
THE STRUCTURE OF POLYNOMIAL OPERATIONS

ASSOCIATED WITH SMOOTH DIGRAPHS
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Abstract. With every digraph we associate an algebra whose funda-
mental operations are the polymorphisms of the digraph. In a 2012
paper the second and third authors proved that the digraph of endo-
morphisms of any finite connected reflexive digraph is connected, pro-
vided that the algebra associated with the digraph lies in a congruence
join-semidistributive over modular variety. In the same paper, this con-
nectivity result led to a proof of the statement that, if the algebra as-
sociated with a finite reflexive digraph generates a congruence modular
variety, then the digraph has a near-unanimity polymorphism.

A digraph is smooth, if it has no sinks and no sources. Smooth
digraphs of algebraic length 1 are a broad generalization of reflexive di-
graphs. In a 2009 paper, Barto et al. proved that every finite smooth
digraph of algebraic length 1 whose associated algebra lies in a congru-
ence meet-semidistributive over modular variety has a loop edge. This is
a powerful theorem that has nice applications in algebra and computer
science.

In the present paper we prove that the digraph of unary polynomial
operations of the algebra associated with a finite smooth connected di-
graph of algebraic length 1 is connected, provided that the algebra lies
in a congruence join-semidistributive over modular variety. This gener-
alizes our connectivity result mentioned above and implies a restricted
version of the result of Barto et al. in the congruence join-semidistribu-
tive over modular case. We also give a characterization of locally finite
idempotent congruence join-semidistributive over modular varieties via
smooth compatible digraphs of algebraic length 1.

It remains as an open question whether the congruence modularity
of the variety generated by the algebra associated with a finite smooth
digraph of algebraic length 1 implies the existence of a near-unanimity
polymorphism of the digraph.

1. Introduction

First, we require the definition of exponentiation for relational structures.
Let R be a fixed signature of relational symbols. Let A = (A;R) and
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B = (B;R) be similar relational structures. For a set F ⊆ BA of maps
we define the relational structure F = (F ;R) as follows. For any k-ary
relational symbol % ∈ R and maps f1, . . . , fk : A→ B

(f1, . . . , fk) ∈ %F iff (a1, . . . , ak) ∈ %A =⇒ (f1(a1), . . . , fk(ak)) ∈ %B.

In particular, by BA we mean the relational structure of all maps from A to
B.

At this point we have to warn the reader that in the literature BA is some-
times used to denote the structure of the homomorphisms from A to B, e.g.,
this is the case in our paper [9]. We opted for the definition of exponenti-
ation given here, since it is general enough to unify the other notions, and
the usual properties of exponentiation remain valid for it, as seen below.

In the present paper, we let Hom(A,B) denote the structure of all homo-
morphisms from A to B. Note that Hom(A,B) contains precisely the maps
f ∈ BA for which

(f, . . . , f) ∈ %BA

for all relational symbols % ∈ R. For a set A let IA = (A;R) be the relational
structure with the (diagonal) relations

%IA = { (a, . . . , a) ∈ Ak | a ∈ A }

for all relational symbols % ∈ R. It is also easy to see that the n-fold
Cartesian power An of A is precisely AI{1,...,n} . For similar structures A, B
and C we have

(CB)A = CB×A, CA × BA = (C× B)A, and

the composition map ◦ : CB × BA → CA defined as (f ◦ g)(a) = f(g(a)) is a
homomorphism.

The elements of Hom(An,A) are called n-ary polymorphisms. Unary poly-
morphisms are called endomorphisms. Let End(A) = Hom(A,A). With ev-
ery relational structure A we associate an algebra denoted by Alg(A) whose
underlying set is A and fundamental operations are the polymorphisms of A.
For an algebra A, let Poln(A) denote the set of n-ary polynomial operations.
Notice that Poln(A) has an algebraic structure, more precisely, Poln(A) is
the subalgebra of AAn

generated by the n-ary constant operations and the
n-ary projection operations of A. Clearly, End(A) ⊆ Pol1(Alg(A)) ⊆ AA.
Hence both End(A) and Pol1(Alg(A)) are relational structures with the re-
lations inherited from AA. At the same time, they both are subalgebras
of Alg(A)A. In the present paper, this two-sided feature of Pol1(Alg(A))
stands in the center of our investigations on the structure of algebras asso-
ciated with finite digraphs.

A digraph is a relational structure G = (G;→) where → ⊆ G2. The
induced subdigraph of G on the subset A ⊆ G is the digraph (A;→∩A2). A
digraph G is called connected if for any two elements a, b ∈ G there exists
an oriented path a = a0 → a1 ← · · · → an = b in G of length n ≥ 0
where the arrows can point in either way. The components of a digraph G
are the maximal connected induced subdigraphs of G. The digraph G is
called smooth, if the binary relation → ⊆ G2 is subdirect, i.e., each vertex



THE STRUCTURE OF POLYNOMIAL OPERATIONS 3

has at least one incoming and one outgoing edge. All of the one-element
digraphs are connected, but only the ones that have a loop are smooth. The
algebraic length of an oriented path is the number of forward edges minus
the number of backward edges. The algebraic length of a connected digraph
is the smallest of the positive algebraic lengths of closed paths. It is easy
to see that the algebraic length of a connected digraph equals the greatest
common divisor of all positive algebraic lengths of oriented closed paths.

A variety is a class of all algebras of the same signature that satisfy a
set of identities. In the following definitions, let P stand for the lattice
property join-semidistributive, meet-semidistributive or modular. We say
that a variety is congruence P , if the congruence lattice of any algebra in
the variety is P . We say that a variety is congruence P over modular, if the
congruence lattice L of any algebra in the variety has a lattice congruence
α such that the quotient lattice L/α is P and all α-blocks are modular
lattices. In [4] Hobby and McKenzie elaborated the foundations of the tame
congruence theory and used their theory to give various characterizations
of certain classes of locally finite varieties based on the shape of congruence
lattices of the algebras in the varieties. The classes we deal with in this
paper form a poset with respect to containment as displayed in Figure 1.

congruence 
meet-semidistributive 
over modular

congruence 
join-semidistributive 
over modular 

congruence 
meet-semidistributive 

congruence 
join-semidistributive

congruence
modular

having a 
near unanimity term

Figure 1. A poset of some classes of locally finite varieties.

A n-ary term f is called an idempotent term with respect to an algebra
or a variety if it satisfies the identity:

f(x, x, . . . , x) = x.

We remark that, by one of the characterizations in [4], the top element of the
poset in Figure 1 consists of the locally finite varieties that obey non-trivial
sets of idempotent identities (identities involving only idempotent terms).
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An algebra or a variety is idempotent if all terms are idempotent with respect
to it. An n-ary term f is a near unanimity term with respect to an algebra
or a variety if n ≥ 3 and f satisfies the identities

f(y, x, . . . , x) = f(x, y, x, . . . ) = · · · = f(x, . . . , x, y) = x

in two variables x and y. A majority term is a ternary near unanimity term.
Theorem 2.6 in [9] obtained by the second and third authors states that

the digraph of endomorphisms of any finite connected reflexive digraph is
connected, provided that the algebra associated with the digraph generates
a congruence join-semidistributive over modular variety. In [9], this connec-
tivity result led to a proof of the statement that, if the algebra associated
with a finite reflexive digraph generates a congruence modular variety, then
the digraph has a near-unanimity polymorphism.

The goal of the present paper is to extend the above connectivity result
from reflexive digraphs to smooth digraphs of algebraic length 1. Even to
state the generalization is not straightforward, in the sense that there are
finite smooth connected digraphs of algebraic length 1 where the digraph
of endomorphisms is disconnected, even when the digraph has a majority
polymorphism. Such an example is depicted in Figure 2 in the next section.
Nevertheless, we shall prove that connectivity is inherited for the digraph of
polynomial operations, see Corollary 9 in the next section. The proof will
be much more involved than in the reflexive digraph case.

In [3] (for another proof see [2]), Barto et al. proved that every finite
smooth digraph of algebraic length 1 whose associated algebra lies in a
congruence meet-semidistributive over modular variety has a loop edge. This
powerful theorem, often called the Loop Lemma, has nice applications in
algebra and computer science, see e.g. [10], [6] and [2]. We shall see that
the Loop Lemma restricted to the join-semidistributive over modular case
is an easy consequence of our new connectivity result. We also use our main
result to obtain a characterization of locally finite idempotent congruence
join-semidistributive over modular varieties via smooth compatible digraphs
of algebraic length 1.

It remains as an open question whether the congruence modularity of the
variety generated by the algebra associated with a finite smooth digraph of
algebraic length 1 implies the existence of a near-unanimity polymorphism
of the digraph. We remark that the question has positive answers in two
important special cases, apart from our reflexive digraph result in [9]: Barto
settled the congruence distributive case in [1] and Kazda did the congruence
permutable case in [5]. Note that the results of Kazda and Barto do not
require smoothness and algebraic length 1 of the digraph. On the other
hand, as we noted in the Concluding Remarks of [9], there are examples
which yield a negative answer if we drop smoothness and algebraic length 1
in the above question.

2. Results

First, we point out that our connectivity result stated for reflexive di-
graphs in [9] does not hold for smooth digraphs of algebraic length 1. Indeed,
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the smooth digraph

G = ({0, 1}2; {((a, b), (b, c)) : a, b, c ∈ {0, 1}})

of algebraic length 1 in Figure 2 has a majority polymorphism that acts
componentwise, and the digraph End(G) of endomorphisms is easily seen to
be disconnected as {id} is a component of it.

(1,0) 
 

(0,0) 
 

(0,1) 
 

(1,1) 
 

Figure 2. A smooth connected digraph G of algebraic
length 1 such that G has a majority polymorphism and
End(G) induces a disconnected subdigraph of GG.

The example shows that, in general, the digraph End(G) of endomor-
phisms may not be large enough to induce a connected subdigraph of GG

for a smooth digraph G of algebraic length 1. We shall replace End(G) by
the larger digraph Pol1(Alg(G)) of polynomial operations that, at least if
Alg(G) lies in a congruence join-semidistributive over modular variety, will
work. Our goal in this section is to give a proof of this fact.

The notion of twin relation of polynomial operations plays a crucial role
in our proof. For an algebra A we say that p, q ∈ Poln(A) are twins if
there exists a term t of n + m variables and constants ā, b̄ ∈ Am such that
p(x̄) = t(x̄, ā) and q(x̄) = t(x̄, b̄) for all x̄ ∈ An. The transitive closure τ of
the twin relation is easily seen to be a congruence on the algebra Poln(A),
which we call the twin congruence. Next, we prove two lemmas of algebraic
nature on the twin congruence on Pol1(A).

Lemma 1. For every finite algebra A that generates a congruence join-
semidistributive variety the twin congruence of Pol1(A) coincides with the
largest congruence.

Proof. Let τ be the twin congruence on Pol1(A). For an element a ∈ A let
πa : Pol1(A) → A be the projection defined by πa(p) = p(a), and let ηa
be the kernel of πa. Fix two polynomial operations p, q ∈ Pol1(A) and an
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element a ∈ A. Let b = p(a), c = q(a) and denote by b̂ and ĉ the constant
maps. Then

p ηa b̂ τ ĉ ηa q.

This proves that τ ∨ ηa = 1 for all a ∈ A. By repeatedly applying the
join-semidistributive congruence identity

α ∨ β1 = α ∨ β2 =⇒ α ∨ β1 = α ∨ (β1 ∧ β2)

in the congruence lattice of Pol1(A), we get that

τ = τ ∨ 0 = τ ∨ (
∧
a∈A

ηa) = 1.

�

In Section 7 of [4], Hobby and McKenzie define the notions of solvable al-
gebras and the solvability congruence of the congruence lattice of an algebra.
They prove also that if A is a finite algebra in a congruence join-semidis-
tributive over modular variety, then modding out the congruence lattice of
A by the solvability congruence, the resulting lattice is join-semidistributive,
cf. item (3) of Theorem 7.7 and Theorem 9.8 in [4].

Lemma 2. Let A be a finite algebra in a congruence join-semidistributive
over modular variety, and let τ be the twin congruence on Pol1(A). Then
Pol1(A)/τ is a solvable algebra.

Proof. We prove that τ and 1 are related by the solvability congruence. This
yields immediately, by the definitions of solvable algebras and the solvability
congruence that Pol1(A)/τ is a solvable algebra. The proof goes along the
lines of the preceding proof. In this case, modding out the congruence lat-
tice of Pol1(A) with the solvability congruence yields a join-semidistributive
lattice. By applying join semi-distributivity for the solvability congruence
blocks of the congruences that occur in the preceding proof instead of doing
it for the congruences themselves, we get that the solvability congruence
blocks of τ and 1 are the same. �

We require the following well known and easy to prove lemma on digraphs.

Lemma 3. Let G be a smooth digraph of algebraic length 1. If G is con-
nected, then Gn is connected for all natural numbers n. Conversely, if Gn

is connected for some n, then G is connected. �

Next we prove some combinatorial lemmas on the twin congruence blocks
of Pol1(Alg(G)), where G is a finite smooth connected digraph of algebraic
length 1.

Lemma 4. Let G be a finite smooth connected digraph of algebraic length 1.
Then each block of the twin congruence of Pol1(Alg(G)) induces a connected
subdigraph in GG.

Proof. Let us consider a pair p, q of twin unary polynomial operations of
the algebra G = Alg(G). By definition there exist a homomorphism t ∈
Hom(Gn+1,G) and constants ā, b̄ ∈ Gn such that p = t(x, ā) and q = t(x, b̄).
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By Lemma 3 the digraph Gn is connected. Since GGn+1
= GG×Gn

= (GG)G
n
,

we may regard t as a homomorphism from Gn to GG. Thus t maps the path
connecting ā with b̄ to a path connecting p and q. In fact, the elements of
this path are all unary polynomial operations. �

The smooth part of G is the unique maximal smooth induced subdigraph
of G. The smooth components of G are the components of its smooth part.
We say that a unary map r ∈ GG is idempotent if r2 = r, it is a retraction
if it is idempotent and r ∈ End(G), and it is proper if r 6= id. It is well
known that for any unary map f ∈ AA on a finite set A there exists an
integer m (we can uniformly choose m = |A|!) such that fm is idempotent,
i.e. f2m = fm. We will denote the idempotent iterate fm of f by f∗. In the
proof of the following lemma and in later proofs throughout the paper, we
frequently use the fact that for any maps f1, f2, g2, g2 ∈ GG if f1 → f2 and
g1 → g2 then f1 ◦ g1 → f2 ◦ g2.

Lemma 5. Let G be a finite digraph, and let C be the smooth component
of id in the digraph Pol1(Alg(G)). If C contains a non-permutation, then
it contains a proper retraction.

Proof. Choose a path from id to a non-permutation in C. In this path there
exist a permutation g and a non-permutation f such that either g → f or
f → g. Without loss of generality we may assume that g → f . By iterating,
we obtain that id→ fk for some k, where fk is a non-permutation in C.

Choose a non-permutation map fn ∈ C such that there exists a path
id → f1 → · · · → fn → fn+1 in C and fn(G) is of minimal size. For
i ≤ n + 1 put gi = f1 ◦ f2 ◦ · · · ◦ fi. Clearly, id → g1 → · · · → gn → gn+1,
and G ⊇ g1(G) ⊇ g2(G) ⊇ · · · ⊇ gn(G) ⊇ gn+1(G). Since gn = gn−1 ◦ fn
and fn(G) is of minimal size, we have |gn(G)| = |fn(G)| and G 6= gn(G) =
gn+1(G).

Let hi = g∗i be the idempotent iterate of gi. Thus we have id → h1 →
· · · → hn → hn+1 in C, h2

i = hi for all i, and G 6= hn(G) = hn+1(G). In
particular, both hn and hn+1 are the identity on the set hn(G), so hn+1◦hn =
hn. For i ≤ n + 1 put ti = hi ◦ hi−1 ◦ · · · ◦ h1. Clearly id → t1 → · · · →
tn → tn+1, and tn+1 = hn+1 ◦ hn ◦ tn−1 = hn ◦ tn−1 = tn. Therefore, tn
is a non-permutation homomorphism, and the idempotent iterate of tn is a
proper retraction in C. �

Lemma 6. Let G be a finite smooth connected digraph of algebraic length
1. If the twin congruence block of id in the algebra Pol1(Alg(G)) contains
a non-permutation, then it contains a proper retraction.

Proof. Observe that the twin congruence block of id induces a smooth subdi-
graph of Pol1(Alg(G)), and by Lemma 4, this subdigraph is also connected.
Moreover, composition of functions preserves the twin relation, hence it pre-
serves the twin congruence block of id. Therefore, the proof of the preceding
lemma translates into the proof of the present one by replacing C with the
twin congruence block of id. �
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We now have all the tools at our disposal to prove the main theorem of
the paper.

Theorem 7. Let G be a finite smooth connected digraph of algebraic length 1
such that the variety generated by Alg(G) is congruence join-semidistributive
over modular. Then the twin congruence coincides with the largest congru-
ence on Pol1(Alg(G)).

Proof. Let τ denote the twin congruence on Pol1(Alg(G)). If G has one
element, then the claim is obvious. Let us assume that the claim is not
true, and let G be of minimal size such that τ 6= 1. Then, by Lemma 2,
Pol1(Alg(G))/τ is a solvable algebra. Let C be the τ -block of the identity
map in Pol1(Alg(G)). Next, we prove that C has a non-permutation.

Let us suppose to the contrary that C contains only permutations. Since
Pol1(Alg(G))/τ is a finite solvable algebra in a congruence join-semidis-
tributive over modular variety, Theorem 7.2 and item (3) of Theorem 7.11
in [4] yield that the variety generated by Pol1(Alg(G))/τ is congruence per-
mutable. So, there is a ternary term m in the language of Alg(G) such that
m obeys the identities

m(f̄ , ḡ, ḡ) = m(ḡ, ḡ, f̄) = f̄

on Pol1(Alg(G))/τ . Hence for all g in Pol1(Alg(G)) we have

m(idG, g, g) τ m(g, g, idG) τ idG.

Since m(idG, g, g) τ m(idG, g, h) for all constant polynomial operations g
and h, we get that idG τ m(idG, g, h) for all constant polynomial operations
g and h. So, m(idG, g, h) is in C for all constant polynomial operations g
and h. Similarly, m(g, h, idG) is in C for all constant polynomial operations
g and h. As C contains only permutations, m(idG, g, h) and m(g, h, idG)
are permutations for all constant polynomial operations g and h, hence, by
Lemma 2.10 of Kiss in [7], there is a Maltsev term for Alg(G). Now, by
Kazda’s result in [5] there is a majority term for Alg(G). This implies that
the variety generated by Alg(G) is congruence join-semidistributive. Then,
by Lemma 1, τ = 1, a contradiction.

So C must have a non-permutation. By Lemma 6, C contains a proper
retraction, say r. Since r is an endomorphism of G, r(G) is a smooth digraph
of algebraic length 1. Moreover, the set of n-ary operations of Alg(r(G)) is
of the form

Hom(r(G)n, r(G)) = {rf |r(G) : f ∈ Hom(Gn,G)}.
By Theorem 9.8 in [4], the class of locally finite varieties that are congru-
ence join-semidistributive over modular is characterized by the existence of
certain linear identities. Linear identities are preserved under retraction,
and so Alg(r(G)) generates a variety that is congruence join-semidistribu-
tive over modular. Then, by the minimality of G, the twin congruence
coincides with the largest congruence on Pol1(Alg(r(G))). Thus, idr(G) is
twin congruence related to a constant operation g of r(G), that is, there is a
sequence of polynomial operations f0, . . . , fm in Pol1(Alg(r(G))) such that
f0 = idr(G), fm = g and fi is twin related to fi+1 for all i. So the sequence
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r = f0 ◦ r, . . . , fm ◦ r = g ◦ r witnesses the fact that r is τ -related to a
constant operation in Pol1(Alg(G)). On the other hand idG is τ -related to
r and hence, by transitivity of τ , idG is τ -related to a constant operation,
and so τ = 1. This contradiction concludes the proof. �

A repeated application of the previous theorem and lemma yields the
following corollary.

Corollary 8. Let G be a finite smooth connected digraph of algebraic length
1 such that the variety generated by Alg(G) is congruence join-semidistribu-
tive over modular. Then G has a loop.

Proof. We prove the claim by induction on the size of G. If G has one
element, then the claim obviously holds. Suppose that G has more than one
element. By the previous theorem, the twin congruence block of the identity
is the entire Pol1(Alg(G)). The constant operations are in Pol1(Alg(G)), so,
by the previous lemma, Pol1(Alg(G)) contains a proper retraction r. Notice
that r(G) is a finite smooth connected digraph of algebraic length 1 and
the variety generated by Alg(r(G)) is congruence join-semidistributive over
modular. Now, by the induction hypothesis, r(G) has a loop, and so G also
has a loop. �

Lemma 4 and Theorem 7 give the following corollary.

Corollary 9. Let G be a finite smooth connected digraph of algebraic length
1 such that the variety generated by Alg(G) is congruence join-semidistribu-
tive over modular. Then Pol1(Alg(G)) induces a connected subdigraph of
GG.

Next, we provide an example of a finite smooth digraph G of algebraic
length 1 such that Pol1(Alg(G)) is not connected. We call a digraph G dis-
mantlable if Pol1(Alg(G)) is connected. The notion of dismantlability is well
known for posets, the definition we gave here generalizes that notion. Note
that posets, being reflexive, are smooth digraphs of algebraic length 1. It
was checked in [8] that poset P depicted in Figure 3 is non-dismantlable. We
also remark that in [8] it was proved that P has a semilattice polymorphism.
Hence Alg(P) generates a variety that is not congruence join-semidistribu-
tive, but is congruence meet-semidistributive.

Figure 3. A non-dismantlable poset P with a semilattice polymorphism.
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A compatible structure in a variety is relational structure B such that
there is an algebra in the variety whose operations are polymorphisms of
B. Theorem 4.4 of [8] states that a locally finite idempotent variety is
congruence join-semidistributive over modular if and only if every finite
connected compatible poset in the variety is dismantlable. This theorem
and the preceding corollary yield the following.

Corollary 10. A locally finite idempotent variety is congruence join-semi-
distributive over modular if and only if every finite smooth connected com-
patible digraph of algebraic length 1 in the variety is dismantlable.

Finally, we prove a connectivity result for finite smooth digraphs of al-
gebraic length 1 whose associated algebras generate congruence modular
varieties. Congruence modularity of varieties are characterized by an infi-
nite sequence of finite sets of idempotent identities. The terms occurring in
this characterization are called Gumm terms.

The ternary terms d0, . . . , dn, and p are called Gumm terms if they obey
the identities

x = d0(x, y, z),

di(x, y, x) = x for all i,

di(x, y, y) = di+1(x, y, y) for even i,

di(x, x, y) = di+1(x, x, y) for odd i,

dn(x, y, y) = p(x, y, y), and

p(x, x, y) = y.

Let IPolk(A) denote the set of the k-ary idempotent polynomial opera-
tions of an idempotent algebra A. Similarly to Polk(A), IPolk(A) has a
structure of both an algebra and a digraph. Let IAlg(G) be the full idem-
potent reduct of Alg(G), where G is a digraph.

Corollary 11. Let G be a finite smooth connected digraph of algebraic length
1 such that Alg(G) generates a congruence modular variety. Then for every
k the twin congruence on IPolk(IAlg(G)) equals with the largest congruence,
and x and y are in the same connected component of IPol2(IAlg(G)).

Proof. By Theorem 7, there is a sequence f0, . . . , fm of unary polynomial
operations in Pol1(Alg(G)) such that f0 = id, fm = ĉ, where ĉ is a constant
operation and fi−1 and fi are twins for all i ≥ 1. Then the sequence

di(x, f0(x), y), . . . , di(x, fm(x), y) = di(x, fm(y), y), . . . , di(x, f0(y), y)

witnesses the fact that di(x, x, y) and di(x, y, y) are twin-connected in the
algebra IPol2(IAlg(G)) for all i. Moreover, p(x, y, y) and p(ĉ, ĉ, y) are twin-
connected by the sequence

p(f0(x), f0(y), y), . . . , p(fm(x), fm(y), y).

Now, by applying the Gumm identities we obtain a path that twin-connects
x and y in IPol2(IAlg(G)). Since Pol1(Alg(G)) is connected, the consecutive
elements in this path are connected by a path in the digraph IPol2(IAlg(G)).
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Hence, x and y are in the same connected component of IPol2(IAlg(G)).
To see that IPolk(IAlg(G)) is twin-connected just plug in all pairs f, g ∈
IPolk(IAlg(G)) for every occurrence of x and y in a path twin-connecting x
and y in IPol2(IAlg(G)). �
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