
 

 
Solvability and Consistency for Linear Equations and Inequalities
Author(s): H. W. Kuhn
Source: The American Mathematical Monthly, Vol. 63, No. 4 (Apr., 1956), pp. 217-232
Published by: Taylor & Francis, Ltd. on behalf of the Mathematical Association of America
Stable URL: https://www.jstor.org/stable/2310345
Accessed: 17-12-2019 09:11 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Taylor & Francis, Ltd., Mathematical Association of America are collaborating with
JSTOR to digitize, preserve and extend access to The American Mathematical Monthly

This content downloaded from 160.114.33.195 on Tue, 17 Dec 2019 09:11:52 UTC
All use subject to https://about.jstor.org/terms



 SOLVABILITY AND CONSISTENCY FOR LINEAR EQUATIONS
 AND INEQUALITIES*

 H. W. KUHN, Byrn Mawr College

 1. Introduction. The term consistent is in common use in two contexts that
 appear to be quite different at first sight. It is often applied to systems of linear

 equations as a synonym for solvable. Thus, Dickson says in [3]: "We shall call
 two or more equations consistent if there exist values of the unknowns which

 satisfy all of the equations." Again, B6cher writes in [1]: "The equations may
 have no solution, in which case they are said to be inconsistent." Elsewhere, it
 is applied by logicians to deductive systems as a synonym for non-contradictory.
 Thus, Tarski defines the term in [8]: 'A deductive theory is called consistent
 or non-contradictory if no two asserted statements of this theory contradict
 each other."

 Our preliminary purpose is to reconcile these two usages, agreeing informally
 that "solvable" means "satisfiable" and that "consistent" means "non-contra-
 dictory." The reconciliation is brought about by setting forth explicitly the
 definition of consistency that has been employed implicitly in ordinary treat-
 ments of linear equations. This definition is based on a non-effective character-
 ization of the logical consequences of the system, and is almost trivially equiva-
 lent to solvability under much more general conditions than are considered
 here. Therefore, this equivalence adds little or nothing to our knowledge of the
 special subject of linear equations.

 These considerations are in sharp contrast with another use of consistency,
 which considers only those consequences that can be derived by applying a finite
 number of algebraic operations to the system. We shall show that the ordinary
 criteria for the solvability of systems of linear equations follow directly from
 the latter notion when the only algebraic operation that is allowed is that of
 forming linear combinations. Whatever novelty there is in this approach con-
 sists in viewing the system of equations as a set of postulates added to an under-
 lying logic that includes the laws of real numbers, and then investigating the
 "methods of proof?" appropriate to it.

 The main object of this paper is to extend this formulation to systems of
 linear inequalities. It is somewhat remarkable that the same theorems persist
 with only minor modifications, namely, with reasonable care in the type of
 linear combinations that are allowed, and with the use of a process of elimina-
 tion designed for linear inequalities. The criteria for solvability that are proved
 in this manner form a basis for the modern disciplines of linear programming
 and game theory. They also admit important geometric interpretations. These
 and other applications will be treated in a sequel.

 * A preliminary version of this paper was prepared while the author was a consultant to the
 National Bureau of Standards. The preparation of the present version was supported, in part, by
 the Social Science Research Council and, in part, by the Office of Naval Research Logistics Project,
 Princeton University.
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 218 SOLVABILITY AND CONSISTENCY FOR LINEAR EQUATIONS [April

 2. Systems of linear equations. The system of linear equations

 3x-6y+4z-= 1

 -x + 2y-2z = 3

 x-2y+ z= O

 does not have a solution. Despite its triviality, let us examine an argument
 that might be advanced as a proof of this statement.

 Suppose the equations are multiplied by new unknowns, u, v, and w, respec-
 tively, and added. Represent this by listing the multipliers to the left of the
 equations and the sum below, thus:

 u: 3x -6y +4z=1

 v: -x +2y -2z=3

 x -2y +z = O

 (3u - v + w)x + (-6u + 2v -2w)y + (4u - 2v + w)z = u + 3v

 If the original system were satisfied by numbers x, y, and z, then the same opera-
 tions would yield

 (3u-v + w)x + (-6u + 2v- 2w)y + (4u- 2v + w) =X + 3v

 and this would be a true statement for all values of u, v, and w. However, if
 the multipliers u =1, v 1, w = -2 are chosen, this says

 O0 + Oy + O0 = 4,

 a false statement about numbers.
 We shall see later how such multipliers can be found by successively eliminat-

 ing the unknowns. For the moment it is important to remark that they were
 chosen to satisfy

 3u- v+ w=O

 -6 + 2v- 2w = 0

 4u-2v+ w=O

 u+3v 0

 and thus establish the contradiction. This is, of course, the original system
 transposed in a special way.

 So much for motivation; the object of this section is to state precise condi-
 tions for the solvability of general systems S of linear equations. The systems
 will be assumed to contain r inhomogeneous equations in n unknowns, xi,
 x", and hence will have the form
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 19561 SOLVABILITY AND CONSISTENCY FOR LINEAR EQUATIONS 219

 Cl1Xx + * * * + CinXn = Ci

 (S)
 CriXi + * + CrnXn = Cr.

 The cki and Ck are given real numbers (for k = 1, , r and I = 1, * , n) and
 define the system S. The adjective "inhomogeneous" means that no assumption
 is made about the right hand members Ck.

 An indexed set X of real numbers (xl , xn) is called a solution for S if
 all of the equations

 CklXl + + CknXn = Ch (k = 1, ... * r)

 are true statements. The set of solutions for S is denoted by S (S) and S is
 called solvable if S (S) is not empty. An equation

 d1x1 + * l l + dnxn = d

 in the unknowns xi, , xn is called a (logical) consequence of S if dl1 l+
 +dnfn = d is a true equation whenever X = (x1, * * * , xn) is a member of S (S),
 in symbols, if X S(S). A curious situation occurs if S is not solvable, Then the

 definition of a consequence places no restriction on an equation dixi+ * * * +dnXn
 - d because there are no solutions xi, * * *, xn to check for equality. Hence
 we are forced to conclude that, if S is not solvable, then every equation in the
 unknowns x1, * , x n is a consequence of S.

 Our first definition of consistency will be based on the idea of consequence
 and the form of the patently false equation, Oc+0+0+ =4, derived in the exam-
 ple above. Namely, a system S is said to be inconsistent if some equation

 Oxi + * * * + Oxn = d, with d $ O,

 is a consequence of S; otherwise it is called consistent. (Thus, the contradictory
 assertions used in this definition are 0 = d and d $0.)

 The first theorem will establish the logical connection between solvability
 and this notion of consistency. Its statement explains immediately why these
 terms have often been confused (or used interchangeably) in textbook discus-
 sions of linear equations. The triviality of its proof -reveals that it is a theorem
 without special content for linear equations.

 THEOREM 1. A system S is solvable if and only if it is consistent.

 Proof. If S is solvable, choose an X=(fx, * * *, xn)ES(S). Then Ox1+
 +0Xn is equal to zero by the rules of operating with real numbers and hence
 0x1i+ . . . +On= d is not a true equation for any d 0. Therefore, no Ox,+ *
 + xn = d, with d $0, is a consequence of S, and S is consistent.

 On the other hand, if S is not solvable, then every equation in xi, x,
 is a consequence of S. In particular, 0x1+ * +Oxn =1 is a consequence of
 S, and S is inconsistent.
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 220 SOLVABILITY AND CONSISTENCY FOR LINEAR EQUATIONS [April

 The significant content of the theory of linear equations comes not from
 the fact that an absurd consequence can always be exhibited when S is not solv-
 able, but from the form of this equation and from how it can be obtained. To
 this end, form a scheme analogous to that used in the example, with multipliers
 appearing at the left of the system and the sum appearing below:

 W1: ClX + + CinXn = Cl

 W2: c2lxl+ + C2Xn = C2

 Wr: C?iXl + + Crnx. = C?

 dixi+* + dnx.=d.

 The coefficients of the sum are easily read off; they are:

 di WiCil + + WrCri

 d= wicl +** + WrCrn

 d =wc1 + + wrc,.

 An equation,

 dixi+ -'+dnxn=di

 that is formed in this manner, is called a linear combination of the equations of
 S. The multipliers wi, , wr are called the coefficients of the linear combina-
 tion.

 With this set of definitions, the central theorem on the solvability of systems
 of inhomogeneous linear equations is:

 THEOREM 2. (a) Every linear combination of the equations of S is a consequence
 of S. (b) If S is solvable, then every consequence of S is a linear combination of the
 equations of S. If S is not solvable, then an equation

 0X1 + * * * + 0x, = d, with d F O,

 is a linear combination of the equations of S.

 Several informal remarks may help to explain the content and intent of this
 theorem. First, it characterizes the consequences of solvable systems S as being
 exactly the linear combinations. Since "consequence" is a logical notion and "li-
 near combination" is algebraic, this is quite remarkable. Often we may obtain
 the information that some statement holds whenever other statements are true;
 however, it is seldom that this forces such a narrow and explicit connection.
 Secondly, this theorem says that it is always possible to demonstrate the incon-
 sistency of an unsolvable system by exhibiting as a linear combination an equa-
 tion that is false for all values of the unknowns. Thus both parts of the theorem
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 1956] SOLVABILITY AND CONSISTENCY FOR LINEAR EQUATIONS 221

 yield information through the medium of linear combinations.
 The statements of Theorem 2 (b) can be strengthened to constructive

 assertions, that is, there is a finite computational procedure that will find the

 multipliers wi, * * *, w, in the linear combinations (and hence the solution to the
 transposed system) for every case. This procedure is based on the familiar tech-
 nique for eliminating an unknown from the system.

 THEOREM 3. The process of elimination either yields a solution for S or exhibits
 an equation

 Ox1 + * + Ox = d, with d y O,

 as a linear combination of the equations of S.

 Although the technique of elimination is known to every algebra student in
 practice, it will be described here for the sake of comparison with the generaliza-
 tions to follow. (Actually, "elimination" is something of a misnomer; for formal
 reasons, we will not eliminate an unknown, but will make all of its coefficients
 equal to zero.) It is applied only to systems S in which some coefficient ckz is
 different from zero. For notational convenience, assume that cil #0, renumbering
 unknowns and equations if necessary. Then define a new system S' of r equations
 in the unknowns xi, *, xn by:

 Ox1 + X2 + * + Oxn =

 / C21C12 a\A 2 1CIn C21
 Ox1 + (C22 X2 X2 + + C2n Xn = Ca - -C

 (St) Cii Ci/i /C

 (/ Cl1\ / _ XThCln\ Ci.
 Ox,+yCr- Cr1C2) + . +(C7{Xn - 2 * n Cri Ci.

 Cii ~~~~~~~CiiCi

 The formation of this system follows an obvious rule; it is obtained by subtract-
 ing CkI/Cll times the first equation from the kth equation for k =1, * - - , r.
 Thus the coefficient of xi in the kth sum equation is Ckl - CklCll/Cll =0 for k
 =1*, * * , r. The seemingly redundant first equation, Ox, + * * * +Ox. = 0, is
 retained to avoid the logical complications involved in considering void systems.
 The proof of Theorem 3 is then based on the following three assertions:

 10 Every equation of S' is a linear combination of the equations of S.
 2? If S' is solvable, then S is solvable.

 30 More unknowns have all zero coefficients in S' than in S.

 The details of the proof are straight-forward and will not be given. Theorem 2
 (b) follows immediately from Theorem 3; however, the details of this derivation
 are also omitted because we shall prove a more general statement for inequalities
 in Section 3. At this stage, presenting the proofs might obscure the simplicity
 of the logical structure of the results. To emphasize this structure, the theorems
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 222 SOLVABILITY AND CONSISTENCY FOR LINEAR EQUATIONS [April

 will be reproduced in a condensed form to arm the reader for the section that
 follows.

 The core of this section is contained in the diagram:

 solution

 contradiction xi x2 ... Xn

 Wi Cii C12 C. C,ln = C1

 W2 C21 C22 ... C2n = C2

 Wr Cr1 C2r * C n = C,

 = 0 = *0* = O % 0

 It presents a schematic expression of the statement that exactly one of the two
 systems

 CliXi + * + Clnxn = Cl

 (S)

 CrX +** + CrnX. = Cr

 and

 W1C11 + + WrCri = 0

 (T)
 WiCin + + WrCrn = 0

 WiC1 + + WrCr 3' 0

 is solvable. A solution to T means that S is inconsistent. Successive elimination
 of xi, * - *, x. leads either to a solution for S or to a solution for T.

 The relation of solvability to consistency for linear equations should now
 be clear. Any confusion is caused by two different uses of the word consistency.
 The first (which we have called "consistency") might be called 'consistency
 with respect to consequences" (following Church [2]) and is the notion that is
 used interchangeably with "solvability" because Theorem I is valid. The second
 might be called "consistency with respect to linear combinations" and leads to
 the following formulation of the results: Forming a linear combination is a rule
 of inference (i.e., never leads from true statements to a false statement) for
 systems of linear equations. If a system S is solvable then every consequence
 can be derived in this manner. If S is inconsistent with respect to consequences,
 then it is inconsistent with respect to linear combinations. Elimination is an
 effective procedure for deciding whether a system is solvable or inconsistent
 (in either sense).
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 3. Systems of linear inequalities. The object of this section is to establish
 conditions for the solvability of general systems S of linear inequalities. We shall
 pattern our definitions upon those given for equations and, happily, the same
 theorems will be found to hold with only slight and obvious modifications.

 The systems S under consideration are assumed to contain p+q > 0 inequali-
 ties in the unknowns xi, , x,; of these p _0 are assumed to be strict. Thus,
 they can be written

 ai1xi + ***+ ajnx, > ai (i - ...fp)

 (S) ~~bi,x +* + bjnxn 2bj (j l ... Iq)
 where the ai, ai, bj, and b; (i=1, .. ., pI j=, * ... , q; k=1, . . , n) are
 given real numbers that define the system S. Again, no assumption is made
 concerning the right hand members ai and b,, and the inequalities are called
 inhomogeneous.

 An indexed set X of real numbers ( * *, x") is called a solution for S if
 all of the inequalities

 aix,a: + ***+ aingtt > a} (i1 ,p)

 bi1lc- + ***+ bijnxn >_ bi J-1 q)

 are true statements. The set of solutions for S is denoted by 3 (S), and is possibly
 empty. An inequality,

 d1x1 + x .. + d.x4n.d,

 where R is one of the relations > or 2,in the unknowns xi, , x, is called
 a consequence of S if dig,+ * * * +d.X5Rd is a true inequality wherever x=

 C.) is a member of E;(S). If S is not solvable then every inequality in
 the unknowns xi, - *. , x, is a consequence of S. A system S is said to be in-
 consistent if the inequality

 Ox, + ***+ Ox. > ?

 is a consequence of S; otherwise, it is called consistent. The choice of this "stand-
 ard" contradiction will be explained below.

 The logical connection between solvability and consistency holds without
 change; to emphasize the strict parallel, this theorem and those following it will
 be given roman numerals corresponding to their counterparts for equations.

 THEOREM I. A system S is solvable if and only if it is consistent.

 Proof. If S is solvable, choose any X = (xl, * * , Xn) ES (S). Then O + * *
 +0x, is equal to zero by the rules for operating with real numbers and hence
 0x + * - - +0" >0 is not a true inequality. Hence Ox,+ ** +0x. >0 is not a
 consequence of S and S is consistent.

 On the other hand, if S is not solvable, then every inequality in xi, x ^ ,
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 224 SOLVABILITY AND CONSISTENCY FOR LINEAR EQUATIONS [April

 is a consequence of S. In particular, Ox, + + Ox. > 0 is a consequence of S
 and S is inconsistent.

 The significant content of the theory of linear inequalities is found again in

 the form of the consequences that can be derived from S and the manner of
 their derivation, namely, as linear combinations. We must exercise some care
 in forming these, but no more than is indicated by the following rules for mani-

 pulating inequalities.
 RULE 1. Any inequality (strict (>) or ordinary (_)) still holds if it is multi-

 plied by a positive number throughout.

 RULE 2. Strict inequality (>) holds for the sum of two similarly directed
 inequalities if and only if strict inequality holds in at least one of the summands.
 Ordinary inequality (2) can always be asserted for the sum.

 RULE 3. Strict inequality (>) always implies ordinary inequality (2).
 These three rules make possible a precise description of the nature of the

 linear combinations that will be used. Rule 1 suggests that the multipliers should
 be restricted to be non-negative (a zero multiplier means that that inequality is
 not being used). Rule 2 says that the relation holding for the linear combination
 can be > only if some strict inequality has a positive coefficient. Rules 2 and
 3 say that the relation 2 can always be asserted for the linear combination.
 Following these precepts, form a multiplier scheme patterned on the scheme
 used for equations, with non-negative multipliers at the left and the sum below:

 uo 0: x1 + **+ Ox, > -1

 u i 0: axi +*** + axnn > a

 u O > 0: a.,lxl + *** +anXn > a
 v1 0: blix +* + b1nxn _ b1

 vu > 0: bqjxi + + bqnxn 2 bq

 dix1 + * + dnxnvPd

 The insertion of the first line is related to the choice of a standard inconsistent
 inequality. The coefficients of the sum are easily calculated to be:

 di= ulail + *** + upap1 + vibil + *** +v,b.l

 dn = uialn + * * * + uvavn + vibin + * * * + v,b,

 d = -- o +ula + * * * vibi + + vb,.

 An inequality,

 dix1 + * + dnXncRd,
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 19561 SOLVABILITY AND CONSISTENCY FOR LINEAR EQUATIONS 225

 that is formed in this manner from a system S, is called a legal linear combination

 of the inequalities of S provided that '. is >, or %R is > and some ui is positive
 (i-O, 01, *. , p). The reader should notice that this definition has been framed
 so as to conform to Rules 1, 2, and 3 and thus to insure the fact that every legal
 linear combination is a consequence. Another important fact to be noted is that
 every inequality in the multiplier scheme above can be proved to be a legal
 linear combination by choosing its multiplier equal to one and all other multi-

 pliers equal to zero. In particular, the definitions make Ox,+ +Ox.> -1
 a legal linear combination of every system.

 With these definitions, the central theorem on the solvability of systems of
 inhomogeneous linear inequalities is:

 THEOREM II. (a) Every legal linear combination of the inequalities of S is a
 consequence of S. (b) If S is solvable then every consequence of S is a legal linear
 combination of the relations of S. If S is not solvable, then the inequality

 Ox1 + '* * + OX. > ?

 is a legal linear combination of the relations of S.

 Proof. Theorem II (a) follows immediately from the definitions and Rules 1,
 2, and 3. As before, the statements of Theorem II (b) will be strengthened to

 constructive assertions; that is, elimination is an effective procedure for finding
 the multipliers uo, ul, * *, up,, vl, , v. V in the legal linear combinations for
 every case. Precisely, the proof of Theorem II (b) will be based on

 THEOREM III. The process of elimination either yields a solution for S or exhi-

 bits the inequality Ox,+ * +Ox,>O as a legal linear combination of the in-
 equalities of S.

 Proof. The process of elimination is applied only to systems S in which some

 coefficient ail or bjl is different from zero. Assume that 1=1, renumbering un-
 knowns if necessary, and set about eliminating xi from the system. Separate
 the inequalities of the system into three classes (Classes 1, II, 111) according to
 whether the coefficient of xi is positive, negative, or zero. These classes will be
 distinguished notationally by the number of primes on the indices. Define a
 new system S' of inequalities in the unknowns xi, , xn by:

 Ox, + ?X2 + * + OXn >-

 (5') Ox, + (i2 - aX12 + a . ailln X. > -- -
 Xail ai,/ 1ai, av,/ ai, ai,

 for all pairs i' and i" with aj,j > 0 and ai,,, < O,

 /ai'2 b j8#2 \ ailn b lnX ai, bill
 O X, + t ) X2 +*** +I _ X. >

 faio ba"w l aaid l b<0l' act o bn

 for all pairs i' and j" with ai,, >O0 and bj,,, <O0, (S' continues on next page.)
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 226 SOLVABILITY AND CONSISTENCY FOR LINEAR EQUATIONS [April

 (S' cont.) OX1,+ bl2 _ai--IX2 + . + b- - - xn > b -
 \bit, ail, / ilsl aj, . bit,. ail

 for all pairsj' and i" with bj,l>0 and ai,,,<O,

 Ox, + b_l | i1 X2 + + b_ bill Xn > b, bl
 bit, bi,,l bit, bi,,l, bi,l bi,,l

 for all pairsj' andj" with bj,l>O and bj,,l<O,

 Ox1 + aj,,2X2 + + ai`"nXn > aits

 for all i"' with as,.. =O1

 Ox1 + bjk112x2 + + bjitxn X b il

 for all j"' with bj, =.
 Although it may seem formidable at first glance, the formation of the system

 S' follows a simple rule. Namely, the coefficient of xi in each inequality in Class

 I is made +1 through the use of the positive multipliers 1/ail and 1/bj,1, while
 the coefficient of xi in each inequality of Class II is made -1 through the use

 of the positive multipliers - 1/a,,i and - 1/bj,,. By Rule 1, the inequalities are
 all preserved. Then, all pairs of inequalities, one from Class I and one from Class
 II are added and the inequality type of the sum is assigned by Rule 2. The in-

 equalities of Class III are copied, unchanged; the first inequality, Ox,+ + * e
 +Oxn> -1, is inserted in S' to avoid the logical complications involved in
 considering the empty system that would aris"e if all of the inequalities of S were
 in Class I or II. This characterization of the formation of S' proves:

 1? Every inequality of S' is a legal linear combination of the inequalities of S,
 and hence is a consequence of S.

 Another manner of viewing the formation of S' is revealed by isolating xi on

 one side of all of the inequalities of Classes I and II, then pairing the results as
 follows:

 airs ai a " a i">n aia a,a2 ai<n
 - X2 - ..- Xn >X> X2 - - X - - * Xn

 ae, 1 ai,, i ail, 1 ai,l ajj a,

 for all pairs i' and i" with ai, 1> 0 and ail, i< 0,

 bill, b j,,2 b jwn ai, ai'2 ai,,n - ~~~~X2 . . n _> Xl > X2 - . . . - ~~Xn
 b p, I bil,, bjtl ai,l ail, ail,

 for all pairs i' andj" with ail >O and bj,,l<O,

 at,, ai_2 aj- n b , b1,2 b jn
 -x2 - ..._Xn > xi 2 2 - xn

 ai, i a4,,l ai,, i bi,l bill bit,
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 19561 SOLVABILITY AND CONSISTENCY FOR LINEAR EQUATIONS 227

 for all pairs j' and i " with b, 1 >0 and ail <0,

 bijl bj,,2 bjt,n bj, bj,2 bj,n
 - b1 X2 - . . .- b _ X1 2 - ...- ~7- Xn

 bj,,l bj,,l bil,, bill bill bill

 for all pairs j' and j" with bj,i > 0 and bj,,1 <0.
 (Again, the reader should not ignore the possibility that either Class I or

 Class II might be empty, in which case there would be no such pairs; he should
 check that each assertion holds in this case, too.) If xi is dropped from each of
 the pairs and the result arranged with unknowns on the left and constants on

 the right, and if the inequalities of Class III and Ox,+ * * O +x.> -1 are
 adjoined to the system, the result is exactly S'.

 Suppose x2, * , xn solve S' (note that xi can be given any value in this
 system). Then, arranging S' as in the previous paragraph, the inequalities that
 are not in S are:

 (i', i"), ai, a_,'2 a-n a> , ai- 2 ai n
 ( - __X2 - - n Xn > -X2 - * * -Xn

 ai,, ai, av, i ail, ai, i avil

 .bil bj,,2 bj,,n ab, aib 2 ai,n
 (__ - ): > * - X n> X2 - * * * - - Xn
 bj,,l bj,,l bil,, a*,l ai, 1 ai, 1

 ., ., ai, ai,12 ai,ln b jt b j2 b j,n_
 - __ - - s ): -- x2 n > - 2 - . . . Xn
 a,. ai,,, avit bill bill bill

 . . bill b j,,2 b jtn > bi, bij,2 b j,n
 b(, a b): X2 - * * - - -b p,1 n = bX2 b*' * bil Xn. b1,,1 b3,,q bj,,q b1,1 b1q b,

 The problem of completing x2, *. * , xn to a solution for S by a proper
 choice of xl is clearly that of fitting xl into these inequalities as required by the
 system immediately above them. With an eye to picking out those inequalities
 of S that restrict the choice of xl most severely, define

 ai, ail 2 ain
 a'= max L --x2 - Xn

 il ail, am, ailn J

 '=max {---x2- * - n
 X, bj, 1 bill bill

 , [~~~av ai,12 ail"n
 a' min --x2-* * - Xn,

 {bi,, bj,,2 bjtln
 3"=min - -- * *--Xn}

 ill tbitll b p,, bjtl J

 (We shall adopt the convention that a maximum over an empty set is - o
 while a minimum over an empty set is + oo. Thus, if there are no inequalities

This content downloaded from 160.114.33.195 on Tue, 17 Dec 2019 09:11:52 UTC
All use subject to https://about.jstor.org/terms



 228 SOLVABILITY AND CONSISTENCY FOR LINEAR EQUATIONS [April

 in Class I, a'= - -o, etc.) It is important to realize these maxima and minima

 are actually achieved for a proper choice of the indices i', j', i ", and jI if the
 sets concerned are non-empty, and so among the inequalities immediately above
 one can find.

 at > a', 13"> a', all > P', and 3" > 1',

 (where the inequalities are trivially true if the sets are empty and the conven-
 tion is applied).

 If X >a', xl 2 ', xtv<a", and xl f3, then X1, 22, * c*, i is a solution for S.

 Proof. Since the inequalities in S of Class III are also in S', only those of
 Classes I and II need be checked. For these,

 ai,'xl + ai,2x2 + - * * + ai,nfc > a,Dla + ai'2x2 + * + ax

 2 (as, - a,22 - -- ai t) + (aj,2t2 + + ajs4,,) =ai

 for all i' with ail,>O,

 ai,"igi + aXi,2x2 + + ai,ni > ai,ia" + ai,,212 + + aw,x,

 > (ai' - ai,,2x2 *-ai" ) + (ai,,222 + + av.4x) =av

 for all i" with a,",<O,

 bp'1x1 + bj,2x2 + * * * + bjt,xn > b'@j3' + bj'222 + * + bpnfc

 > (b, - bpj2x22- - bi,,x.) + (bpj222 + + bifn*n) =b

 for all j' with bj,l>O,

 bi,,lxl + bi"2x2 + * * * + bi1"n, > bit#,1" + b?,1222 + * * + btj"nXn

 > (bjl - bj,2*2 - - b,an;) + (bi"292 + * * * + bilngn = bj

 for allj" with bj,,, <0. This proves that S is solved by t1, x2, ... , in.
 To choose an xi satisfying these conditions, consider the four exhaustive

 cases, corresponding to the four possible orderings of a' with ,B' and a" with ,B",
 separately:

 CASE 1. ' <?a' and at'<,".
 Choose c1 so that a'<1< a".

 CASE 2. 3'<a' and 13"<a".
 Choose c, so that a'<*i<f3".

 CASE 3. a'<,B' and a"?f3".

 Choose xl so that fl'<x <a".
 CASE 4. a'< J' and #1"<a".

 Choose xl so that X '<xf_".
 This proves the crucial fact:

 20 If S' is solvable, then S is solvable.
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 Suppose that the process of elimination is applied several, say h, times to
 yield successively the systems S, 5', S", - - *, S(h) It is clear that 10 and 20
 still hold, with S(h) replacing S'. The only detail that needs verifying, namely,
 that legal linear combinations of legal linear combinations are legal linear com-
 binations, is obvious and tedious to write out. The termination of the process
 is insured by a third property of S' relative to S.

 30 More unknowns have all zero coefficients in S' than in S.

 This is clear, since any unknown with all zero coefficients in S still has all zero

 coefficients in S' while xi had a non-zero coefficient in S (some aii or bjl was
 assumed non-zero) and has all zero coefficients in S'.

 Property 30 insures that the process of elimination must end after a finite
 number of steps (no more than n) with a system S(h) in which all of the unknowns
 have all zero coefficients. If all the right hand members of the strict (or ordinary)

 inequalities are negative (or non-positive) then any set of numbers X = (x1, * - ,
 x") solves SW5) and hence S is solvable by h applications of 20. Otherwise,
 0X1+ * * * +Oxn>d with some d>O, or 0x1+ * * * +Oxn2d with some d>O
 appears in S(M). In this case, the proof is completed by writing down the two
 multiplier schemes:

 1: Ox1+ O +Ox"> di withanyd 0

 d: Ox, + +0Ox,,> - I

 Ox, +** + Ox >

 1: Ox, + + Ox, > d, with any d > 0

 d: Ox, + + Oxn > -1

 x1 +*** +Ox >O

 (The reader should verify that the result is a legal linear combination in each
 case.) Hence, Ox,+ * * * +Ox.>O is a legal linear combination of S(") and can
 be exhibited as a legal linear combination of the inequalities of S (and possibly
 Ox1+ - +Ox.> -1) by at most h+1 applications of 10. This completes the
 proof of Theorem III.

 Before returning to the proof of Theorem II (b), these results will be sum-
 marized in a multiplier scheme. This diagram expresses the fact that exactly
 one of the two systems listed there admits a solution. A solution to T means
 that S is inconsistent. Successive elimination of xi, *, X, leads either to a
 solution for S or to a solution for T.
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 solution

 contradiction x1 x2 .. Xn

 Ut 2 0 0 0 0 > - 1

 not ul _ 0 all al2 ... ain > a,

 all U2 20 a2l a22 a2n > a2

 zero

 .8 > ? a.., ap2 ... ap. > a.

 v1 _ 0 bi1 b12 bin > bi
 v2 >?0 b2l b22 ... b2n > b2

 Vq > O bq1 bq2 . . .bgn > bq

 0 O0.. = 0 =0

 The system S is defined by

 ai1xi + * * * + ainxn > ai (ic1 ,p)

 biixi+ * * * + bjXnx _ bi j~1 q).

 The system T is defined by

 ulai + ***+ ua_ + vibil + ***+ vqb = O (I=1,* *,n)
 -Uo + uia2 + + upap + vib1 + * + vqbq = 0

 with all of the unknowns uo, ul, . . *, up, vi, . . *, v, non-negative and not all
 of the uo, ul, * , up, equal to zero.

 Proof of Theorem II(b). The case for systems without solutions is stated
 directly in Theorem III and so it is only necessary to show that, for solva-
 ble systems, every consequence is a legal linear combination. Assume that
 the strict inequality d1x1+ * * * +dnX >d is a consequence of S. Thus, if X =
 (xl} * * * , $n) is any solution for S, then d1xl+ * * * +dng, is a number that is
 larger than d. This means the insolvability of the system U (to save rewriting
 the system, multipliers have been included):

 u0?0: 0X1 + + OXn > -1

 (U 0: ai1x1 + * + ainXn > ai (i=1, * *, p)

 vj 2 0: b1x + * + bjnxn b (jb= 1, ... , q)

 t > 0: -d1x-- - dnXn _ -d.

 By Theorem III, there exist non-negative multipliers fio, i, * , apy vl, * *I*
 vqt with not all of ito, "i, u * * I, ip equal to zero, such that
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 xt: filalz + * + i7pa., + tiJbit + ***+ vqbq - id = O (I = l, .. * *n)

 -1: -o + ila+ + + a + b + vqb -td = 0.

 If t were known to be positive, then all of these equations could be divided by it,
 establishing d1xi+ - * * +dnx.>d as a legal linear combination of the inequali-
 ties of S. Recall that S is assumed to be solvable and let x1, . , be a solution.
 These have been written as multipliers at the left of the last system, using -1
 to multiply the last equation. Multiplying and adding,

 uo + X i(aic1x + * + ainn -a) + E #3i(biti + * + nn - bj)
 i i

 -t(dxlfc + ***+ dnCn -d).

 Since the left side of this equation is positive, the right side is also, and hence
 t> 0. Hence dix1 + * * * +dnXn > d is a legal linear combination of the inequalities
 of S with multipliers go/t, a,l t , ip/it v1, * , v/ti. If the consequence
 is an ordinary inequality d1x1 + * * * +dnX. > d, a few changes must be made in
 the proof. The inequality -d1x- - -dxn. ? -d in U should be replaced by
 - dixi - - dnsXn> - d. Using the same notation for multipliers, the same
 transposed system of equations is obtained, with not all of uo, u, ... I, up, and
 t equal to zero. If t is assumed zero, we are in the previous case (with not all of
 uio, fl, * * *, up equal to zero) and can conclude t>0 as before, a contradiction.
 Hence i is positive and dix1 + - * * +dnxn_ d is a legal linear combination of the
 inequalities of S with multipliers go/I, t/i, * .. ., I Vi/i, * * * , v/t. This
 completes the proof of Theorem II (b).

 4. An infinite example. Of course, the results of Section 3 can be paraphrased
 in logical terms exactly in the form of the conclusion to Section 2. At this point
 the reader may be led to the erroneous belief that consistency with respect to
 consequences is always equivalent to consistency with respect to linear combi-
 nations for linear systems. The following (infinite) system shows that this is not
 so.

 (S) x>-1/n (n=1,2,3, ..).

 Clearly x _ 0 is a consequence of this system, yet is not a linear combination of
 any number of inequalities of S. We infer that

 (Si) -x>0, x> -l/n (n=1,2,3,.3.)

 is inconsistent with respect to consequences but is consistent with respect to
 linear combinations. The natural way out of this dilemma is to add new rules of
 inference based on limiting operations.

 5. Acknowledgments and historical remarks. The author is indebted to
 T. S. Motzkin, who first suggested that his "transposition theorem" [6] might
 be viewed as asserting the disjoint alternatives of solvability or contradiction

 via linear combination. He also called attention to a remark of Fourier [5] that
 elimination was a natural method for solving linear inequalities. However, the
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 author takes full responsibility for the logical consequences of these ideas.
 Elimination, as a method for solving linear inequalities, has been used for

 theoretical purposes by a number of authors, notably by Dines [4]. However,
 his treatment seems to conceal rather than emphasize the parallel with equa-

 tions.

 The distinction between logical consequences and provable consequences

 for logistic systems was first made by Tarski [7]. Our definition of the logical
 consequences of a system of linear equations or inequalities is in an obvious way
 parallel to Tarski's definition of logical consequence, but the two are not the
 same. They might be compared in the following manner. The logical conse-
 quences, in the sense of this paper, of a system of equations or inequalities are
 the same as the logical consequences, in Tarski's sense, of the system together
 with some categorical system of postulates for the real numbers-provided
 that the unknowns in the equations or inequalities, before considering the con-
 sequences in Tarski's sense, are first replaced by new symbols, which play the
 role of primitive constants, and which do not appear elsewhere. The author is
 indebted to A. Church for unraveling the relation between the two ideas; the
 general metatheorem parallel to Theorems 1 and I, and valid for functional
 calculi of all orders is stated by Church in [2].
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