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Goal of the first lecture

• You come from different parts of the world.

• You studied according to different curricula.

• Your secondary school leaving exams may have been completely
different.

• The goal of the first lecture: to summarize what I assume to be
known from the Hungarian secondary school mathematics
curriculum.

IMPORTANT

If something is not clear, please indicate it: request a consultation,
ask questions during the practical sessions.
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Numbers: Natural numbers

• Natural numbers: the result of counting.

N = {0, 1, 2, . . . , 2026, . . . , googol, . . .}

• Different encodings: 2026 = 11111010012 = MMXXVI = . . .

• Basic operations: +, ·.

• x + 5 = 3 cannot be solved in N.
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Numbers: Integers

• Integers / signed numbers.

Z = {. . . ,−2026, . . . , 0, 1, 2, . . . , 2026, . . .}

• Basic operations: +, ·, −.

• x + a = b is always solvable in Z and the solution is unique
→ b − a.

• 5 · x = 3 cannot be solved in Z. → number theory
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Numbers: Rational numbers

• Rational numbers:

Q = {0, 1,−1,
1

2
,−1

2
, 2,−2,

1

3
,−1

3
,

2

3
,−2

3
. . .}

• They can be arranged into an infinite sequence.

• The same number, infinitely many different “names”:

half,
1

2
,

5

10
, 0.5, 50%,

−1

−2
,

1013

2026
, . . .

• ax = b is always solvable in Q IF a 6= 0 and the solution is
unique → b

a .

• x2 = 2 cannot be solved in Q.
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Numbers: Real numbers

• Real numbers:

R 3 −1, 0, 1, 2026,
1

2026
,−12

34
,
√

2, π, e, c (Euler constant)

• Real numbers concretely: infinite decimal expansions.

• They cannot be arranged into a single sequence (“there are too
many”).

• x2 = −1 cannot be solved in R.

• THE MOST IMPORTANT example. If during the course the
word “number” is used, it should be understood as “real number”.
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Numbers: Complex numbers

• Complex numbers:

C 3 π+2
√
−1, i = 0+1

√
−1,−i = 0+(−1)

√
−1, a+bi(a, b ∈ R).

• Basic operations can be defined.

• Every polynomial has a root in C.

• If you know them and can calculate with them, that is very
good. In this course, we do not use them.
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Numbers: Real numbers: Basic operations

• Addition, subtraction, multiplication, division (by a NON-0
number).

• The precise description is technical. We accept that they can be
carried out.
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Numbers: Real numbers: Number line

• They cannot be arranged into an infinite sequence, but they can
be associated with the points of a line:

0 1 2 3-1-2-3

x y<

(Source: Wikipedia)
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Numbers: Real numbers: Signs

• The real numbers are ordered.

Definition

α ∈ R is positive ⇔ α > 0.

β ∈ R is negative ⇔ β < 0.

• 0 is neither positive nor negative.

Notation

R+: set of non-negative numbers, R++: set of positive numbers,
R−: set of non-positive numbers, R−−: set of negative numbers.

add − 0 +

− − − ??

0 − 0 +

+ ?? + +

mult − 0 +

− + 0 −
0 0 0 0

+ − 0 +

div − 0 +

− + nd −
0 0 nd 0

+ − nd +
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Numbers: Real numbers: Intervals

Notation (a, b ∈ R)

[a, b] = {x ∈ R : a ≤ x ≤ b},

]a, b[= {x ∈ R : a ≤ x ≤ b},

[a, b[= {x ∈ R : a ≤ x ≤ b},

]a, b] = {x ∈ R : a ≤ x ≤ b},

]−∞, b] = {x ∈ R : a ≤ x ≤ b},

]−∞, b[= {x ∈ R : a ≤ x ≤ b},

[a,+∞[= {x ∈ R : a ≤ x ≤ b},

]a,+∞[= {x ∈ R : a ≤ x ≤ b},

]−∞,∞[= {x ∈ R : a ≤ x ≤ b}.
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Numbers: Real numbers: Absolute value

Definition

Let x ∈ R. Then

|x | =


x , if x ≥ 0

0, if x = 0

−x , if x ≤ 0

• That is, |x | is the distance of x from 0 on the number line.

(Source: Wikipedia)
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Break
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Real numbers: additional operations

Reminder: Basic operations with real numbers

Addition, subtraction, multiplication, division BY A NON-ZERO
NUMBER.

Our goal is to introduce further important operations.
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Real numbers: exponentiation

• Let α ∈ R.

Definition: Exponentiation, positive integer exponent k

α1 = α, α2 = α · α,

αk =

k︷ ︸︸ ︷
α · α · . . . · α .

• αk+1 = α · αk . (Recursive definition.)
• Let k, ` be two arbitrary positive integers. Then

αk+` = αk · α`.
Theorem

Let k > ` be two arbitrary positive integers. Then

αk

α`
= αk−`.

• α−3? =?α
2

α5 .
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Real numbers: exponentiation II

Let α be a NON-0 real number, i.e. α ∈ R− {0}.

Definition: Exponentiation, integer exponent

α0 = 1, α−k = 1
αk .

Theorem

Let k, ` be integers. Then

αk · α` = αk+`.

α
1
3 · α

1
3 · α

1
3 ? =? α1.
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Real numbers: exponentiation III

Let α be a POSITIVE number, i.e. α ∈ R++. Furthermore let
k ∈ N+.

Definition: Exponentiation, reciprocal exponent

Let k ∈ N+, then

α
1
k = k
√
α.

Definition: Exponentiation, exponent `
k , where k ∈ N+, ` ∈ Z

α
`
k =

k
√
α`.

Definition: Exponentiation, rational exponent

Let r ∈ Q. Write r as r = `
k (k ∈ N+,` ∈ Z)

αr =
k
√
α`.
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Real numbers: exponentiation IV

Theorem

The above definition is well-defined.
That is, if α is a POSITIVE number (α ∈ R++), r = `

k = `′

k ′

(k, k ′ ∈ N+, `, `′ ∈ Z), then

k
√
α` =

k′√
α`′ .

A technical remark:

Statement

Let k ∈ N+. Consider the following equation:

xk = α (E)

(1) IF k is odd, then (E) has exactly one root; (2) IF k is even,
then (E) has exactly one non-negative root in the case α ∈ R+,
while it has no root if α < 0. Moreover, the set of roots is closed
under sign change.
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Real numbers: exponentiation V

Theorem

Let α be a positive real number, i.e. α ∈ R++. ASSUME α > 1.
Let β ∈ R be an arbitrary exponent.

(a) If
`1 < `2 < `3 < . . . < β < . . . < u3 < u2 < u1,

then
α`1 < α`2 < α`3 < . . . < αu3 < αu2 < αu1 .

(b) If
`1 < `2 < `3 < . . . < β < . . . < u3 < u2 < u1,

0 < ui − `i can be arbitrarily small, then

α`1 < α`2 < α`3 < . . . < αu3 < αu2 < αu1 ,

and moreover αui − α`i can also be arbitrarily small.
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Real numbers: exponentiation VI

Consequence (we ASSUME α > 1)

If
`1 < `2 < `3 < . . . < β,

0 < β − `i can be arbitrarily small, then the numbers α`i have
infinite decimal expansions that approach an infinite decimal
expansion.

Real numbers: exponentiation: the definition (we ASSUME α > 1)

(a) If
`1 < `2 < `3 < . . . < β < . . . < u3 < u2 < u1,

0 < ui − `i can be arbitrarily small, then αβ is the unique real
number such that

α`1 < α`2 < α`3 < . . . < αβ < . . . < αu3 < αu2 < αu1 .
(b) The value defined above does not depend on the choice of

`1 < `2 < `3 < . . . < β < . . . < u3 < u2 < u1.
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Real numbers: exponentiation: identities

Theorem: Identities of exponentiation

Let α, β ∈ R++, x , y ∈ R.

(a)
ax · ay = ax+y ,

(b)
ax

ay
= ax−y ,

(c)
(ax)y = ax ·y ,

(d)
ax · bx = (ab)x ,

(e)
ax

bx
=
(a
b

)x
,
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Real numbers: the logarithm

Let α ∈ R++, 1 6= a ∈ R++.

Theorem

Every positive number α can be written in the form ax , where
0 < a 6= 1 is a real number.

Definition: concept of the logarithm

loga α is the uniquely defined exponent x such that α = ax .

That is, loga α “thinks of” the number α as a power of a and
“encodes” the number by the exponent.
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Real numbers: logarithm: identities

Theorem: Identities of the logarithm function

Let α, β ∈ R++, 1 6= a ∈ R.

(a)

loga(X · Y ) = loga X + loga Y // ax · ay = ax+y ,

(b)

loga(
X

Y
) = loga X − loga Y // ax · ay = ax+y ,

(c)
loga(X y ) = y loga X // (ax)y = ax ·y ,

(d)

logB X =
loga X

loga B
, loga B logB x = loga X // (ab)x = abx .

Péter Hajnal Basics, SZTE, 2026



... and now for something completely different ...
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Angles: Geometric angles and their types
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Angles: Trigonometric functions of acute angles
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Source:
https://en.wikipedia.org/wiki/Trigonometricfunctions]/media/File:AcademBaseoftrigonometry.svg
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Angles: Trigonometric functions of acute angles
(continued)

Source: https://gorbem.hu/MT/Haromszog6elemei/image010.jpg
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Angles: Special triangles, special trigonometric functions

Source:
https://mersz.hu/object/trigonometriaiharomszogekestablazat.png/1702573982
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Angles: Real numbers

Rotational angles and their measurement in radians:

+α

-α

(0,0) 1,0)A(
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Angles: Special angles

Source: https://okosodjal.webnode.hu/news/nevezetes-szogek/
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Angles: Special trigonometric values

Source: https://gorbem.hu/MT/Haromszog6elemei/image026.gif
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Real numbers: Trigonometric functions
Trigonometric functions

(a)
sin : R→ R, x 7→ sin x ,

(b)
cos : R→ R, x 7→ cos x ,

(c)

tan : R→ R, x 7→ tan x =
sin x

cos x
,

(d)

cot : R→ R, x 7→ cot x =
cos x

sin x
,

(e)

sec : R→ R, x 7→ sec x =
1

cos x
,

(f)

csc : R→ R, x 7→ csc x =
1

sin x
.
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Real numbers: Trigonometric functions: Properties
Properties of trigonometric functions
(a)

sin2 x + cos2 x = 1,
(b)

sin 2x = 2 sin x cos x ,
(c)

cos 2x = 1− 2 cos2 x ,
(d)

sin(x + k · 2π) = sin x , cos(x + k · 2π) = cos x (k ∈ Z),

(e)

tan(x + k · π) = tan x , cot(x + k · 2π) = cot x (k ∈ Z).
(f)

sin(−x) = sin x , sin(
π

2
− x) = cos x , sin(π − x) = sin x ,

cos(−x) = cos x , cos(
π

2
−x) = sin x , cos(π−x) = − cos x .
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Break
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Functions
Definition

By a function f : D → C we mean an assignment/rule/formula
that assigns to EVERY element x ∈ D a UNIQUELY
DETERMINED element of C , which is denoted by f (x). The value
f (x) is called the image of x . Here x ∈ D is an input, while
f (x) ∈ C is a value or image.

The set D is called the domain, or the set of departure. Its
notation is dom(f ). The set C is called the set of attainable
values, or the codomain. Its notation is co-dom(f ).

Definition

The set {f (x) : x ∈ D} is called the set of attained values, the set
of images, or the range. Its notation is im(f ).

Definition

A function f : dom(f )→ co-dom(f ) is called a real function if
dom(f ), co-dom(f ) ⊂ R.
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Properties of functions

Definition: surjective function

A function f : dom(f )→ co-dom(f ) is called onto, or surjective, if
co-dom(f ) = im(f ), that is, if for any possible value (y ∈ co-dom(f )) there
exists an input (x ∈ dom(f )) where the function takes the chosen value
(y = f (x)).

Definition: injective function

A function f : dom(f )→ co-dom(f ) is called one-to-one, or injective, if for
any attained value (y ∈ im(f )) there exists exactly one input (x ∈ dom(f ))
where the function takes the chosen value (y = f (x)). Alternatively: f is
injective if for any possible value (y ∈ co-dom(f )) there exists at most one
input (x ∈ dom(f )) where the function takes the chosen value (y = f (x)).

Definition: bijection function

A function is called a bijection (or a pairing mapping), if it is injective and
surjective. That is, for any possible value (y ∈ co-dom(f )) there exists
exactly one place/input (x ∈ dom(f )) where the function takes the chosen
value (y = f (x)).
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Representation of functions: Domain defined on a finite set

Source: https://brilliant.org/wiki/bijection-injection-and-surjection/
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Composite functions, function composition

f : A→B g : B→C

g◦f : A→C

1

2

3

4

1

2

3

4

CA

1

2

3

4

1

2

3

4

1

2

3

4

CBA

Source: https://en.wikipedia.org/wiki/Function composition
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Diagram of transformations defined on a finite set

If dom(f ) = co-dom(f ), then we (often) say that the function is also a
transformation.
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Diagram of bijective transformations defined on a finite
set: Permutations
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Inverse of bijective transformations

Definiton

Let f : dom(f )→ co-com(f ) be a bijective function. Then
f (−1) : co-dom(f )→ dom(f ) is the inverse function of f , that is
defined as f (−1)(y) = x iff f (x) = y .
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Examples of inverse functions

Observation

sin x : R→ R, cos x : R→ R, tan x : R− {2k+1
2 · π : k ∈ Z} → R

are not bijective.

Claim

(1) sinbij x : [−π
2 ,

π
2 ]→ [−1, 1] is bijective.

(2) cosbij x : [0, π]→ [−1, 1] is bijective.

(3) tanbij x : [−π
2 ,

π
2 ]→ R is bijective.

Definition

arcsin x , arccos x and arctan x are the inverse function of sinbij,
cosbij and tanbij, resp.
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Examples of inverse functions II.

Observation

x2 : R→ R, 2x : R→ R are not bijective.

Claim

(1) x2
bij : R+ → R+ is bijective.

(2) 2xbij : R→ R++ is bijective.

Definition

(1)
√
x is the inverse of x2

bij,

(2) log2 x is the inverse of 2xbij.
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Graph of real functions

Definition

The graph of a function f : dom(f )→ co-dom(f ) is

graph(f ) = {(x , f (x)) : x ∈ dom(f ) ⊂ R} ⊂ R× R = R2

Example: 1
100x

2 sin x (Source:
https://www.desmos.com/calculator)
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Linear functions
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Quadratic functions
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Power functions

Péter Hajnal Basics, SZTE, 2026



Polynomial functions
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Exponential functions
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Trigonometric functions
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Inverse functions
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Logarithmic functions
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Inverse trigonometric functions
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Break
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Graph of a given function

Source: https://www.bbc.co.uk/bitesize/guides/zc6hhyc/revision/1
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Drawing the graph of a given function I

Source: https://www.bbc.co.uk/bitesize/guides/zc6hhyc/revision/1
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Drawing the graph of a given function II

Source: https://www.bbc.co.uk/bitesize/guides/zc6hhyc/revision/1
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Drawing the graph of a given function III

Source: https://www.bbc.co.uk/bitesize/guides/zc6hhyc/revision/1
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Drawing the graph of a given function IV

Source: https://www.bbc.co.uk/bitesize/guides/zc6hhyc/revision/1
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Drawing the graph of a given function V

Source: https://www.bbc.co.uk/bitesize/guides/zc6hhyc/revision/1
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Drawing the graph of a given function VI

Source: https://www.bbc.co.uk/bitesize/guides/zc6hhyc/revision/1
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Drawing the graph of a given function VII

Source: https://www.bbc.co.uk/bitesize/guides/zc6hhyc/revision/1
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Properties of functions

A function f is called

• even iff for all x ∈ R we have f (x) = f (−x),

• odd iff for all x ∈ R we have f (x) = −f (−x),

• monotonically increasing iff for all x , y ∈ R with x < y we
have f (x) ≤ f (y),

• strictly monotonically increasing iff for all x , y ∈ R with
x < y we have f (x) < f (y),

• monotonically decreasing iff for all x , y ∈ R with x < y we
have f (x) ≥ f (y),

• strictly monotonically decreasing iff for all x , y ∈ R with
x < y we have f (x) > f (y),

• periodic with period P iff for all x ∈ R we have
f (x + P) = f (x).
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Reading the graph of a real function: Even functions
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Reading the graph of a real function: Odd functions
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Further properties of functions

A function f is called

• convex iff the line segment connecting any two points on the
graph of f lies above or on the graph itself,

• concave iff the line segment connecting any two points on
the graph of f lies below or on the graph itself.

Note that f is concave iff −f is convex.
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Zeros of functions

Source: https://flexbooks.ck12.org/cbook/ck-12-cbse-maths-class-
11/section/2.7/primary/lesson/polynomial-functions/
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Solving the equation f (x) = g(x)

Source:
https://mathleaks.com/study/kb/method/solvinganequationgraphically
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Sign of functions

x

y

=0

<0 >0>0

Roots (zeros)

<0

Ve
rt
ic
al

A
sy
m
pt
ot
e

Source:
https://www.mathsisfun.com/algebra/inequality-rational-solving.html
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Inequalities

Source:
https://www.mathsisfun.com/algebra/inequality-rational-solving.html
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This is the end!

Thank you for your attention!
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