersection of half planes.
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3.6 Exercises

(1) Give an example of a non-proper separation of convex subsets.

(2) Let

B1 = {(x, y) | x2 + y2 ≤ 1}
B2 = {(x, y) | (x − 2)2 + y2 ≤ 1}

(a) Show that B1 and B2 are closed convex subsets of R2.

(b) Find a hyperplane properly separating B1 and B2.

(c) Can you separate B1 and B2 strictly?

(d) Put B′
1 = B1 \ {(1, 0)} and B′

2 = B2 \ {(1, 0)}. Show that B′
1 and B′

2 are

convex subsets. Can you separate B′
1 from B2 strictly? What about B′

1

and B′
2?

(3) Let S be the square with vertices (0, 0), (1, 0), (0, 1) and (1, 1) and P =

(2, 0).

(i) Find the set of hyperplanes through (1, 1
2), which separate S from P.

(ii) Find the set of hyperplanes through (1, 0), which separate S from P.

(iii) Find the set of hyperplanes through ( 3
2 , 1), which separate S from P.

(4) Let C1, C2 ⊆ Rn be convex subsets. Prove that

C1 − C2 := {x − y | x ∈ C1, y ∈ C2}

is a convex subset.

(5) Take another look at the proof of Theorem 1.2.2. Show that

π(P) = {x ∈ Rn−1 | A′x ≤ 0}

if P = {x ∈ Rn | Ax ≤ 0}, where A and A′ are matrices with n and n − 1

columns respectively.

(6) Show using Farkas that

(

2 0 −1

1 1 2

)







x

y

z






=

(

1

0

)

is unsolvable with x ≥ 0, y ≥ 0 and z ≥ 0.
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(7) With the assumptions of Theorem 3.3.1, is the following strengthening:

C1 ⊆ {x ∈ Rn | αt x < β} and

C2 ⊆ {x ∈ Rn | αt x ≥ β}

true? If not, give a counterexample. Can you separate C1 and C2 strictly

if C◦
1 6= ∅ and C1 ∩ C2 = ∅? How about C1 ∩ C2 6= ∅?

(8) Let C ( Rn be a convex subset. Prove that ∂C 6= ∅

(9) Let C ( Rn be a closed convex subset. Define dC : Rn → C by dC(v) = z,

where z ∈ C is the unique point with

|v − z| = inf
{

|v − x|
∣

∣

∣
x ∈ C

}

.

(a) Prove that dC is a continuous function.

(b) Let z0 ∈ ∂C and B =
{

x ∈ Rn
∣

∣

∣|x − z0| ≤ R
}

for R > 0. Show that

max{dC(x) | x ∈ B} = R.

(10) Find all the supporting hyperplanes of the triangle with vertices (0, 0), (0, 2)

and (1, 0).



Chapter 4

Polyhedra

You already know from linear algebra that the set of solutions to a system

a11x1 + · · · + an1xn = 0

... (4.1)

a1mx1 + · · · + anmxn = 0

of (homogeneous) linear equations can be generated from a set of basic solu-

tions v1, . . . , vr ∈ Rn, where r ≤ n. This simply means that the set of solutions

to (4.1) is

{λ1v1 + · · · + λrvr | λi ∈ R} = cone(±v1, . . . ,±vr).

Things change dramatically when we replace = with ≤ and ask for a set of

“basic” solutions to a set of linear inequalities

a11x1 + · · · + an1xn ≤ 0

... (4.2)

a1mx1 + · · · + anmxn ≤ 0.

The main result in this chapter is that we still have a set of basic solutions

v1, . . . , vr. However here the set of solutions to (4.2) is

{λ1v1 + · · · + λrvr | λi ∈ R and λi ≥ 0} = cone(v1, . . . , vr) (4.3)

and r can be very big compared to n. In addition we have to change our

notion of a basic solution (to an extremal generator).

Geometrically we are saying that an intersection of half spaces like (4.2)

is generated by finitely many rays as in (4.3). This is a very intuitive and very

39
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powerful mathematical result. In some cases it is easy to see as in

−x ≤ 0

−y ≤ 0

−z ≤ 0

(4.4)

Here the set of solutions is

cone

(







1

0

0






,







0

1

0






,







0

0

1







)

(4.5)

What if we add the inequality x − y + z ≤ 0 to (4.4)? How does the set of

solutions change in (4.5)? With this extra inequality







1

0

0






and







0

0

1







are no longer (basic) solutions. The essence of our next result is to describe

this change.

4.1 The double description method

The double description method is a very clever algorithm for solving (homo-

geneous) linear inequalities. It first appeared in [7] with later refinements in

[3]. It gives a nice inductive proof of the classical theorem of Minkowski1 and

Weyl2 on the structure of polyhedra (Theorem 4.5.1).

The first step of the algorithm is computing the solution set to one in-

equality in n variables like

3x + 4y + 5z ≤ 0 (4.6)

in the three variables x, y and z. Here the solution set is the set of vectors

with 3x + 4y + 5z = 0 along with the non-negative multiples of just one

vector (x0, y0, z0) with

3x0 + 4y0 + 5z0 < 0.

Concretely the solution set to (4.6) is

cone

(







−4

3

0






,







4

−3

0






,







0

5

−4






,







0

−5

4






,







−1

−1

−1







)

. (4.7)

1Hermann Minkowski (1864–1909), German mathematician.
2Hermann Weyl (1885–1955), German mathematician.
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The double description method is a systematic way of updating the solu-

tion set when we add further inequalities.

4.1.1 The key lemma

The lemma below is a bit technical, but its main idea and motivation are very

simple: We have a description of the solutions to a system of m linear in-

equalities in basis form. How does this solution change if we add a linear

inequality? If you get stuck in the proof, then please take a look at the exam-

ple that follows. Things are really quite simple (but nevertheless clever).

LEMMA 4.1.1

Consider

C =
{

x ∈ Rn
∣

∣

∣

at
1x ≤ 0

...

at
mx ≤ 0

}

(4.8)

for a1, . . . , am ∈ Rn. Suppose that

C = cone(v | v ∈ V)

for V = {v1, . . . , vN}. Then

C ∩ {x ∈ Rn | atx ≤ 0} = cone(w | w ∈ W),

where (the inequality atx ≤ 0 with a ∈ Rn is added to (4.8))

W ={v ∈ V | atv < 0} ∪ (4.9)

{(atu)v − (atv)u | u, v ∈ V, atu > 0 and atv < 0}.

Proof. Let C′ = C ∩ {x ∈ Rn | atx ≤ 0} and C′′ = cone(w|w ∈ W). Then

C′′ ⊆ C′ as the generators (atu)v − (atv)u are designed so that they belong to

C′ (check this!). We will prove that C′ ⊆ C′′. Suppose that z ∈ C′. Then we

may write

z = λ1v1 + · · · + λNvN .

Now let J−z = {vi | λi > 0, atvi < 0} and J+
z = {vii | λi > 0, atvi > 0}. We

prove that z ∈ C′′ by induction on the number of elements m = |J−z ∪ J+
z | in

J−z ∪ J+
z . If m = 0, then z = 0 and everything is fine. If |J+

z | = 0 we are also

done. Suppose that u ∈ J+
z . Since atz ≤ 0, J−z cannot be empty. Let v ∈ J−z

and consider

z′ = z − µ((atu)v − (atv)u)

for µ > 0. By varying µ > 0 suitably you can hit the sweet spot where

|J+
z′ ∪ J−z′ | < |J+

z ∪ J−z |. From here the result follows by induction.
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EXAMPLE 4.1.2

Now we can write up what happens to the solutions to (4.4) when we add

the extra inequality x − y + z ≤ 0. It is simply a matter of computing the set

W of new generators in (4.9). Here

a =







1

−1

1






and V =

{







1

0

0






,







0

1

0






,







0

0

1







}

.

Therefore

W =
{







0

1

0






,







1

1

0






,







0

1

1







}

.

EXAMPLE 4.1.3

Suppose on the other hand that the inequality x − y − z ≤ 0 was added to

(4.4). Then

W =
{







0

1

0






,







0

0

1






,







1

1

0






,







1

0

1







}

.

All of these generators are “basic” solutions. You cannot leave out a single

of them. Let us add the inequality x − 2y + z ≤ 0, so that we wish to solve

−x ≤ 0

−y ≤ 0

−z ≤ 0

x −y −z ≤ 0

x −2y +z ≤ 0

(4.10)

Here we apply Lemma 4.1.1 with a = (1,−2, 1)t and V = W above and the

new generators are (in transposed form)

= (0, 1, 0)

= (1, 1, 0)

(0, 1, 0) + 2(0, 0, 1) = (0, 1, 2)

2(0, 1, 0) + 2(1, 0, 1) = (2, 2, 2)

(1, 1, 0) + (0, 0, 1) = (1, 1, 1)

2(1, 1, 0) + (1, 0, 1) = (3, 2, 1)

You can see that the generators (1, 1, 1) and (2, 2, 2) are superfluous, since

(1, 1, 1) =
1

3
(0, 1, 2) +

1

3
(3, 2, 1).
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We would like to have a way of generating only the necessary “basic” or

extremal solutions when adding a new inequality. This is the essence of the

following section.

4.2 Extremal and adjacent rays

Recall that an extremal ray in a convex cone C is an element v ∈ C, such that

v = u1 + u2 with u1, u2 ∈ C implies v = λu1 or v = λu2 for some λ ≥ 0. So

the extremal rays are the ones necessary for generating the cone. You cannot

leave any of them out. We need some general notation. Suppose that A is an

m × d with the m rows a1, . . . , am ∈ Rd. For a given x ∈ Rd we let

I(x) = {i | at
i x = 0} ⊆ {1, . . . , m}.

For a given subset J ⊆ {1, . . . , m} we let AJ denote the matrix with rows

(aj | j ∈ J) and Ax ≤ 0 denotes the collection at
1 x ≤ 0, . . . , at

m x ≤ 0 of linear

inequalities.

PROPOSITION 4.2.1

Let

C = {x ∈ Rd | Ax ≤ 0} (4.11)

where A is an m × d matrix of full rank d. Then v ∈ C is an extremal ray if and

only if the rank of AI is d − 1, where I = I(v).

Proof. Suppose that the rank of AI is < d − 1, where v is an extremal ray with

I = I(v). Then we may find a non-zero x ∈ Rd with AI x = 0 and vtx = 0.

Consider

v =
1

2
(v − ǫx) +

1

2
(v + ǫx). (4.12)

For small ǫ > 0 you can check the inequalities in (4.11) and show that v ±
ǫx ∈ C. Since vtx = 0, v cannot be a non-zero multiple of v − ǫx or v + ǫx.

Now the identity in (4.12) contradicts the assumption that v is an extremal

ray. Therefore if v is an extremal ray it follows that the rank of AI is d − 1.

On the other hand if the rank of AI is d − 1, then there exists a non-zero

vector w ∈ Rd with

{x ∈ Rd | AI x = 0} = {λw | λ ∈ R}.

If v = u1 + u2 for u1, u2 ∈ C \ {0}, then we must have I(u1) = I(u2) = I.

Therefore v, u1 and u2 are all proportional to w. We must have v = λu1 or

v = λu2 for some λ > 0 proving that v is an extremal ray.
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DEFINITION 4.2.2

Two extremal rays u and v in

C = {x ∈ Rd | Ax ≤ 0}

are called adjacent if the rank of AK is d − 2, where K = I(u) ∩ I(v).

Geometrically this means that u and v span a common face of the cone.

We will, however, not give the precise definition of a face in a cone.

The reason for introducing the concept of adjacent extremal rays is rather

clear when you take the following extension of Lemma 4.1.1 into account.

LEMMA 4.2.3

Consider

C =
{

x ∈ Rn
∣

∣

∣

at
1x ≤ 0

...

at
mx ≤ 0

}

for a1, . . . , am ∈ Rn. Let V be the set of extremal rays in C and a ∈ Rn. Then

W ={v ∈ V | atv < 0}
⋃

{(atu)v − (atv)u | u, v adjacent in V, with atu > 0 and atv < 0}.

is the set of extremal rays in

C ∩ {x ∈ Rn | atx ≤ 0}.

Proof. If you compare with Lemma 4.1.1 you will see that we only need to

prove for extremal rays u and v of C that

w := (atu)v − (atv)u

is extremal if and only if u and v are adjacent, where atu > 0 and atv < 0. We

assume that the rank of the matrix A consisting of the rows a1, . . . , am is n.

Let A′ denote the matrix with rows a1, . . . , am, am+1 := a. We let I = I(u), J =

I(v) and K = I(w) with respect to the matrix A′. Since w is a positive linear

combination of u and v we know that at
i w = 0 if and only if at

i u = at
i v = 0,

where ai is a row of A. Therefore

K = (I ∩ J) ∪ {m + 1}. (4.13)

If u and v are adjacent then AI∩J has rank n − 2. The added row a in A′

satisfies atw = 0 and the vector a is not in the span of the rows in AI∩J . This

shows that the rank of A′
K is n − 1. Therefore w is extremal. Suppose on the
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other hand that w is extremal. This means that A′
K has rank n − 1. By (4.13)

this shows that the rank of AI∩J has to be n − 2 proving that u and v are

adjacent.

We will now revisit our previous example and weed out in the generators

using Lemma 4.2.3.

EXAMPLE 4.2.4

−x ≤ 0

−y ≤ 0

−z ≤ 0

x −y −z ≤ 0

(4.14)

Here a1 = (−1, 0, 0), a2 = (0,−1, 0), a3 = (0, 0,−1), a4 = (1,−1,−1). The

extremal rays are

V = {(0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1)}

We add the inequality x − 2y + z ≤ 0 and form the matrix A′ with the extra

row a5 := a = (1,−2, 1). The extremal rays are divided into two groups

V = {v | atv < 0} ∪ {v | atv > 0}

corresponding to

V = {(0, 1, 0), (1, 1, 0)} ∪ {(0, 0, 1), (1, 0, 1)}.

You can check that

I((0, 1, 0)) = {1, 3}
I((1, 1, 0)) = {3, 4}
I((0, 0, 1)) = {1, 2}
I((1, 0, 1)) = {2, 4}

From this you see that (1, 1, 0) is not adjacent to (0, 0, 1) and that (0, 1, 0) is not

adjacent to (1, 0, 1). These two pairs correspond exactly to the superfluous

rays encountered in Example 4.1.3. So Lemma 4.2.3 tells us that we only

need to add the vectors

(0, 1, 0) + 2(0, 0, 1) = (0, 1, 2)

2(1, 1, 0) + (1, 0, 1) = (3, 2, 1)

to {(0, 1, 0), (1, 1, 0)} to get the new extremal rays.
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4.3 Farkas: from generators to half spaces

Now suppose that C = cone(v1, . . . , vm) ⊆ Rn. Then we may write C =

{x | Ax ≤ 0} for a suitable matrix A. This situation is dual to what we have

encountered finding the basic solutions to Ax ≤ 0. The key for the translation

is Corollary 3.1.4, which says that

C =
⋂

a∈C∗
Ha. (4.15)

The dual cone to C is given by

C∗ = {a ∈ Rn | atv1 ≤ 0, . . . , atvm ≤ 0},

which is in fact the solutions to a system of linear inequalities. By Lemma

4.1.1 (and Lemma 4.2.3) you know that these inequalities can be solved using

the double description method and that

C∗ = cone(a1, . . . , ar)

for certain (extremal) rays a1, . . . , ar in C∗. We claim that

C = Ha1
∩ · · · ∩ Har

so that the intersection in (4.15) really is finite! Let us prove this. If

a = λ1a1 + · · · + λjaj ∈ C∗

with λi > 0, then

Ha1
∩ · · · ∩ Haj

⊆ Ha,

as at
1x ≤ 0, . . . , at

jx ≤ 0 for every x ∈ C implies (λ1at
1 + · · · + λja

t
j)x = atx ≤

0. This proves that

Ha1
∩ · · · ∩ Har =

⋂

a∈C∗
Ha = C.

EXAMPLE 4.3.1

In Example 4.1.3 we showed that the solutions of

−x ≤ 0

−y ≤ 0

−z ≤ 0

x −y −z ≤ 0

x −2y +z ≤ 0

(4.16)
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are generated by the extremal rays

V = {(0, 1, 0), (1, 1, 0), (0, 1, 2), (3, 2, 1)}.

Let us go back from the extremal rays above to inequalities. Surely five in-

equalities in (4.16) are too many for the four extremal rays. We should be able

to find four inequalities doing the same job. Here is how. The dual cone to

the cone generated by V is given by

y ≤ 0

x +y ≤ 0

y +2z ≤ 0

3x +2y +z ≤ 0

We solve this system of inequalities using Lemma 4.1.1. The set of solutions

to
y ≤ 0

x +y ≤ 0

y +2z ≤ 0

is generated by the extremal rays V = {(2,−2, 1), (−1, 0, 0), (0, 0,−1)}. We

add the fourth inequality 3x + 2y + z ≤ 0 (a = (3, 2, 1)) and split V according

to the sign of atv:

V = {(2,−2, 1)} ∪ {(−1, 0, 0), (0, 0,−1)}.

This gives the new extremal rays

3(−1, 0, 0) + 3(2,−2, 1) = (3,−6, 3)

3(0, 0,−1) + (2,−2, 1) = (2,−2,−2)

and the extremal rays are {(−1, 0, 0), (0, 0,−1), (1,−2, 1), (1,−1,−1)} show-

ing that the solutions of (4.16) really are the solutions of

−x ≤ 0

−z ≤ 0

x −2y +z ≤ 0

x −y −z ≤ 0.

We needed four inequalities and not five! Of course we could have spotted

this from the beginning noting that the inequality −y ≤ 0 is a consequence

of the inequalities −x ≤ 0, x − 2y + z ≤ 0 and x − y − z ≤ 0.
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4.4 Polyhedra: general linear inequalities

The set of solutions to a general system

a11x1 + · · · + a1nxn ≤ b1

... (4.17)

am1x1 + · · · + amnxn ≤ bm

of linear inequalities is called a polyhedron. It may come as a surprise to you,

but we have already done all the work for studying the structure of polyhe-

dra. The magnificent trick is to adjoin an extra variable xn+1 and rewrite

(4.17) into the homogeneous system

a11x1 + · · · + a1nxn − b1xn+1 ≤ 0

... (4.18)

am1x1 + · · · + amnxn − bmxn+1 ≤ 0

−xn+1 ≤ 0.

The key observation is that

(x1, . . . , xn) solves (4.17) ⇐⇒ (x1, . . . , xn, 1) solves (4.18).

But (4.18) is a system of (homogeneous) linear inequalities as in (4.2) and we

know that the solution set is

cone

((

u1

0

)

, . . . ,

(

ur

0

)

,

(

v1

1

)

, . . . ,

(

vs

1

))

, (4.19)

where u1, . . . , ur, v1, . . . , vs ∈ Rn. Notice that we have divided the solutions

of (4.18) into xn+1 = 0 and xn+1 6= 0. In the latter case we may assume that

xn+1 = 1 (why?). The solutions with xn+1 = 0 in (4.18) correspond to the

solutions C of the homogeneous system

a11x1 + · · · + a1nxn ≤ 0

...

am1x1 + · · · + amnxn ≤ 0.

In particular the solution set to (4.17) is bounded if C = {0}.
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4.5 The decomposition theorem for polyhedra

You cannot expect (4.17) to always have a solution. Consider the simple ex-

ample

x ≤ 1

−x ≤ −2

Adjoining the extra variable y this lifts to the system

x − y ≤ 0

−x + 2y ≤ 0

−y ≤ 0

Here x = 0 and y = 0 is the only solution and we have no solutions with

y = 1 i.e. we may have s = 0 in (4.19). This happens if and only if (4.17) has

no solutions.

We have now reached the main result of these notes: a complete char-

acterization of polyhedra due to Minkowski in 1897 (see [5]) and Weyl in

1935 (see [8]). Minkowski showed that a polyhedron admits a description

as a sum of a polyhedral cone and a polytope. Weyl proved the other im-

plication: a sum of a polyhedral cone and a polytope is a polyhedron. You

probably know by now that you can use the double description method and

Farkas’ lemma to reason about these problems.

THEOREM 4.5.1 (Minkowski, Weyl)

A non-empty subset P ⊆ Rn is a polyhedron if and only if it is the sum P = C + Q

of a polytope Q and a polyhedral cone C.

Proof. A polyhedron P is the set of solutions to a general system of linear

inequalities as in (4.17). If P is non-empty, then s ≥ 1 in (4.19). This shows

that

P = {λ1u1 + · · ·+ λrur + µ1v1 + · · ·+ µsvs | λi ≥ 0, µj ≥ 0, and µ1 + · · ·+ µs = 1}

or

P = cone(u1, . . . , ur) + conv(v1, . . . , vs). (4.20)

On the other hand, if P is the sum of a cone and a polytope as in (4.20), then

we define P̂ ⊆ Rn+1 to be the cone generated by

(

u1

0

)

, . . . ,

(

ur

0

)

,

(

v1

1

)

, . . . ,

(

vs

1

)
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If

P̂∗ = cone
(

(

α1

β1

)

, . . . ,

(

αN

βN

)

)

,

where α1, . . . , αn ∈ Rn and β1, . . . , βn ∈ R, we know from §4.3 that

P̂ =
{

(

x

z

)

∈ Rn+1
∣

∣

∣ αt
1x + β1z ≤ 0, . . . , αt

N x + βNz ≤ 0
}

.

But an element x ∈ Rn belongs to P if and only if (x, 1) ∈ P̂. Therefore

P =
{

x ∈ Rn
∣

∣

∣ αt
1x + β1 ≤ 0, . . . , αt

N x + βN ≤ 0
}

=
{

x ∈ Rn
∣

∣

∣ αt
1x ≤ −β1, . . . , αt

N x ≤ −βN

}

is a polyhedron.

4.6 Extremal points in polyhedra

There is a natural connection between the extremal rays in a cone and the

extremal points in a polyhedron P = {x ∈ Rn | Ax ≤ b}. Let a1, . . . , am

denote the rows in A and let b = (b1, . . . , bm)t. With this notation we have

P = {x ∈ Rn | Ax ≤ b} =
{

x ∈ Rn
∣

∣

∣

at
1 x ≤ b1

...

at
m x ≤ bm

}

.

For z ∈ P we define the submatrix

Az = {ai | at
i z = bi},

consisting of those rows where the inequalities are equalities (binding con-

straints) for z. The following result shows that a polyhedron only contains

finitely many extremal points and gives a method for finding them.

PROPOSITION 4.6.1

z ∈ P is an extremal point if and only if Az has full rank n.

Proof. The proof is very similar to Proposition 4.2.1 and we only sketch the

details. If z ∈ P and the rank of Az is < n, then we may find u 6= 0 with

Azu = 0. We can then choose ǫ > 0 sufficiently small so that z ± ǫu ∈ P

proving that

z = (1/2)(z + ǫu) + (1/2)(z − ǫu)
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cannot be an extremal point. This shows that if z is an extremal point, then

Az must have full rank n. On the other hand if Az has full rank n and z =

(1 − λ)z1 + λz2 with 0 < λ < 1 for z1, z2 ∈ P, then we have for a row ai in Az

that

at
i z = (1 − λ) at

i z1 + λ at
i z2.

As at
i z1 ≤ at

i z = bi and at
i z2 ≤ bi we must have at

i z1 = at
i z2 = bi = at

i z. But

then Az(z − z1) = 0 i.e. z = z1.

EXAMPLE 4.6.2

Find the extremal points in

P =
{

(

x

y

)

∈ R2
∣

∣

∣







−1 −1

2 −1

−1 2







(

x

y

)

≤







0

1

1







}

.

We will find the “first” extremal point and leave the computation of the other

extremal points to the reader. First we try and see if we can find z ∈ P with

Az = {a1, a2} =

(

−1 −1

2 −1

)

.

If z = (x, y)t this leads to solving

−x − y = 0

2x − y = 1,

giving (x, y) = (1/3,−1/3). Since −1/3 + 2 · (1/3) = 1/3 < 1 we see that

z = (1/3,−1/3) ∈ P. This shows that z is an extremal point in P. Notice that

the rank of Az is 2.

DEFINITION 4.6.3

A subset

L = {u + tv | t ∈ R}

with u, v ∈ Rn and v 6= 0 is called a line in Rn.

THEOREM 4.6.4

Let P = {x ∈ Rn | Ax ≤ b} 6= ∅. The following conditions are equivalent

(i) P contains an extremal point.

(ii) The characteristic cone

ccone(P) = {x ∈ Rn | Ax ≤ 0}

does not contain a line.



52 Chapter 4. Polyhedra

(iii) P does not contain a line.

Proof. If z ∈ P and ccone(P) contains a line L = {v + tu | t ∈ R}, we must

have Au = 0. Therefore

z = 1/2(z + u) + 1/2(z − u),

where z ± u ∈ P and none of the points in P are extremal. Suppose on the

other hand that ccone(P) does not contain a line. Then P does not contain a

line, since a line L as above inside P implies Au = 0 making it a line inside

ccone(P).

Now assume that P does not contain a line and consider z ∈ P. If Az

has rank n then z is an extremal point. If not we can find a non-zero u with

Azu = 0. Since P does not contain a line we must have

z + λu 6∈ P

for λ sufficiently big. Let

λ0 = sup{λ | z + λu ∈ P}

and

z1 = z + λ0u.

Then z1 ∈ P and the rank of Az1
is strictly greater than the rank of Az. If the

rank of Az1
is not n we continue the procedure. Eventually we will hit an

extremal point.

COROLLARY 4.6.5

Let c ∈ Rn and P = {x ∈ Rn | Ax ≤ b}. If

M = sup{ct x | x ∈ P} < ∞

and ext(P) 6= ∅, then there exists x0 ∈ ext(P) such that

ct x0 = M.

Proof. The non-empty set

Q = {x ∈ Rn | ct x = M} ∩ P

is a polyhedron not containing a line, since P does not contain a line. There-

fore Q contains an extremal point z. But such an extremal point is also an

extremal point in P. If this was not so, we could find a non-zero u with
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Azu = 0. For ǫ > 0 small we would then have z ± ǫu ∈ P. But this implies

that ct u = 0 and z ± ǫu ∈ Q. The well known identity

z =
1

2
(z + ǫu) +

1

2
(z − ǫu)

shows that z is not an extremal point in Q. This is a contradiction.

Now we have the following refinement of Theorem 4.5.1 for polyhedra

with extremal points.

THEOREM 4.6.6

Let P = {x ∈ Rn | Ax ≤ b} be a polyhedron with ext(P) 6= ∅. Then

P = conv(ext(P)) + ccone(P).

Proof. The definition of ccone(P) shows that

conv(ext(P)) + ccone(P) ⊆ P.

You also get this from ccone(A) = {x ∈ Rn | Ax ≤ 0}. If P 6= conv(ext(P))+

ccone(P), there exists z ∈ P and c ∈ Rn such that ct z > ct x for every x ∈
conv(ext(P)) + ccone(P). But this contradicts Corollary 4.6.5, which tells us

that there exists an extremal point z0 in P with

ct z0 = sup{ct x | x ∈ P}.
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4.7 Exercises

(1) Verify that the set of solutions to (4.6) is as described in (4.7).

(2) Find the set of solutions to the system

x + z ≤ 0

y + z ≤ 0

z ≤ 0

of (homogeneous) linear inequalities.

(3) Express the convex hull

conv
{







1/4

1/4

−1/2






,







−1/2

1/4

1/4






,







1/4

−1/2

1/4






,







1

1

1







}

⊆ R3

as a polyhedron (an intersection of halfspaces).

(4) Convert the inequalities

x + y ≤ 1

−x + y ≤ −1

x − 2y ≤ −2

to a set of 4 homogeneous inqualities by adjoining an extra variable z.

Show that the original inequalities are unsolvable using this.

(5) Is the set of solutions to

−x + 2y − z ≤ 1

−x − y − z ≤ −2

2x − y − z ≤ 1

− y + z ≤ 1

−x − y + z ≤ 0

−x + y ≤ 1

bounded in R3?

(6) Let P1 and P2 be polytopes in Rn. Show that

P1 + P2 = {u + v | u ∈ P1, v ∈ P2}

is a polytope. Show that the sum of two polyhedra is a polyhedron.
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(7) Give an example of a polyhedron with no extremal points.

(8) Let P = {x ∈ Rn | Ax ≤ b} be a polyhedron, where A is an m× n matrix

and b ∈ Rm. How many extremal points can P at the most have?

(9) Show that a polyhedron is a polytope (bounded) if and only if it is the

convex hull of its extremal points.

(10) Let K be a closed convex set in Rn. Show that K contains a line if and only

if ccone(K) contains a line.

(11) Give an example showing that Theorem 4.6.6 is far from true if ext(P) =

∅.

(12) Let

P = conv(u1, . . . , ur) + cone(v1, . . . , vs)

be a polyhedron, where u1, . . . , ur, v1, . . . , vs ∈ Rn. Show for c ∈ Rn that

if M = sup{ct x | x ∈ P} < ∞, then

sup
x∈P

ct x = sup
x∈K

ct x,

where K = conv(u1, . . . , ur). Does there exist x0 ∈ P with ct x0 = M?

(13) Eksamen 2005, opgave 1.

(14) Eksamen 2004, opgave 1.

(15) Eksamen 2007, opgave 6.





Appendix A

Linear (in)dependence

The concept of linear (in)dependence is often a stumbling block in introduc-

tory courses on linear algebra. When presented as a sterile definition in an

abstract vector space it can be hard to grasp. I hope to show here that it

is simply a fancy way of restating a quite obvious fact about solving linear

equations.

A.1 Linear dependence and linear equations

You can view the equation

3x + 5y = 0

as one linear equation with two unknowns. Clearly x = y = 0 is a solution.

But there is also a non-zero solution with x = −5 and y = 3. As one further

example consider

2x + y − z = 0 (A.1)

x + y + z = 0

Here we have 3 unknowns and only 2 equations and x = 2, y = −3 and z = 1

is a non-zero solution.

These examples display a fundamental fact about linear equations. A

system

a11 x1 + · · · + a1n xn = 0

a21 x1 + · · · + a2n xn = 0

...

am1 x1 + · · · + amn xn = 0

57
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of linear equations always has a non-zero solution if the number of unknowns

n is greater than the number n of equations i.e. n > m.

In modern linear algebra this fact about linear equations is coined using

the abstract term “linear dependence”:

A set of vectors {v1, . . . , vn} ⊂ Rm is linearly dependent if n > m.

This means that there exists λ1, . . . , λn ∈ R not all 0 such that

λ1v1 + · · · + λnvn = 0.

With this language you can restate the non-zero solution x = 2, y = −3

and z = 1 of (A.1) as the linear dependence

2 ·
(

2

1

)

+ (−3) ·
(

1

1

)

+ 1 ·
(

−1

1

)

=

(

0

0

)

.

Let us give a simple induction proof of the fundamental fact on (homoge-

neous) systems of linear equations.

THEOREM A.1.1

The system

a11 x1 + · · · + a1n xn = 0

a21 x1 + · · · + a2n xn = 0

... (A.2)

am1 x1 + · · · + amn xn = 0

of linear equations always has a non-zero solution if m < n.

Proof. The induction is on m — the number of equations. For m = 1 we have

1 linear equation

a1x1 + · · · + anxn = 0

with n variables where n > m = 1. If ai = 0 for some i = 1, . . . , n then clearly

xi = 1 and xj = 0 for j 6= i is a non-zero solution. Assume otherwise that

ai 6= 0 for every i = 1, . . . , m. In this case x1 = 1, x2 = −a1/a2, x3 = · · · =

xn = 0 is a non-zero solution.

If every ai1 = 0 for i = 1, . . . , m, then x1 = 1, x2 = · · · = xn = 0 is a

non-zero solution in (A.2). Assume therefore that a11 6= 0 and substitute

x1 =
1

a11
(−a12x2 − · · · − a1nxn)
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x1 into the remaining m − 1 equations. This gives the following system of

m − 1 equations in the n − 1 variables x2, . . . , xn

(a22 −
a21

a11
a12)x2 + · · · + (a2n −

a21

a11
a1n)xn = 0

... (A.3)

(am2 −
am1

a11
a12)x2 + · · · + (amn −

am1

a11
a1n)xn = 0

Since n − 1 > m − 1, the induction assumption on m gives the existence of a

non-zero solution (a2, . . . , an) to (A.3). Now

(
1

a11
(−a12a2 − · · · − a1nan), a2, . . . , an)

is a non-zero solution to our original system of equations. This can be checked

quite explicitly (Exercise 4).

A.2 The rank of a matrix

A system

a11 x1 + · · · + a1n xn = 0

a21 x1 + · · · + a2n xn = 0

... (A.4)

am1 x1 + · · · + amn xn = 0

of linear equations can be conveniently presented in the matrix form

A









x1

...

xn









=









0
...

0









,

where A is the m × n matrix








a11 · · · a1n

...
. . .

...

am1 · · · amn









.

We need to attach a very important invariant to A called the rank of the ma-

trix. In the context of systems of linear equations the rank is very easy to

understand. Let us shorten our notation a bit and let

Li(x) = ai1x1 + · · · + ainxn.
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Then the solutions to (A.4) are

S = {x ∈ Rn | L1(x) = 0, . . . , Lm(x) = 0}.

Suppose that m = 3. If one of the equations say L3(x) is expressible by the

other equations say as

L3(x) = λL1(x) + µL2(x),

with λ, µ ∈ R, then we don’t need the equation L3 in S. This is because

L1(x) = 0

L2(x) = 0

L3(x) = 0

⇐⇒ L1(x) = 0

L2(x) = 0

Clearly you see that L3(x) = 0 if L1(x) = 0 and L2(x) = 0. In this case

you can throw L3 out without changing S. Informally the rank of the matrix

A is the minimal number of equations you end up with after throwing ex-

cess equations away. It is not too hard to make this into a very well defined

concept. We will only use the following very important consequence.

THEOREM A.2.1

Let A be an m × n matrix of rank < n. Then there exists a non-zero vector u ∈ Rn

with Au = 0.

Proof. You may view S = {x ∈ Rn | Ax = 0} as the set of solutions to

A









x1

...

xn









=









0
...

0









.

By our informal definition of rank we know that

S = {x ∈ Rn | AI x = 0},

where AI is an m′ × n- matrix consisting of a subset of the rows in A with

m′ = the rank of A. Now the result follows by applying Theorem A.1.1.
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A.3 Exercises

(1) Find λ1, λ2, λ3 ∈ R not all 0 with

λ1

(

1

2

)

+ λ2

(

3

4

)

+ λ3

(

5

6

)

=

(

0

0

)

.

(2) Show that a non-zero solution (x, y, z) to (A.1) must have x 6= 0, y 6= 0

and z 6= 0. Is it possible to find λ1, λ2, λ3 in Exercise 1, where one of λ1, λ2

or λ3 is 0?

(3) Can you find a non-zero solution to

x + y + z = 0

x − y + z = 0,

where

(i) x = 0?

(ii) y = 0?

(iii) z = 0?

(iv) What can you say in general about a system

ax + by + cz = 0

a′x + b′y + c′z = 0

of linear equations in x, y and z, where a non-zero solution always

has x 6= 0, y 6= 0 and z 6= 0?

(4) Check carefully that

(
1

a11
(−a12a2 − · · · − a1nan), a2, . . . , an)

really is a non-zero solution to (A.2) in the proof of Theorem A.1.1.

(5) Compute the rank of the matrix













1 2 3

4 5 6

14 19 24

6 9 12













.





Appendix B

Analysis

In this appendix we give a very brief overview of the basic concepts of in-

troductory mathematical analysis. Focus is directed at building things from

scratch with applications to convex sets. We have not formally constructed

the real numbers.

B.1 Measuring distances

The limit concept is a cornerstone in mathematical analysis. We need a formal

way of stating that two vectors are far apart or close together.

Inspired by the Pythagorean formula for the length of the hypotenuse

in a triangle with a right angle, we define the length |x| of a vector x =

(x1, . . . , xn)t ∈ Rn as

|x| =
√

x2
1 + · · · + x2

n.

Our first result about the length is the following lemma called the inequality

of Cauchy-Schwarz. It was discovered by Cauchy1 in 1821 and rediscovered

by Schwarz2 in 1888.

LEMMA B.1.1

For x = (x1, . . . , xn)t ∈ Rn and y = (y1, . . . , yn)t ∈ Rn the inequality

(xty)2 = (x1y1 + · · · + xnyn)2 ≤ (x2
1 + · · · + x2

n)(y2
1 + · · · + y2

n) = |x|2|y|2

holds. If

(xty)2 = (x1y1 + · · · + xnyn)
2 = (x2

1 + · · · + x2
n)(y2

1 + · · · + y2
n) = |x|2|y|2,

then x and y are proportional i.e. x = λy for some λ ∈ R.

1Augustin Louis Cauchy (1789–1857), French mathematician
2Hermann Amandus Schwarz (1843–1921), German mathematician

63



64 Appendix B. Analysis

Proof. For n = 2 you can explicitly verify that

(x2
1 + x2

2)(y2
1 + y2

2)− (x1y1 + x2y2)
2 = (x1y2 − y1x2)

2. (B.1)

This proves that inequality for n = 2. If equality holds, we must have

x1y2 − y1x2 =

∣

∣

∣

∣

∣

x1 y1

x2 y2

∣

∣

∣

∣

∣

= 0.

This implies as you can check that there exists λ ∈ R such that x1 = λy1 and

x2 = λy2.

The formula in (B.1) generalizes for n > 2 by induction (Exercise 1) to

(x2
1 + · · · + x2

n)(y2
1 + · · · + y2

n) − (x1y1 + · · · + xnyn)2 = (B.2)

(x1y2 − y1x2)
2 + · · · + (xn−1yn − yn−1xn)

2,

where the last sum is over the squares of the 2 × 2 minors in the matrix

A =

(

x1 x2 · · · xn−1 xn

y1 y2 · · · yn−1 yn

)

.

The formula in (B.2) proves the inequality. If

(x2
1 + · · · + x2

n)(y2
1 + · · · + y2

n) = (x1y1 + · · · + xnyn)2,

then (B.2) shows that all the 2 × 2-minors in A vanish. The existence of λ

giving proportionality between x and y is deduced as for n = 2.

If you know about the vector (cross) product u × v of two vectors u, v ∈
R3 you will see that the method of the above proof comes from the formula

|u|2|v|2 = |utv|2 + |u × v|2.

One of the truly fundamental properties of the length of a vector is the

triangle inequality (also inspired by the one in 2 dimensions).

THEOREM B.1.2

For two vectors x, y ∈ Rn the inequality

|x + y| ≤ |x| + |y|

holds.
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Proof. Lemma B.1.1 shows that

|x + y|2 = (x + y)t(x + y)

= |x|2 + |y|2 + 2xty

≤ |x|2 + |y|2 + 2|x||y|
= (|x| + |y|)2

proving the inequality.

We need to define how far vectors are apart.

DEFINITION B.1.3

The distance between x and y in Rn is defined as

|x − y|.

From Theorem B.1.2 you get formally

|x − z| = |x − y + y − z| ≤ |x − y| + |y − z|

for x, y, z ∈ Rn. This is the triangle inequality for distance saying that the

shorter way is always along the diagonal instead of the other two sides in a

triangle:

x

z

y

|x − z|

|y − z|

|x − y|

B.2 Sequences

Limits appear in connection with (infinite) sequences of vectors in Rn. We

need to formalize this.

DEFINITION B.2.1

A sequence in Rn is a function f : {1, 2, . . . } → Rn. A subsequence f I of f is f

restricted to an infinite subset I ⊆ {1, 2, . . . }.
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A sequence f is usually denoted by an infinite tuple (xn) = (x1, x2, . . . ),

where xn = f (n). A subsequence of (xn) is denoted (xni
), where I = {n1, n2, . . . }

and n1 < n2 < · · · . A subsequence f I is in itself a sequence, since it is

given by picking out an infinite subset I of {1, 2, . . . } and then letting f I(j) =

f (nj) = xnj
.

This definition is quite formal. Once you get to work with it, you will

discover that it is easy to handle. In practice sequences are often listed as

1, 2, 3, 4, 5, 6, . . . (B.3)

2, 4, 6, 8, 10, . . . (B.4)

2, 6, 4, 8, 10, . . . (B.5)

1,
1

2
,

1

3
,

1

4
, . . . (B.6)

Formally these sequences are given in the table below

x1 x2 x3 x4 x5 x6 · · ·
(B.3) 1 2 3 4 5 6 · · ·
(B.4) 2 4 6 8 10 12 · · ·
(B.5) 2 6 4 8 10 12 · · ·
(B.6) 1 1

2
1
3

1
4

1
5

1
6 · · ·

The sequence (zn) in (B.4) is a subsequence of the sequence in (xn) (B.3).

You can see this by noticing that zn = x2n and checking with the definition of

a subsequence. Why is the sequence in (B.5) not a subsequence of (xn)?

DEFINITION B.2.2

A sequence (xn) of real numbers is called increasing if x1 ≤ x2 ≤ · · · and de-

creasing if x1 ≥ x2 ≥ · · · .

The sequences (B.3) and (B.4) are increasing. The sequence (B.6) is de-

creasing, whereas (B.5) is neither increasing nor decreasing.

You probably agree that the following lemma is very intuitive.

LEMMA B.2.3

Let T be an infinite subset of {1, 2, . . . } and F a finite subset. Then T \ F is infinite.

However, infinity should be treated with the greatest respect in this set-

ting. It sometimes leads to really surprising statements such as the following.

LEMMA B.2.4

A sequence (xn) of real numbers always contains an increasing or a decreasing sub-

sequence.
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Proof. We will prove that if (xn) does not contain an increasing subsequence,

then it must contain a decreasing subsequence (xni
), with

xn1
> xn2 > xn3 > · · ·

The key observation is that if (xn) does not contain an ascending subse-

quence, then there exists N0 such that XN > xn for every n > N. If this was

not so, (xn) would contain an increasing subsequence. You can try this out

yourself!

The first element in our subsequence will be XN . Now we pick N1 > N

such that xn < XN1
for n > N1. We let the second element in our subsequence

be xN1
and so on. We use nothing but Lemma B.2.3 in this process. If the

process should come to a halt after a finite number of steps xn1
, xn2 , . . . , xnk

,

then the sequence (xj) with j ≥ nk must contain an increasing subsequence,

which is also an increasing subsequence of (xn). This is a contradiction.

DEFINITION B.2.5

A sequence (xn) converges to x (this is written xn → x) if

∀ǫ > 0∃N ∈ N ∀n ≥ N : |x − xn| ≤ ǫ.

Such a sequence is called convergent.

This is a very formal (but necessary!) way of expressing that . . .

the bigger n gets, the closer xn is to x.

You can see that (B.3) and (B.4) are not convergent, whereas (B.6) con-

verges to 0. To practice the formal definition of convergence you should (Ex-

ercise 4) prove the following proposition.

PROPOSITION B.2.6

Let (xn) and (yn) be sequences in Rn. Then the following hold.

(i) If xn → x and xn → x′, then x = x′.

(ii) If xn → x and yn → y, then

xn + yn → x + y and xnyn → xy.

Before moving on with the more interesting aspects of convergent se-

quences we need to recall the very soul of the real numbers.
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B.2.1 Supremum and infimum

A subset S ⊆ R is bounded from above if there exists U ∈ R such that x ≤ U

for every x ∈ S. Similarly S is bounded from below if there exists L ∈ R such

that L ≤ x for every x ∈ S.

THEOREM B.2.7

Let S ⊆ R be a subset bounded from above. Then there exists a number (supremum)

sup(S) ∈ R, such that

(i) x ≤ sup(S) for every x ∈ S.

(ii) For every ǫ > 0, there exists x ∈ S such that

x > sup(S)− ǫ.

Similarly we have for a bounded below subset S that there exists a number (infimum)

inf(S) such that

(i) x ≥ inf(S) for every x ∈ S.

(ii) For every ǫ > 0, there exists x ∈ S such that

x < inf(S) + ǫ.

Let S = {xn | n = 1, 2, . . . }, where (xn) is a sequence. Then (xn) is

bounded from above from if S is bounded from above, and similarly bounded

from below if S is bounded from below.

LEMMA B.2.8

Let (xn) be a sequence of real numbers. Then (xn) is convergent if

(i) (xn) is increasing and bounded from above.

(ii) (xn) is decreasing and bounded from below.

Proof. In the increasing case sup{xn | n = 1, 2, . . . } is the limit. In the de-

creasing case inf{xn | n = 1, 2, . . . } is the limit.

B.3 Bounded sequences

A sequence of real numbers is called bounded if it is both bounded from

above and below.
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COROLLARY B.3.1

A bounded sequence of real numbers has a convergent subsequence.

Proof. This is a consequence of Lemma B.2.4 and Lemma B.2.8.

We want to generalize this result to Rm for m > 1. Surprisingly this is not

so hard once we use the puzzling properties of infinite sets. First we need to

define bounded subsets here.

A subset S ⊆ Rm is called bounded if there exists R > 0 such that |x| ≤ R

for every x ∈ S. This is a very natural definition. You want your set S to be

contained in vectors of length bounded by R.

THEOREM B.3.2

A bounded sequence (xn) in Rm has a convergent subsequence.

Proof. Let the sequence be given by

xn = (x1n, . . . , xmn) ∈ Rm.

The m sequences of coordinates (x1n), . . . , (xmn) are all bounded sequences

of real numbers. So the first one (x1n) has a convergent subsequence (x1ni
).

Nothing is lost in replacing (xn) with its subsequence (xni
). Once we do this

we know that the first coordinate converges! Move on to the sequence given

by the second coordinate and repeat the procedure. Eventually we end with

a convergent subsequence of the original sequence.

B.4 Closed subsets

DEFINITION B.4.1

A subset F ⊆ Rn is closed if for any convergent sequence (xn) with

(i) (xn) ⊆ F

(ii) xn → x

we have x ∈ F.

Clearly Rn is closed. Also an arbitrary intersection of closed sets is closed.

DEFINITION B.4.2

The closure of a subset S ⊆ Rn is defined as

S = {x ∈ Rn | xn → x, where (xn) ⊆ S is a convergent sequence}.
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The points of S are simply the points you can reach with convergent se-

quences from S. Therefore the following result must be true.

PROPOSITION B.4.3

Let S ⊆ Rn. Then S is closed.

Proof. Consider a convergent sequence (ym) ⊆ S with ym → y. We wish to

prove that y ∈ S. By definition there exists for each ym a convergent sequence

(xm,n) ⊆ S with

xm,n → ym.

For each m we pick xm := xm,n for n big enough such that |ym − xm| < 1/m.

We claim that xm → y. This follows from the inequality

|y − xm| = |y − ym + ym − xm| ≤ |y − ym|+ |ym − xm|,

using that ym → y and |ym − xm| being small for m ≫ 0.

The following proposition comes in very handy.

PROPOSITION B.4.4

Let F1, . . . , Fm ⊆ Rn be finitely many closed subsets. Then

F := F1 ∪ · · · ∪ Fm ⊆ Rn

is a closed subset.

Proof. Let (xn) ⊆ F denote a convergent sequence with xn → x. We must

prove that x ∈ F. Again distributing infinitely many elements in finitely

many boxes implies that one box must contain infinitely many elements.

Here this means that at least one of the sets

Ni = {n ∈ N | xn ∈ Fi}, i = 1, . . . , m

must be infinite. If Nk inifinite then {xj | j ∈ Nk} is a convergent (why?)

subsequence of (xn) with elements in Fk. But Fk is closed so that x ∈ Fk ⊆ F.

B.5 The interior and boundary of a set

The interior S◦ of a subset S ⊆ Rn consists of the elements which are not

limits of sequences of elements outside S. The boundary ∂S consists of the

points which can be approximated both from the inside and outside. This is

formalized in the following definition.
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DEFINITION B.5.1

Let S ⊆ Rn. Then the interior S◦ of S is

Rn \ Rn \ S.

The boundary ∂S is

S ∩ Rn \ S.

B.6 Continuous functions

DEFINITION B.6.1

A function

f : S → Rn,

where S ⊆ Rm is called continuous if f (xn) → f (x) for every convergent sequence

(xn) ⊆ S with xn → x ∈ S.

We would like our length function to be continuous. This is the content

of the following proposition.

PROPOSITION B.6.2

The length function f (x) = |x| is a continuous function from Rn to R.

Proof. You can deduce from the triangle inequality that

||x| − |y|| ≤ |x − y|

for every x, y ∈ Rn. This shows that

| f (x) − f (xn)| ≤ |x − xn|

proving that f (xn) → f (x) if xn → x. Therefore f (x) = |x| is a continuous

function.

The following result is very useful for proving that certain subsets are

closed.

LEMMA B.6.3

If f : Rm → Rn is continuous then

f−1(F) = {x ∈ Rn | f (x) ∈ F} ⊆ Rm

is a closed subset, where F is a closed subset of Rn.

Proof. If (xn) ⊆ f−1(F) with xn → x, then f (xn) → f (x) by the continuity of

f . As F is closed we must have f (x) ∈ F. Therefore x ∈ f−1(F).
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B.7 The main theorem

A closed and bounded subset C ⊆ Rn is called compact. Even though the

following theorem is a bit dressed up, its applications are many and quite

down to Earth. Don’t fool yourself by the simplicity of the proof. The proof

is only simple because we have the right definitions.

THEOREM B.7.1

Let f : C → Rn be a continuous function, where C ⊆ Rm is compact. Then

f (C) = { f (x) | x ∈ C} is compact in Rn.

Proof. Suppose that f (C) is not bounded. Then we may find a sequence

(xn) ⊆ C such that | f (xn)| ≥ n. However, by Theorem B.3.2 we know that

(xn) has a convergent subsequence (xni
) with xni

→ x. Since C is closed we

must have x ∈ C. The continuity of f gives f (xni
) → f (x). This contradicts

our assumption that | f (xni
)| ≥ ni — after all, | f (x)| is finite.

Proving that f (C) is closed is almost the same idea: suppose that f (xn) →
y. Then again (xn) must have a convergent subsequence (xni

) with xni
→ x ∈

C. Therefore f (xni
) → f (x) and y = f (x), showing that f (C) is closed.

One of the useful consequences of this result is the following.

COROLLARY B.7.2

Let f : C → R be a continuous function, where C ⊆ Rn is a compact set. Then

f (C) is bounded and there exists x, y ∈ C with

f (x) = inf{ f (x) | x ∈ C}
f (y) = sup{ f (x) | x ∈ C}.

In more boiled down terms, this corollary says that a real continuous

function on a compact set assumes its minimum and its maximum. As an

example let

f (x, y) = x18y113 + 3x cos(x) + ex sin(y).

A special case of the corollary is that there exists points (x0, y0) and (x1, y1)

in B, where

B = {(x, y) | x2 + y2 ≤ 117}

such that

f (x0, y0) ≤ f (x, y) (B.7)

f (x1, y1) ≥ f (x, y)



B.7. The main theorem 73

for every (x, y) ∈ B. You may say that this is clear arguing that if (x0, y0) does

not satisfy (B.7), there must exist (x, y) ∈ B with f (x, y) < f (x0, y0). Then

put (x0, y0) := (x, y) and keep going until (B.7) is satisfied. This argument

is intuitive. I guess that all we have done is to write it down precisely in the

language coming from centuries of mathematical distillation.
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B.8 Exercises

(1) Use induction to prove the formula in (B.2).

(2) (i) Show that

2ab ≤ a2 + b2

for a, b ∈ R.

(ii) Let x, y ∈ Rn \ {0}, where x = (x1, . . . , xn)t and y = (y1, . . . , yn)t.

Prove that

2
xi

|x|
yi

|y| ≤
x2

i

|x|2 +
y2

i

|y|2

for i = 1, . . . , n.

(iii) Deduce the Cauchy-Schwarz inequality from (2ii).

(3) Show formally that 1, 2, 3, . . . does not have a convergent subsequence.

Can you have a convergent subsequence of a non-convergent sequence?

(4) Prove Proposition B.2.6.

(5) Let S be a subset of the rational numbers Q, which is bounded from

above. Of course this subset always has a supremum in R. Can you

give an example of such an S, where sup(S) 6∈ Q.

(6) Let S = R \ {0, 1}. Prove that S is not closed. What is S?

(7) Let S1 = {x ∈ R | 0 ≤ x ≤ 1}. What is S◦
1 and ∂S1?

Let S2 = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, y = 0}. What is S◦
2 and ∂S2?

(8) Let S ⊆ Rn. Show that S◦ ⊆ S and S ∪ ∂S = S. Is ∂S contained in S?

Let U = Rn \ F, where F ⊆ Rn is a closed set. Show that U◦ = U and

∂U ∩ U = ∅.

(9) Show that

||x| − |y|| ≤ |x − y|

for every x, y ∈ Rn.

(10) Give an example of a subset S ⊆ R and a continuous function f : S → R,

such that f (S) is not bounded.
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Polyhedra in standard form

A polyhedron defined by P = {x ∈ Rn | Ax = b, x ≥ 0} is said to be in

standard form. Here A is an m × n-matrix and b an m-vector. Notice that

P =
{

x ∈ Rn
∣

∣

∣

Ax ≤ b

−Ax ≤ −b

−x ≤ 0

}

. (C.1)

A polyhedron P in standard form does not contain a line (why?) and

therefore always has an extremal point if it is non-empty. Also

ccone(P) = {x ∈ Rn | Ax = 0, x ≥ 0}.

C.1 Extremal points

The determination of extremal points of polyhedra in standard form is a di-

rect (though somewhat laborious) translation of Proposition 4.6.1.

THEOREM C.1.1

Let A be an m × n matrix af rank m. There is a one to one correspondence between

extremal points in

P = {x ∈ Rn | Ax = b, x ≥ 0}

and m linearly independent columns B in A with B−1b ≥ 0. The extremal point

corresponding to B is the vector with zero entries except at the coordinates corre-

sponding the columns of B. Here the entries are B−1b.

Proof. Write P as in (C.1):

{

x ∈ Rn
∣

∣

∣
A′x ≤ b

}

,

75
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where

A′ =







A

−A

−I






,

is an (2m + n) × n matrix with I the n × n-identity matrix. For any z ∈ P, A′
z

always contains the first 2m rows giving us rank m by assumption. If z ∈ P

is an extremal point then A′
z has rank n. So an extremal point corresponds

to adding n − m of the rows of −I in order to obtain rank n. Adding these

n −m rows of the n× n identity matrix amounts to setting the corresponding

variables = 0. The m remaining (linearly independent!) columns of A give

the desired m × m matrix B with B−1b ≥ 0.

We will illustrate this principle in the following example.

EXAMPLE C.1.2

Suppose that

P =
{







x

y

z







∣

∣

∣

(

1 2 3

4 5 6

)







x

y

z






=

(

1

3

)

, x, y, z ≥ 0
}

.

According to Theorem C.1.1, the possible extremal points in P are given by

(

1 2

4 5

)−1(

1

3

)

=

(

1/3

1/3

)

,

(

1 3

4 6

)−1(

1

3

)

=

(

1/2

1/6

)

,

(

2 3

5 6

)−1(

1

3

)

=

(

1

−1/3

)

.

From this you see that P only has the two extremal points







x1

y1

z1






=







1/3

1/3

0






and







x2

y2

z2






=







1/2

0

1/6






.

If you consider the polyhedron

P =
{







x

y

z







∣

∣

∣

(

1 2 3

4 5 6

)







x

y

z






=

(

1

1

)

, x, y, z ≥ 0
}

,
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then the possible extremal points are given by

(

1 2

4 5

)−1(

1

1

)

=

(

−1

1

)

,

(

1 3

4 6

)−1(

1

1

)

=

(

−1/2

1/2

)

,

(

2 3

5 6

)−1(

1

1

)

=

(

−1

1

)

.

What does this imply about Q?

C.2 Extremal directions

The next step is to compute the extremal infinite directions for a polyhedron

in standard form.

THEOREM C.2.1

Let A be an m × n matrix of rank m. Then the extremal infinite directions for

P = {x ∈ Rn | Ax = b, x ≥ 0}

are in correspondence with (B, aj), where B is a subset of m linearly independent

columns in A, aj a column not in B with B−1aj ≤ 0. The extremal direction corre-

sponding to (B, aj) is the vector with entry 1 on the j-th coordinate, −B−1aj on the

coordinates corresponding to B and zero elsewhere.

Proof. Again let

P =
{

x ∈ Rn
∣

∣

∣ A′x ≤ b
}

,

where

A′ =







A

−A

−I






,

is an (2m + n) × n matrix with I the n × n-identity matrix. The extremal

directions in P are the extremal rays in the characteristic cone

ccone(P) =
{

x ∈ Rn
∣

∣

∣ A′x ≤ 0
}

,

Extremal rays correspond to z ∈ ccone(P) where the rank of A′
z is n − 1. As

before the first 2m rows of A′ are always in A′
z and add up to a matrix if

rank m. So we must add an extra n − m − 1 rows of −I. This corresponds

to picking out m + 1 columns B′ of A such that the matrix B′ has rank m.

Therefore B′ = (B, aj), where B is a matrix of m linearly independent columns

and aj 6∈ B. This pair defines an extremal ray if and only if B′v = 0 for a non-

zero v ≥ 0. This is equivalent with B−1aj ≤ 0.
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EXAMPLE C.2.2

The following example comes from the 2004 exam. Consider the polyhedron

P =

{







x

y

z






∈ R3

∣

∣

∣

∣

∣

x + 2y − 3z = 1

3x + y − 2z = 1

x ≥ 0

y ≥ 0

z ≥ 0

}

in standard form. Compute its infinite extremal directions and extremal

points.

The relevant matrix above is

A =

(

1 2 −3

3 1 −2

)

The procedure according to Theorem C.2.1 is to pick out invertible 2 × 2 sub-

matrices B of A and check if B−1a ≤ 0 with a the remaining column in A.

Here are the computations:
(

1 2

3 1

)−1(−3

−2

)

=

(

− 1
5

− 7
5

)

(

1 −3

3 −2

)−1(

2

1

)

=

(

− 1
7

− 5
7

)

(

2 −3

1 −2

)−1(

1

3

)

=

(

−7

−5

)

.

Therefore the extremal rays are






1
5
7
5

1






,







1
7

1
5
7






and







1

7

5






.

Using Theorem C.1.1 you can check that the only extremal point of P is






1
5
2
5

0






.

This shows that

P =

{







1
5
2
5

0






+ λ1







1
5
7
5

1






+ λ2







1
7

1
5
7






+ λ3







1

7

5







∣

∣

∣

∣

∣

λ1, λ2, λ3 ≥ 0

}

.
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C.3 Exercises

1. Let P be a non-empty polyhedron in standard form. Prove

(a) P does not contain a line.

(b) P has an extremal point.

(c)

ccone(P) = {x ∈ Rn | Ax = 0, x ≥ 0}.

2. This problem comes from the exam of 2005. Let

P =

{

















x

y

z

u

v

















∈ R5

∣

∣

∣

∣

∣

x −y −2z −u = 1

−x +2y +4z −2u +v = 1

x ≥ 0

y ≥ 0

z ≥ 0

u ≥ 0

v ≥ 0

}

Compute the extremal points and directions of P. Write P as the sum of

a convex hull and a finitely generated convex cone.
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Cauchy-Schwarz inequality, 73
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continuous function, 82

on compact subset, 83
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convergent sequence, 77
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linear equations, 66
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mathematical analysis, 73
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