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Abstract. Some elements of tame congruence theory can be applied to qua-
siorder lattices instead of congruence lattices. In particular, it is possible to

consider minimal sets of an algebra with respect to one of its prime quasiorder

quotients. It turns out that if a finite algebra is in a congruence modular va-
riety, then it is minimal with respect to a quasiorder quotient iff it is minimal

with respect to a congruence quotient–in which case it either is a two-element
algebra, or has a Mal’tsev-polynomial. As an application of this fact, we prove

that if an algebra is in a congruence modular variety, its congruence and qua-

siorder lattices satisfy the same identities.

1. Introduction

Quasiorders (which in this paper means reflexive, transitive and compatible bi-
nary relations) of a universal algebra are a common generalization of congruences
and natural orders for some class of structures, for example, lattices and inverse
semigroups. The quasiorders of an algebra A form a lattice denoted by Quo A,
which contains Con A (the congruence lattice) as a sublattice. With the involution
δ 7→ δ−1, where δ−1 is definied by

(a, b) ∈ δ−1 ⇔ (b, a) ∈ δ,
Quo A becomes an involutive lattice.

Congruence distributivity and modularity are essential notions in universal alge-
bra. All the classical algebraic structures (i.e. groups, rings, associative algebras,
Lie-algebras) as well as lattices are congruence modular, the latter are also con-
gruence distributive. On the other hand, semilattices are generally not congruence
modular, but they are congruence meet semidistributive. Our interest in congru-
ence modularity derives primarily from the fact that it is a natural dividing line
in the study of congruence varieties i.e. the possible sets of congruence identities
satisfied by some varieties (see [6]).

In [4], the author and his advisor studied the relationship between quasiorder
and congruence lattices, and proved the following theorems:
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Theorem 1. If a locally finite variety is congruence distributive, then it is also
quasiorder distributive. If it is congruence modular, then it is also quasiorder mod-
ular.

Theorem 2. If a locally finite variety is congruence meet semidistributive, then no
quasiorder lattice of one of its algebras contains a sublattice isomorphic to M3, but
the quasiorder lattices do not have to be meet semidistributive.

Thus, congruence meet semidistributivity behaves differently than modularity
and distributivity.

We used directed Jónsson and directed Gumm terms (see [7]) to prove the first
theorem. These categorize congruence distributivity and congruence modularity
just like the regular Jónsson and Gumm terms. For the positive statement of the
second theorem, we used the fact that some elements of tame congruence theory
work for quasiorders as well as for congruences.

In this paper, we use the second approach to prove a common generalization of
the first theorem. This method also works to prove a generalization of a theorem
by Czédli, Horváth and Lipparini: this states that in congruence modular varieties,
the intersection of the congruences generated by two tolerances coincides with the
congruence generated by the intersection of the two tolerances. (A tolerance is a
compatible symmetric binary relation.) This will also be true if we replace toler-
ances with reflexive compatible relations and congruences with quasiorders, with
the restriction that the variety needs to be locally finite.

2. Preliminaries

For an algebra A, R(A) denotes the set (and lattice) of reflexive compatible
binary relations, and Tol A the set of tolerances. The latter is a sublattice of the
former. It is important to note however that while Quo A is a subset of R(A) and
Con A is a subset of Tol A, they are generally not sublattices. R(A) can be made
into an involutive lattice the same way as Quo A.

For any δ ∈ Quo A there correspond two equivalences: δ∗ := δ∧δ−1 and δ∨δ−1.
We note that some authors use the notation δ∗ for the latter instead of the former.
There is also a poset that naturally corresponds to δ: the factor of δ by δ∗. (This is
a poset with underlying set A/δ∗, with (u, v) ∈ δ/δ∗ iff there is (a, b) ∈ δ such that
a/δ∗ = u and b/δ∗ = v.) Obviously, if δ is a quasiorder then δ∗ is a congruence,
which we call the congruence part of δ.

The terms of an algebra are those operations on its underlying set that are
in the clone generated by the fundamental operations of the algebra. The poly-
nomials are those operations that are in the clone generated by the fundamen-
tal operations and the constant operations. Hence, a k-ary operation is poly-
nomial iff there is a term t and elements ck+1, . . . , cn of the algebra such that
p(x1, . . . , xk) = t(x1, . . . , xk, ck+1, . . . , cn). The set of k-ary terms of A are denoted
by Termk A, the set of k-ary polynomials by Polk A.

A ternary operation t is called a Mal’tsev-operation if it satisfies

t(x, x, y) ≈ t(y, x, x) ≈ y.

A term (polynomial) of an algebra that is a Mal’tsev-operation is called a Mal’tsev-
term (Mal’tsev-polynomial).
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Proposition 3. [5] If A has a Mal’tsev-polynomial, then R(A) = Tol A = Quo A =
Con A.

An algebra is congruence modular (quasiorder modular) if its congruence (qua-
siorder) lattice satisfies the modular identity, i.e. (a∧ c)∨ (b∧ c) = c∧ ((a∧ c)∨ b).
A variety is congruence (quasiorder) modular if all its algebras are.

Congruence modularity of a variety is characterized by the following Mal’tsev
condition.

Theorem 4. [3] For any variety V, the following are equivalent:

(1) the algebras of V have modular congruence lattices,
(2) V admits Gumm-terms, that is, there are ternary terms p0, . . . , pn, q of V

satisfying

x ≈ p0(x, y, z)

pi(x, y, x) ≈ x for all i

pi(x, y, y) ≈ pi+1(x, y, y) for even i

pi(x, x, y) ≈ pi+1(x, x, y) for odd i

pn(x, y, y) ≈ q(x, y, y)

q(x, x, y) ≈ y

3. Minimal algebras and tame quotients

This section is mainly a review of the very basic elements of tame congruence
theory, based on [5]. The definition and statements are for quasiorders, though. In
this section, A is always a finite algebra, and α < β are quasiorders of it.

Definition 5. A pair of elements (l1, l2) of a lattice is called a quotient of that
lattice if l1 < l2, and a prime quotient if l1 ≺ l2. If l1 ≤ l3 < l4 ≤ l2, then (l3, l4) is
a subquotient of (l1, l2).

Definition 6. A set U ⊆ A is (α, β)-minimal if there is a unary polynomial p such
that p(A) = U and p(β) * α (that is, there exists (x, y) ∈ β with (p(x), p(y)) 6∈ α),
but there is no q ∈ Pol1 A such that q(A) ( U and q(β) * α.

The set of all (α, β)-minimal sets of A is denoted by M(α, β).
A is an (α, β)-minimal algebra if A is an (α, β)-minimal set.
Finally, A is considered (γ, γ)-minimal for all γ ∈ Quo A.

The last part of the definition was only mentioned because technically, (γ, γ) is
not a quotient of Quo A. It is completely in line with the rest of the definition
otherwise.

Definition 7. For any set U ⊆ A, the algebra A|U is an algebra with underlying
set U , whose set of basic operations is the set of all polynomials of A to which U
is closed, restricted to the set U .

For a binary relation δ on A, δ|U denotes the binary relation δ ∩ U2 on U .
Sometimes, if it does not cause confusion, we write δ instead of δ|U .

Proposition 8. ([5], Lemma 2.3.) For any U ⊆ A, A|U is an algebra in which
any term and any polynomial is a basic operation.

If δ is compatible and reflexive in A, then δ|U is compatible on A|U . Thus
δ 7→ δ|U induces a mapping from Quo A to Quo A|U (and from Con A to Con A|U ),
these mappings are meet homomorphisms.
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If there is an idempotent unary polynomial e such that e(A) = U , then δ 7→ δ|U
is a surjective lattice homomorphism from Quo A to Quo A|U .

Proposition 9. If U is an (α, β)-minimal set, then A|U is an (α, β)-minimal
algebra.

The next lemma is immediate from the definition of minimality.

Lemma 10. Suppose A is finite, α, β ∈ Quo A such that α < β and A is (α, β)-
minimal. Then A is also

• (α−1, β−1)-minimal.
• (α∧γ, β∧ δ)-minimal and (α∨γ, β∨ δ)-minimal for any γ, δ ∈ Quo A such

that A is also (γ, δ)-minimal.
• (γ, δ)-minimal whenever (γ, δ) is a subquotient of (α, β).

�

Lemma 11. Suppose that an algebra A is minimal with respect to one of its qua-
siorder quotients. Then A is also minimal with respect to either a congruence
quotient or a quotient whose quasiorders have coinciding congruence parts.

Proof. Choose β ∈ Quo A so that there is a quasiorder α such that A is (α, β)-
minimal, and β is minimal among such quasiorders. According to the previous
lemma, for any γ ∈ Quo A either γ ≥ β or α ∧ γ = β ∧ γ.

If β is a congruence, take γ = α−1 < β to deduce α∧α−1 = β∧α−1 = (β∧α)−1 =
α−1, whence α is a congruence. If β is not a congruence, choosing γ = β−1 yields
that the congruence part of β is in α. �

Definition 12. The pair (α, β) is called a quasiorder tame quotient (congruence
tame quotient) if there is an (α, β)-minimal set U and an idempotent unary poly-
nomial e such that e(A) = U , and α|U < δ|U < β|U for all α < δ < β in Quo A (in
Con A).

The following is parts of Theorems 2.8. and 2.11. of [5] stated for quasiorders.
The proofs there can be applied word-for-word, as they do not use symmetry.

Theorem 13. If α ≺ β in Quo A, then (α, β) is (quasiorder) tame.
If (α, β) is quasiorder tame, and U and V are (α, β)-minimal sets, then there is

an idempotent unary polynomial e such that e(U) = V and e(β) * α. �

The following is a not-so basic element of tame congruence theory (see Theorem
8.5, Lemma 4.17 and Lemma 4.20 of [5]).

Lemma 14. Let A be a finite algebra in a congruence modular variety. If A is
minimal to a congruence prime quotient, then it either is a two-element algebra, or
has a Mal’tsev polynomial.

4. Quasiorder lattices in congruence modular varieties

Lemma 15. Suppose that A is a finite algebra in a congruence modular variety
that is (α, β)-minimal for quasiorders α < β, where α∗ = β∗. Then β∗ has exactly
two blocks.

Proof. As β is not a congruence, there are elements a, b ∈ A such that a/β∗ ≺β/β∗ b/
β∗ and (a, b) 6∈ α. As A is in a congruence modular variety, it admits Gumm terms
p1, . . . , pn, q.
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For each 1 ≤ i ≤ n,

a = pi(a, a, a)
β−→ pi(a, a, b)

β−→ pi(a, b, b)
β−→ pi(b, b, b) = b,

so both pi(a, a, b) and pi(a, b, b) are in the β∗-block of either a or b. Notice that there
must be a j so that pj(a, a, b) and pj(a, b, b) are in different β∗-blocks, otherwise
by the Gumm identities pn(a, b, b) would be in the β∗-block of a, which contradicts

b = q(a, a, b)
β−→ q(a, b, b) = pn(a, b, b).

The unary polynomial pj(a, x, b) thus maps (a, b) to a β\α-edge (as α∗ = β∗,
any edge with source in the β∗-block of a and target in the β∗-block of b must not
be in α). By the (α, β)-minimality of A, pj(a, x, b) must be a bijective polynomial,
but as

a = pj(a, x, a)
β−→ pj(a, x, b)

β−→ pj(b, x, b) = b,

this polynomial maps A to the union of the β∗-blocks of a and b. Thus β∗ only has
two blocks. �

Lemma 16. Let A be a finite algebra in a congruence modular variety. If A is
minimal to a quasiorder quotient, then it either is a two-element algebra, or has a
Mal’tsev polynomial.

Proof. By Lemma 11, A is minimal to either a congruence quotient or a quasiorder
quotient (α, β) satisfying α∗ = β∗. In the second case, by Lemma 15, β∗ has
two blocks. This is only possible if α = β∗, but then by Lemma 10, A is also
(α, 1A)-minimal.

Hence, A is necessarily minimal to a congruence quotient, and obviously, it
must then be minimal to a congruence prime quotient. By Lemma 14, the proof is
done. �

There is one more ingredient we need: when substituting an algebra into the one
induced by a minimal set (with respect to some quasiorder prime quotient), one
does not leave the class of algebras generating a congruence modular variety.

Proposition 17. If A admits Gumm-terms, α ≺ β in Quo A, and U is an (α, β)-
minimal algebra, then A|U also admits Gumm-terms.

Proof. (α, β) is tame by Theorem 13, so by Proposition 8, there is an idempotent
unary polynomial e of A such that e(A) = U . For any k-ary polynomial t of A the
k-ary polynomial e(t) is defined by

e(t)(x1, . . . , xk) = e(t(x1, . . . , xk)),

this is a term on A|U . Therefore, if p0, . . . , pn, q are Gumm-terms on A, then
e(p0), . . . , e(pn), e(q) are Gumm-terms on A|U . �

Theorem 18. Let A an algebra in a locally finite congruence modular variety, and
denote by δ the transitive closure of a compatible reflexive relation δ on A. The
equality ρ ∩ σ = ρ ∩ σ is satisfied for arbitrary reflexive compatible relations ρ, σ
of A. Thus taking transitive closures induces a homomorphism from the lattice of
compatible reflexive relations of A to Quo A.

Proof. Suppose ρ ∩ σ < ρ ∩ σ. It can be assumed that A is finite, as if (a, b) is an
element of the right side and not of the left, there are elements c1, . . . , ck, d1, . . . , dl ∈
A such that a

ρ−→ c1
ρ−→ . . .

ρ−→ ck
ρ−→ b and a

σ−→ d1
σ−→ . . .

σ−→ dl
σ−→ b, and the elements

a, b, c1, . . . , ck, d1, . . . , dl generate a finite counterexample.



6 QUASIORDER LATTICES IN CONGRUENCE MODULAR VARIETIES

Take a ν ∈ Quo A so that ρ ∩ σ ≺ ν ≤ ρ ∩ σ. It can be assumed that A is a
(ρ ∩ σ, ν)-minimal algebra, because otherwise, its restriction to a minimal set will
yield a counterexample of smaller cardinality.

By Lemma 16, A is either a two-element algebra, or has a Mal’tsev polynomial.
The first case is impossible: it is very easy to see that this theorem does not have
a two-element counterexample. In the second case, all the reflexive compatible
relations of A are tolerances: By Theorem 2 of [1] (what this theorem generalizes),
this is a contradiction. �

Theorem 19. Suppose that A is a finite algebra in a congruence modular variety.
Then Con A and Quo A satisfy the same lattice identities.

Proof. Obviously, any identity satisfied by Quo A is also satisfied by Con A. Sup-
pose that the converse is not true, that there is a lattice identity p ≈ q that holds
in Con A, and does not hold in Quo A. We will assume two things. Firstly, that
p ≤ q is an identity that holds in all lattices (and so p ≈ q is equivalent to p 6< q).
Secondly, that A is a minimal counterexample, in the sense that for every B with
smaller cardinality, if B lies in a congruence modular variety, and Con B satisfies
p ≈ q, then Quo B also satisfies p ≈ q.

The fact that p ≈ q is not satisfied by Quo A means that there are quasiorders
α1, . . . , αn, µ, ν of A such that

p(α1, . . . , αn) ≤ µ ≺ ν ≤ q(α1, . . . , αn)

holds in Quo A (p and q are assumed to be n-ary). For a (µ, ν)-minimal set U ,
the algebra A|U is in a congruence modular variety by Proposition 17, Quo A|U
does not satisfy p ≈ q (because of Proposition 8 and µ|U 6= ν|U ), but Con A|U does
(because it is a homomorphic image of Con A by Proposition 8 and Theorem 13).

Therefore, by the minimality assumption, A must be (µ, ν)-minimal. By Lemma
16, it is either a two-element algebra or has a Mal’tsev polynomial. Both are
impossible. In the first case the congruence lattice of the algebra is isomorphic
to the two-element lattice, and the quasiorder lattice is isomorphic either to the
same, or to its direct square, so they satisfy the same identities. In the second case,
Quo A = Con A by Proposition 3. �

Corollary 20. Suppose that P is a lattice identity so that each variety whose
congruence lattices satisfy P is congruence modular. Then if all congruence lattices
of a locally finite variety satisfy P, then so do all the quasiorder lattices of the
variety.

We note that the condition here for P is weaker then the condition that it should
be a stronger lattice identity than modularity. For example, the so-called Arguesian
identity is a weaker lattice identity than modularity, but a variety is congruence
Arguesian precisely if it is congruence modular (see [6]).

Problem 21. For which lattice identities is it true that if the congruence lattices
of a locally finite variety satisfy it, then so do the quasiorder lattices of the variety?
Does the answer change without assuming locally finiteness? In particular, is it true
that for any lattice identity stronger than modularity, if the congruence lattices of
the variety satisfy it then so do the quasiorder lattices?

Problem 22. Is Corollary 20 true for quasi-identities?
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Problem 23. Is there a general way of obtaining Quo A from Con A for a finite
A in a congruence modular variety using the H, S, P operators? (According to 19,
they are in the same lattice variety.)

We note that the answer to the last problem is given in [2] for lattices: the
quasiorder lattice of a lattice is isomorphic the direct square of the congreuence
lattice.
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