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Chapter 1

Introduction

Modern algebra’s most essential concept is arguably the congruence relation.
The study of any algebraic structure having a nontrivial congruence can be
started by studying its typically simpler factor. Moreover, for the classical alge-
braic structures the congruence is determined by a subalgebra, again, typically
a simpler structure. The natural structure formed by the congruences of an
algebra is a lattice (or rather, in the case of infinitely many congruences, an
algebraic lattice).

On the other hand, certain classes of structures–notably, lattices themselves–
have congruences that are not determined by a particular subalgebra (or any
particular congruence class). Still, the congruences of these structures are of
great importance, but for lattices and semilattices in particular, there is an other
kind of binary relation that is more closely associated with the structure: the
so-called natural order. There is no general definition for what makes an order
natural (except by untrustworthy ideologues), but a common requirement seems
to be that the order should be compatible with the operations of the algebra.
A notable exception is the natural order on regular semigroups (see Chapter 6
of [13]), which is not generally compatible with the semigroup multiplication.

The obvious common generalization of congruences (compatible, reflexive,
transitive, symmerical binary relations) and compatible orders (the same, with
antisymmetry instead of symmetry) are quasiorders (the same, without sym-
metry). The quasiorders of an algebra (unlike the compatible orders) form a
lattice.

Tame congruence theory, developed in the 1970s and 1980s, became a strong
tool in the study of universal algebra and related fields such as complexity the-
ory. It provides connections between some transitivity properties of the poly-
nomial clone of a finite algebra, the congruence lattices in the variety generated
by this algebra, and the Mal’tsev classes this variety belongs to, among other
things. The main purpose of this thesis is to bring quasiorder lattices into this
mix.

As a quasiorder can be factored to a symmetrical and an antisymmetrical
part, it is natural to first study parts of the quasiorder lattice that only contain
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compatible orders (these may be called “order lattices”, though this is a slightly
confusing term). Such a study can be found in Chapter 3, which is essentially
a reprint of [15] (with some definitions moved to Chapter 2). As it turns out,
order lattices can be completely general on infinite underlying sets, but must
have a particular property on finite ones: they have a nontrivial distributive
homomorphic image, unless they themselves are trivial. In other words, they
satisfy a “solvability for distributivity” property (actually, they also satisfy a
somewhat stronger property). Instead of finiteness of the underlying set, one
may consider only orders satisfying some finiteness condition. The most natural
of these is that the orders do not contain infinite chains. The same restrictions
apply to lattices of such orders as when the finiteness of the underlying set is
assumed. The chapter is mostly about a weaker condition: only the DCC is
required of the orders. In this case, it turns out there are still restrictions for
the lattice, but not as strong as in the case of finite underlying set. This chapter
is essentially independent of the subsequent ones.

A main goal of this thesis is to study connections between the congruence and
the quasiorder lattice of a finite algebra. The closest connections are proved for
algebras in congruence modular varieties, in which case the two lattices generate
the same lattice variety (Theorem 6.7). This is a common generalization of
two theorems in the paper co-written by the author and his advisor ([18]).
Theorem 6.7 is from [16]. There are further (if weaker) connections between the
congruence and quasiorder lattices of an algebra, and particularly the sets of all
congruence and all quasiorder lattices of algebras of locally finite varieties.

Chapter 4 provides a very brief summary of tame congruence theory, only
to provide the definitions and theorems needed for the last two chapters. It
contains no proofs, safe for those concerning quasiorders instead of congruences.
The chapter is not meant as an introduction to the topic, but it should be enough
for a reader desiring to verify the subsequent proofs.

The heart of tame congruence theory is the types assigned to any covering
pair in a congruence lattice of a finite algebra. This assignment has a more-or-
less natural counterpart for the quasiorder lattice, which is described in Chapter
5 (based on [17]). Chapter 6 describes the properties of quasiorder lattices in
varieties that omit certain types. This part is based on [18] and [17]. Certain
parts of the former are changed for the sake of internal cohesion. In particular,
Theorem 19 of [18] is essentially the same as Corollary 6.21 of this thesis, and
is proved there without using quasiorder types.

To understand this thesis, the reader should have some very basic knowledge
about universal algebra and lattice theory. A single course in each is probably
sufficient.

3



Chapter 2

Basics

In this thesis, an algebra always means what is sometimes called a universal
algebra: a pair A = (A, {fi : i ∈ I}), where A is a set, I is an index set, and
for all i ∈ I, fi is an operation of some arity on A. The fi are called the basic
operations of the algebra, the set I the set of operations symbols. Usually, the
operation symbol and the corresponding basic operation–i and fi–will not be
distinguished by notation.

2.1 Lattices of compatible relations

Definition 2.1. A k-ary relation R is compatible with the n-ary relation f
(both given on the same set A) if any choice of (ai,j)n×k ∈ An×k satisfying

(ai,1, . . . , ai,k) ∈ R

for all 1 ≤ i ≤ n also satisfies

(f(a1,1, . . . , an,1), . . . , f(a1,k, . . . , an,k)) ∈ R.

A relation R on A is compatible with the algebra A (with the same under-
lying set) if it is compatible with all of its basic operations.

It is obvious that the intersection of any number of compatible relations of
the same arity is again a compatible relation. Therefore, for any algebra and
any natural k the set of k-ary compatible relations form a (complete) lattice.
In this thesis we are concerned only with the k = 2 case, acknowledging that
higher arity compatible relations are central to the study of clones.

Definition 2.2. The elements of a binary relation ρ are called edges. If (a, b)
is an edge, a is called the source, b the target of this edge. In the case a = b,
the edge is called a loop. A ρ-path is a sequence of edges c0, . . . , cs such that for
each 0 ≤ i < s, (ci, ci+1) is an edge of ρ.

Instead of (a, b) ∈ ρ we will often write a
ρ−→ b.
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Definition 2.3. The set of all reflexive and compatible binary relations of
an algebra A is denoted by R(A). The symmetric elements of R(A) are called
tolerances, the transitive elements quasiorders, and the symmetric and transitive
ones congruences, denoted by Tol A, Quo A, and Con A respectively. All of
these sets are closed to intersection, hence they form lattices with respect to
inclusion, the lattices are denoted the same way.

For a binary relation ρ, Tr ρ denotes the transitive closure of ρ.

It is important to note that while Quo A is a subset of R(A), and Con A
is a subset of Tol A, they are generally not sublattices, for it can happen, for
example, that the smallest tolerance containing two congruences (i.e. their
join in the tolerance lattice) is not a congruence. (An example can be easily
constructed in an algebra with empty set of basic operations.) On the other
hand, Con A ≤ Quo A and Tol A ≤ R(A) are always true.

Definition 2.4. For a set A, PreA denotes the set (and lattice) of all preorders,
i.e. reflexive and transitive binary relations, while EqA the set of equivalences,
i.e. reflexive, transitive and symmetric binary relations.

Our use of the term “quasiorder” thus differs from the more regular usage:
usually “quasiorder” and “preorder” are used interchangeably. Note that the
preorder lattice is a special quasiorder lattice, and the equivalence lattice is a
special congruence lattice (one can consider a set as an algebra with empty set of
operations). As this work is predominantly about quasiorders and congruences,
we will not specifically define the tolerance lattice and the lattice of reflexive
compatible relations of algebras with an empty set of operations. (Actually,
these are rather uninteresting, being lattices that are direct powers of the two-
element lattice.)

The nature of the join operation in a quasiorder lattice (which is the same
as in the preorder lattice of the underlying set) is as follows:

Proposition 2.5. For α, β ∈ Quo A, α ∨ β = Tr(α ∪ β).

Again, this differs from the join in R(A) and Tol A. In particular, join in
R(A) and Tol A cannot be described without the operations of the algebra: if A
and A′ are algebras with the same underlying set, ρ and τ are binary relations
on this set that are tolerances of both A and A′, it can happen that ρ∨τ differs
in Tol A and Tol A′.

Definition 2.6. The preorders α and β commute if

α ∨ β = α ◦ β := {(a, b) : ∃c : a
α−→ c

β−→ b}.

This can be equivalently stated as α ◦ β = β ◦ α.
R(A), Quo A and PreA can be naturally made into involutive lattices with

the involution δ 7→ δ−1, where δ−1 is defined by

(a, b) ∈ δ−1 ⇔ (b, a) ∈ δ.
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While this natural involution will be used numerously, it should be noted that
this thesis is only concerned for the above as lattices (this primarily matters
when considering sublattices).

For any preorder δ on A there correspond two equivalences: δ∗ := δ ∧ δ−1
and δ∨δ−1. We note that some authors use the notation δ∗ for the latter instead
of the former. There is also a poset that naturally corresponds to δ: the factor
of δ by δ∗. (This is a poset with underlying set A/δ∗, with (u, v) ∈ δ/δ∗ iff there
is (a, b) ∈ δ such that a/δ∗ = u and b/δ∗ = v. While this definition can be used
to factor any preorder with any equivalence, it is natural only if the equivalence
is a subset of the preorder.)

2.2 The term clone and the polynomial clone

Definition 2.7. For natural 1 ≤ i ≤ n, the i-th n-ary projection is the n-ary
operation satisfying e(x1, . . . , xn) = xi for all x1, . . . , xn ∈ A.

We do not use any special notation for projections, for in our estimation
they more often hinder than help readability.

Definition 2.8. A set C consisting of some operations on a set A is called a
clone on A if it satisfies the following two properties:

• C contains the i-th n-ary projection on A for all 1 ≤ i ≤ n,

• if f ∈ C is n-ary, and g1, . . . , gn ∈ C are all k-ary, then the k-ary operation
f(g1, . . . , gn) is also in C (in other words, C is closed to composition).

It is obvious that the intersection of any number of clones on a given set is
itself a clone. This has two immediate consequences: the first is that the clones
on a set A form a complete lattice (with respect to inclusion), this is denoted by
CloA. The second is that for any set D of operations on A, there is a smallest
clone C containing D, called the clone generated by D.

Definition 2.9. An operation f on A is idempotent if f(a, . . . , a) = a for all
a ∈ A. The set of idempotent operations on A is a clone, denoted by Id(A).

A constant is a 0-ary operation. However, an operation is constant (without
article) if its value is not dependent of its input.

Definition 2.10. The clone generated by all the basic operations of an algebra
A is called the term clone of A, denoted by Term A. Its elements are called
terms, the set of n-ary terms is denoted by Termn A.

The clone generated by the union of all the basic operations and the con-
stants of an algebra A is called the polynomial clone of A, denoted by Pol A.
Its elements are called polynomials, the set of n-ary polynomials is denoted by
Poln A.

Proposition 2.11. For any p ∈ Polk A, there is a natural n, a term t ∈
Termn A, and elements ck+1, . . . , cn ∈ A such that

p(x1, . . . , xk) = t(x1, . . . , xk, ck+1, . . . , cn).
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Proof. This is straightforward: the set of all p satisfying the statement of the
proposition obviously includes all the constants and all the terms, closed to
composition, and contains only polynomials, therefore it is the set of the poly-
nomials.

Proposition 2.12. Any relation that is compatible with an algebra is also com-
patible with any term of the algebra. If the relation is binary and reflexive, it is
compatible with any polynomial of the algebra.

2.3 Varieties, quasivarieties and Mal’tsev classes

This section is based on [3] and [22].
The signature of an algebra A = (A, {fi : i ∈ I}) is the mapping

σ : I 7→ N0, i 7→ ar fi.

The pair (i, ar fi) (an operation symbol with its arity) is called an abstract
operation. Thus, a signature is a collection of abstract operations.

Here we need abstract clones, which are the same as regular (sometimes called
operational) clones, with the exception that the notion of the n-ary operation is
abstracted.

Definition 2.13. A set C consisting of some abstract operations is called an
abstract clone if it satisfies the following properties:

• C contains an abstract operation called the j-th n-ary projection for all
1 ≤ j ≤ n,

• if f ∈ C is n-ary, and g1, . . . , gn ∈ C are all k-ary, then there is a k-ary
operation f(g1, . . . , gn) in C (in other words, C is closed to composition),

• if e is the j-th n-ary projection, and g1, . . . , gn ∈ C are all k-ary, then
e(g1, . . . , gn) = gj .

Just as for regular clones, abstract clones are closed to intersection, thus one
can talk about the abstract clone generated by some abstract operations. Also,
any regular clone can be considered as an abstract clone.

Definition 2.14. For each signature σ, the term clone of σ, denoted by Termσ,
is the abstract clone satisfying:

• Termσ is generated by the abstract operations (i, ar fi) of σ,

• for any n-ary f and any k-ary g1, . . . , gn in Termσ, either f is a projection,
or f(g1, . . . , gn) differs from each of the gj ,

• if f is an n-ary, f ′ is an n′-ary, g1, . . . , gn, g
′
1, . . . , g

′
n′ are all k-ary abstract

operations of Termσ, and

f(g1, . . . , gn) = f ′(g′1, . . . , g
′
n′),

then either f or f ′ is a projection, or f = f ′, n = n′, and gj = g′j for all j.
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It is easy to see that Termσ is well-defined. It is a free abstract clone in the
following sense: if an other abstract clone D is generated by the same abstract
operations, then the identical mapping on this common generator extends into
a surjective clone homomorphism from Termσ onto D (for abstract clones, a
homomorphism is a mapping that maps the i-th n-ary projection for into the
i-th n-ary projection for all i and n, and preserves compositions).

If A is an algebra with signature σ, then the abstract operations in Termσ
naturally induce operations in Term A. Again, we will not distinguish between
the operation symbol and the induced operation in notation.

Definition 2.15. Suppose A has signature σ, and p, q ∈ Termσ. Then A is
said to satisfy the identity p ≈ q if p and q induce the same operations on A,
or in other words, if ar p = ar q, and p(a1, . . . , aar p) = q(a1, . . . , aar p) for all
a1, . . . , aar p ∈ A.

The set of algebras of signature σ is called a variety if there is a set Σ of
identities in σ such that an algebra is in the set if and only if it satisfies all
identities of Σ.

The term clone a variety V of signature σ, denoted by TermV, is the factor of
Termσ by Σ, in other words, the abstract operations of TermV are the ∼-classes
of Termσ, where p ∼ q is defined by p ≈ q ∈ Σ, and the projections and the
compositions are inherited from Termσ. The set of k-ary abstract operations
of TermV is denoted by Termk V.

Birkhoff’s famous theorem states.

Theorem 2.16. A set of algebras of the same signature is a variety if and only
if it is closed to taking subalgebras, homomorphic images, and direct products.

Definition 2.17. An algebra is finitely generated if there is a finite set of its
elements so that it does not have a proper subalgebra containing all these ele-
ments.

A variety V is finitely generated if there is a finite algebra A that generates
V (in other words, V is the set of algebras that satisfy any identity that A
satisfies).

A variety is locally finite if any finitely generated algebra in it is finite.

Proposition 2.18. If a variety is finally generated, then it is locally finite.

Definition 2.19. Suppose that p1, . . . , pk, q1, . . . , qk, p, q ∈ Termσ are all n-ary.
Then the formula

(p1 ≈ q1 ∧ . . . ∧ pk ≈ qk) → p ≈ q

is called a quasi-identity. An algebra A of signature σ satisfies this quasi-
identity if for any a1, . . . , an ∈ A satisfying pi(a1, . . . , an) = qi(a1, . . . , an) for
all i, p(a1, . . . , an) = q(a1, . . . , an) is also satisfied.

A set of algebras is a quasivariety, if membership of it can be characterized
by the satisfaction of a set of quasi-identities.
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The membership of an algebra in a variety/quasivariety depends on whether
a certain fixed composition of its basic operations satisfies the needed identi-
ties. The word “fixed” is important here. For example, K-algebras (vector
spaces with associative bilinear multiplication) are not Lee-algebras, because
Lee-algebras satisfy the identity ab = −ba, while K-algebras do not (the Lee-
bracket is written as multiplication so that it has the same signature as a K-
algebra). Nevertheless, with a ? b := ab − ba, a K-algebra “becomes” a Lee-
algebra: any identity satisfied by Lee-algebras is also satisfied by K-algebras,
one needs only to change the way of composition of the basic operations. This
is the basis of the idea of Mal’tsev-classes.

Definition 2.20. Suppose that t1, . . . , tn are abstract operations forming the
signature σ, p1, . . . , pk, q1, . . . , qk ∈ Termσ so that pi and qi have the same
arities for each i. Then the strong Mal’tsev class characterized by the identities
p1 ≈ q1, . . . , pk ≈ qk is the set of algebras A having terms t1, . . . , tn ∈ Term A
so that for all j, ar tj = ar tj , and the clone homomorphism induced by tj 7→ tj
maps p1, . . . , pk, q1, . . . , qk into terms p1, . . . , pk, q1, . . . , qk ∈ Term A satisfying
pi ≈ qi for all i.

A class of algebras K is a Mal’tsev-class if there are strong Mal’tsev-classes
K1 ⊆ K2 ⊆ . . . such that K =

⋃
Ki.

A variety is in a Mal’tsev-class if all of its algebras are.

For example, grupoids with commutative multiplication form a variety, while
algebras having a binary commutative term form a strong Mal’tsev-class. The
algebras in a Mal’tsev-class do not all have the same signature. Notice that if
an algebra is in a Mal’tsev-class, then so is the variety generated by it.

The most well-known Mal’tsev-class is the original one.

Definition 2.21. A ternary operation t is called a Mal’tsev-operation if it
satisfies

t(x, x, y) ≈ t(y, x, x) ≈ y.

A term (polynomial) of an algebra that is a Mal’tsev-operation is called a
Mal’tsev-term (Mal’tsev-polynomial).

The Mal’tsev-class associated with these identities has a very important link
with congruence lattices.

Definition 2.22. An algebra is congruence permutable if any two congruences
of it permute in the sense of Definition 2.6. A variety is congruence permutable
if all of its algebras are.

Theorem 2.23. An algebra has a Mal’tsev-term if and only if the variety gen-
erated by it is congruence permutable.

The classical algebraic structures have a Mal’tsev-term: in a group, xy−1z is
one, and rings, modules, fields all contain an underlying (commutative) group.
Unfortunately, this excludes these structures from the scope of this thesis for
the following reason:
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Proposition 2.24. If A has a Mal’tsev-polynomial, then R(A) = Tol A, and
Quo A = Con A.

Proof. For any ρ ∈ R(A) and any (a, b) ∈ ρ,

b = t(a, a, b)
ρ−→ t(a, b, b) = a,

as the Mal’tsev-polynomial t is compatible with ρ and ρ is reflexive. Therefore, ρ
is a tolerance. The second statement is an obvious consequence of the first.

Definition 2.25. The ternary terms t1, . . . , tn are called Hagemann-Mitschke
terms if they satisfy the following identities:

y ≈ t1(x, x, y)

ti(x, y, y) ≈ ti+1(x, x, y) for all i

tn(x, y, y) ≈ x

These were introduced in [20] to characterize congruence n+1-permutability
of a variety: the property that if α and β are congruences of an algebra in the
variety, then α∨β = α◦β ◦α◦β ◦ . . . , where the number of ◦-s on the right side
is n. For n = 1, this gives permutability, and the Hagemann-Mitschke-term in
this case is a Mal’tsev-term.

Proposition 2.26. If A has Hagemann-Mitschke terms, then Quo A = Con A.

Proof. If ρ ∈ Quo A, and (a, b) ∈ ρ, then

b = t1(a, a, b)
ρ−→ t1(a, b, b) = t2(a, a, b)

ρ−→ . . .
ρ−→ tn(a, b, b) = a.

So ρ is a congruence.

It is folklore that a converse of this is also true: if in a variety all quasiorders
are congruences, then the variety has Hagemann-Mitscke terms.

2.4 Semidistributivity, lower and upper bounded
lattices

Probably the most prominent lattice quasi-identities (discounting those equiv-
alent to lattice identities, of course) are meet and join semidistributivity. The
former is

x ∧ y = x ∧ z → x ∧ y = x ∧ (y ∨ z),

the latter is its dual. A lattice is semidistributive if it satisfies both of these
quasi-identities.

The smallest-cardinality non-semidistributive lattice is M3. The lattice D1,
and its dual, D2, are examples for lattices only satisfying one of the semidis-
tributive identities (the former is join, the latter is meet semidistributive). By
Dedekind’s condition for modularity and Birkhoff’s for distributivity:
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Figure 2.1: The lattices M3, D1, and D2

Proposition 2.27. If a modular lattice is either meet or join semidistributive,
then it is distributive.

Lower and upper bounded lattices were introduced by McKenzie in [25]. Day
in [9] characterized them so it is decidable in polynomial time whether a finite
lattice is lower bounded. Freese, Jez̆ek, and Nation’s book Free Lattices [10]
contains a thorough discussion of these notions. We give here a brief summary.
Note that we do not use McKenzie’s original definition using free lattices.

An element l of a lattice L is join irreducible if there are no elements l1, l2 < l
such that l1 ∨ l2 = l. It is completely join irreducible if either it is the smallest
element of the lattice, or there is a largest element l∗ among all the elements
of the lattice smaller then l. If an element is completely join irreducible, then
it is also join irreducible, and for finite lattices the converse is also true. The
element is join prime if for all l1, l2 satisfying l1 ∨ l2 ≥ l, either l1 ≥ l or l2 ≥ l.
Join primes are join irreducibles. For distributive lattices, the converse is also
true.

All elements of a lattice has a d-rank, defined as follows. The elements with
rank zero are the join primes. The elements with rank one are those elements l
satisfying

• l is not a join prime,

• for all a1, . . . , ak satisfying a1 ∨ · · · ∨ ak ≥ l there are join prime elements
b1, . . . , bn such that b1 ∨ · · · ∨ bn ≥ l, and for all index i there is an index
j with bi ≤ aj .

Then recursively, the elements with rank s are those elements l satisfying

• l does not have a rank smaller then s,

• for all a1, . . . , ak satisfying a1 ∨ · · · ∨ ak ≥ l there are elements b1, . . . , bn
with rank smaller then s such that b1 ∨ · · · ∨ bn ≥ l, and for all index i
there is an index j with bi ≤ aj .

An element of a lattice that does not have a finite rank is said to have infinite
rank. Denote by d(l) the rank of an element l, by Ds(L) the set of elements
with rank at most s, and by D(L) the set of elements of finite rank.
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Definition 2.28. A lattice is lower bounded, if it is finitely generated and
satisfies D(L) = L.

The join dependency relation (also denoted by D) is a binary relation on the
set of join irreducible elements of L. It is defined by

aDb⇔ a 6= b, ∃c : ( a ≤ b ∨ c, ∀d < b : a 6≤ d ∨ c).

If b is completely join irreducible, this is simplified into

aDb⇔ a 6= b, ∃c : ( a ≤ b ∨ c, a 6≤ b∗ ∨ c).

Theorem 2.29. ([10], Theorem 2.38) If a lattice is finitely generated, then it
is lower bounded if and only if the graph induced by the relation D does not
contain an infinite (directed) path.

Of course, for finite lattices, not containing infinite paths is the same as not
containing cycles.

There is yet another characterization of lower boundedness for finite lattices.

Definition 2.30. A subset K ⊆ L of the elements of the lattice L is called
convex if for any l1, l2, l3 ∈ L, l1 < l2 < l3 and l1, l3 ∈ K implies l2 ∈ K. It is
called a lower pseudointerval if it is convex and has a smallest element, and an
interval if it is convex and has both a smallest and a largest element.

Definition 2.31. If L is a lattice, and K ⊆ L is convex, then the doubling of L
by K, denoted by L[K], is the lattice with underlying set (L\K) ∪ (K × {b, t})
satisfying the following conditions:

• for any k1, k2 ∈ K,

(k1, b) ≤L[K] (k2, b)⇔ (k1, b) ≤L[K] (k2, t)⇔
(k1, t) ≤L[K] (k2, t)⇔ k1 ≤L k2,

• for any k1, k2 ∈ K, (k1, t) 6≤ (k2, b),

• for any k ∈ K and l ∈ L\K,

(k, b) ≤L[K] l⇔ (k, t) ≤L[K] l⇔ k ≤L l

and
(k, b) ≥L[K] l⇔ (k, t) ≥L[K] l⇔ k ≥L l,

• for any l1, l2 ∈ L\K, l1 ≤ l2 is true in L[K] iff it is true in L.

Theorem 2.32. ([10], Corollary 2.44) If L is lower bounded, and K is a lower
pseudointerval of it, then L[K] is also lower bounded. Furthermore, each finite
lower bounded lattice can be obtained by the one-element lattice with a succession
of doubling of lower pseudointervals.
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Figure 2.2: A join semidistributive, but not lower bounded lattice

A lattice is upper bounded if its dual is lower bounded, and bounded if it is
both upper and lower bounded. Some authors use the term McKenzie-bounded
instead, in order to avoid confusion with the other use of the term “bounded
lattice”, namely, a lattice with both smallest and largest element. In this thesis,
a bounded lattice always means a lattice bounded in the sense of McKenzie. A
lattice with both smallest (resp. largest) element will be referred to as a lattice
with 0 (resp. a lattice with 1). Furthermore, if an element of a lattice is denoted
by 0 (resp. 1), it is automatically assumed to be the smallest (resp. largest)
element of that lattice. For the sake of simplicity, we denote with 0B (resp.
1B) the equality (resp. the full) relation on the underlying set of the algebra B
instead of 0ConB or 0QuoB.

Theorem 2.33. ([10], Corollary 2.17) The class of finite lower (upper) bounded
lattices is closed to taking sublattices, homomorphic images, and finite direct
products.

Theorem 2.34. ([10], Theorem 2.20) All lower (upper) bounded lattices are
join (meet) semidistributive.

The converse is not true, as Figure 2.2 shows.
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Chapter 3

Lattice representations with
DCC posets

Probably the most basic representation theorem of lattice theory is Whitman’s
result stating that every lattice is embeddable into the lattice of equivalences of
a large enough set [31]. A complementary result is proved by Achein in [1]:

Theorem 3.1. For any lattice L there is a set X and an injective homomor-
phism γ : L 7→ PreX so that the image of this homomorphism contains only
posets. Moreover, X and γ can be chosen so that the elements of γ(L) pairwise
commute.

This embeddability will be referred to as “L is representable as a lattice of
posets,” or more shortly, “L is representable with posets”. (The posets on a
given set do not form a lattice. Under a lattice of posets we mean a sublattice
of a preorder lattice containing only antisymmetric preorders.)

For finite lattices, the equivalance representation can be given on an underly-
ing finite set [28]. This is not true for the poset representation. Sivak in [30] gave
a characterization for lattices representable as lattices of posets on a finite set
using the notion of small congruences of a lattice (a kind of congruences where
every congruence class has at most two elements). In [2], the authors note that
this characterization precisely describe the class of finite lower bounded lattices.

Theorem 3.2. A finite lattice is representable with posets on a finite underlying
set iff it is lower bounded.

This can be seen as a generalization of a theorem of Caspard [4], namely that
the lattice of permutations of a finite set is (both lower and upper) bounded.
Here the lattice of permutations means the lattice induced by the following
order: we fix a linear order on the underlying set, and a permutation π1 will
be smaller then the (distinct) permutation π2 iff for every pair i < j of the
underlying set, π1(i) > π1(j) implies π2(i) > π2(j). The result about lattices of
posets is a generalization of this because the lattice of permutations can be seen
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as dually isomorphic to a lattice of posets: for every permutation π, take the
poset ≤π defined by i ≤π j iff either i = j, or i < j and π(i) < π(j). We leave
it to the reader to check that π 7→≤π indeed defines an injective dual lattice
homomorphism.

Semenova in [29] proves something more general (see Proposition 1.6. and
Theorem 4.6.): any finite lattice embeddable into the suborder lattice of a poset
containing no infinite chain must be lower bounded, and all lower bounded
lattices are embeddable into such a lattice. Being embeddable into a suborder
lattice of a poset containing no infinite chain means (at least for lattices with a
largest element) of being representable with posets satisfying both the ascending
and descending chain conditions. (A poset satisfies DCC and ACC if and only
if it has no infinite chain.)

This chapter is concerned by the following question: what if only the DCC
is required of the posets? As it is a weaker condition, all lower bounded lat-
tices are representable in such a way, but even among finite lattices, there are
representable ones that are not lower bounded.

We give an algorithmic characterization of representable finite lattices, and
a general necessary condition. The latter is a kind of weaker version of lower
boundedness: instead of D-cycles, it forbids cycles of D-cycles. The proofs can
be adapted for Semenova’s aforementioned results.

3.1 Representation of finite lattices

The problem of whether a finite lattice is representable with DCC posets (i.e.
is isomorphic to a lattice of DCC-posets) is decidable, as the following theorem
shows.

Definition 3.3. For a finite lattice L, CL denotes the set of nontrivial join
covers of join irreducibles, i.e. the set

{(l, l1, . . . , lk) ∈ J(L)k+1 : l ≤ l1 ∨ l2 ∨ · · · ∨ lk,
l 6≤ (l1)∗ ∨ l2 ∨ · · · ∨ lk, l 6≤ l1 ∨ (l2)∗ ∨ · · · ∨ lk, . . . , l 6≤ l1 ∨ l2 ∨ · · · ∨ (lk)∗}

Theorem 3.4. A finite lattice L is representable with DCC posets if and only
if there is a mapping s : CL 7→ L satisfying the following:

• for any (l, l1, . . . , lk) ∈ CL, s(l, l1, . . . , lk) ∈ {l1, . . . , lk},

• s is symmetrical in all but the first variable, i.e. for any permutation
π ∈ Sk,

s(l, l1, . . . , lk) = s(l, lπ(1), . . . , lπ(k)),

• for the binary relations

TL := {(l, li) : (l, l1, . . . , lk) ∈ CL, s(l, l1, . . . , lk) 6= li}
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and

UL := Tr({(l, l) : l ∈ L}∪{(l, li) : (l, l1, . . . , lk) ∈ CL, s(l, l1, . . . , lk) = li}),

the relation UL ◦ TL does not contain a circle.

Proof. Firstly, suppose that there is such a mapping s.
We will give an algorithm that will yield a set X, partial orders γl ⊆ X2 for

all l ∈ L such that the mapping l 7→ γl is a lattice homomorphism from L into
PreX, and all γl satisfy DCC.

Begin with a set X(0) = {xl,1 : l ∈ L} ∪ {xl,2 : l ∈ L}, and for any l ∈ J(L)

define γ
(0)
l as a binary relation on X(0) whose only edge is (xl,1, xl,2).

Now we recursively define for all natural j and l ∈ J(L) the sets X(j) and

binary relations γ
(j)
l on X(j). Firstly, X(j) will be a set containing X(j−1), and

γ
(j)
l a relation containing γ

(j−1)
l . Secondly, for any (l, l1, . . . , lk) ∈ CL and any

(y1, y2) ∈ γ
(j−1)
l \(γ(j−1)l1

∨ · · · ∨ γ(j−1)lk
), add the elements xy1,y2,l,l1,...,lk,1, . . . ,

xy1,y2,l,l1,...,lk,k−1 to X(j). Use the notion xy1,y2,l,l1,...,lk,0 = y1, xy1,y2,l,l1,...,lk,k =
y2. For 0 ≤ r < k, add the edge (xy1,y2,l,l1,...,lk,r, xy1,y2,l,l1,...,lk,r+1) into one of

the γ
(j)
li

in a way that exactly one edge goes into each of the γ
(j)
li

, and the last

edge ((xy1,y2,l,l1,...,lk,k−1, y2)) goes into γ
(j)
s(l,l1,...,lk)

.

Finally, set X =
⋃
X(j) and for any l ∈ L set

γl = Tr({(x, x) : x ∈ X} ∪
⋃
{γ(j)l′ : j ∈ N, l′ ∈ J(L), l′ ≤ l}).

It is easy to see that all γl are partial orders on X, and that γl1 < γl2 iff l1 < l2.
(The inequality is strict because there is an l′ ∈ J(L) such that l′ ≤ l2 and
l′ 6≤ l1, and then (xl′,1, xl′,2) is in γl2\γl1 .)

We will prove that l 7→ γl preserves meets and joins. For the “join” part, as
l 7→ γl is order-preserving, it is enough to show that γl1∨l2 ≤ γl1 ∨ γl2 and to
do that, it is enough to show that for all l′ ∈ J(L) with l′ ≤ l1 ∨ l2, and all j,

γ
(j)
l′ ⊆ γl1 ∨ γl2 .

L is a finite lattice, so all its elements is a join of join irreducible elements:
l1 = p1 ∨ · · · ∨ pm, and l2 = q1 ∨ · · · ∨ qn. Now as l′ ≤ l1 ∨ l2 = p1 ∨ . . . pm ∨ q1 ∨
· · · ∨ qn,

γ
(j)
l′ ⊆ Tr(γ(j+1)

p1 ∪ · · · ∪ γ(j+1)
pm ∪ γ(j+1)

q1 ∪ · · · ∪ γ(j+1)
qn ) ⊆ γl1 ∨ γl2 .

For the “meet” part, take a (non-loop) edge (x1, x2) ∈ γl1 ∧ γl2 . If both
x1 and x2 are in X(0), there is an l′ ∈ J(L) such that (x1, x2) = (xl′,1, xl′,2).
Therefore, l′ ≤ l1 and l′ ≤ l2, so l′ ≤ l1 ∧ l2, and (x1, x2) ∈ γl1∧l2 .

Otherwise, it can be assumed that both x1 and x2 are in X(j), but x1 is not
in X(j−1), so x1 = xy1,y2,l′,l′1,...,l′k,r, where y1, y2 ∈ X(j−1), l′ ≤ l′1 ∨ · · · ∨ l′k, and

(y1, y2) ∈ γ(j−1)l′ \(γ(j−1)l′1
∨ · · · ∨ γ(j−1)l′k

). Suppose that x2 = xy1,y2,l′,l′1,...,l′k,r′ for

some r < r′, in which case (x1, x2) ∈ γl1 ∧ γl2 is only possible if

(xy1,y2,l′,l′1,...,l′k,r, xy1,y2,l′,l′1,...,l′k,r+1), . . . , (xy1,y2,l′,l′1,...,l′k,r′−1, xy1,y2,l′,l′1,...,l′k,r′)

∈ γl1 ∧ γl2 ,
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because any γl on X(j) coincides with the reflexive and transitive closure of γ
(j)
l .

Hence, l1, l2 ≤ l′r, . . . , l′r′−1, and thus l1∧ l2 ≤ l′r, . . . , l′r′−1, and (x1, x2) ∈ γl1∧l2 .

If x2 is not of the form xy1,y2,l′,l′1,...,l′k,r′ , then (again because γl on X(j) coin-

cides with the reflexive and transitive closure of γ
(j)
l ) (x1, x2) ∈ γl1 ∧ γl2 is only

possible if (x1, y2) and (y2, x2) are in both in γl1 ∧ γl2 . As y2 = xy1,y2,l′,l′1,...,l′k,k,
by the previous argument, (x1, y2) ∈ γl1∧l2 .

We still need that (y2, x2) ∈ γl1∧l2 . If x2 is in X(j−1), then we are done by
induction. Otherwise, by repeating to (y2, x2) what we did to (x1, x2), we will
get an y′1 ∈ X(j−1) such that it is enough to prove (y2, y

′
1) ∈ γl1∧l2 to prove

(y2, x2) ∈ γl1∧l2 . That, again, can be done by induction.
The only thing left to prove is that γ1 satisfies DCC (1 denoting the largest

element of L).
For any l ∈ L, the difficulty of l will denote the length of the longest UL ◦TL-

path starting from l. This is finite because L is a finite lattice, and UL ◦ TL
contains no circle.

An edge of the type (xl,1, xl,2) will be called an original edge, an edge of the
type

(xy1,y2,l,l1,...,lk,r, xy1,y2,l,l1,...,lk,r+1)

with r < k− 1 a lower part, an edge (xy1,y2,l,l1,...,lk,k−1, y2) an upper part of the
edge (y1, y2). An edge is a core edge if it either original, or a lower or upper part
of a (core) edge. Thus, all γl is the reflexive and transitive closure of the set of
the core γl edges. An edge is an upper edge if it of the form (xy1,y2,l,l1,...,lk,h, y2)
for some 0 < h < k.

Suppose (ai)i∈N is an infinite (strictly) decreasing sequence in γ1. It can be
assumed that all the (ai+1, ai) are core edges (otherwise, it is the concatenation
of core edges, which can be split to core edges). Now after any upper core edge
(xy1,y2,l,l1,...,lk,k−1, y2) in the sequence, the following edge is either an other
upper core one, or it is the lower core edge

(xy1,y2,l,l1,...,lk,k−2, xy1,y2,l,l1,...,lk,k−1),

after which the only possible lower core one is

(xy1,y2,l,l1,...,lk,k−3, xy1,y2,l,l1,...,lk,k−2),

and so on. It can be assumed that there is an upper core edge before reaching
(y1, xy1,y2,l,l1,...,lk,1), because otherwise one can exchange all these edges to their
concatenation (y1, y2), which is still a core edge. Thus, by concatenating any
upper part edge with all the lower part ones following it before the next upper
part, one gets a sequence of γ1-edges (bi+1, bi)i∈N such that all of those edges
are upper edges (though not necessarily cores).

The following claim presents an immediate contradiction to the existance of
such (bi)i∈N.

Claim 1. For any b = xy1,y2,l,l1,...,lk,r and any path of upper part edges end-
ing in b, this path has length not greater than the difficulty of the lj satisfying
(xy1,y2,l,l1,...,lk,r−1, b) ∈ γlj .
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Let d = xy1,y2,l,l1,...,lk,r−1.
The claim is proved by induction on the difficulty of lj . Suppose first that

it is 0. This means that there is no TL-edge with source lj , consequently, lj is
a join prime, and there is no element of the form xd,b,h,h1,...,ht,q, and no upper
edge ending in b.

Now suppose that the difficulty of lj is positive. Let (c, b) be an upper
edge, thus c is of the form xz,b,m,m1,...,mt,q. The edge (z, b) can be gotten
by repeatedly taking upper parts of the edge (y1, b), therefore (lj ,m) ∈ UL.
Suppose that (xz,b,m,m1,...,mt,q−1, c), which is a lower part of the edge (z, b), is
in γmj′ , then (m,mj′) ∈ TL. Thus (lj ,mj′) ∈ UL ◦ TL, so the difficulty of mj′

is smaller than the difficulty of lj . By the inductive hypothesis, any path of
upper part core edges ending in c has length smaller than the difficulty of lj .
The claim is proved.

For the converse direction, assume that l 7→ γl is a lattice embedding from
L into PreX. For any edge (z1, z2) ∈ γ1 there is a smallest k ∈ L such that
(z1, z2) ∈ γk, the weight of this edge.

An edge (c, d) is called contained in the edge (a, b) if both (a, c) and (d, b)
are in γ1, but (c, d) 6= (a, b). It is properly contained if moreover d < b.

Let (l, l1, . . . , lk) ∈ CL, and take an edge (a1, a2) ∈ γl\γl∗ , this edge has
weight l. There are elements a1 = b0, b1, . . . , br = a2 in X such that for all
0 ≤ i < r, (bi, bi+1) ∈ γl1 ∪ · · · ∪ γlk . Among these edges there must be at least
one with weight lj for all 1 ≤ j ≤ l, otherwise

(a1, a2) ∈ γl ∩ (γl1 ∨ · · · ∨ (γlj )∗ ∨ · · · ∨ γlk) ⊆ γl∗ .

So each edge with weight l contains at least one edge of weight l1, at least one of
weight l2, e.c., and it contains these edges properly with at most one exception.

Now define the mapping s on (l, l1, . . . , lk) so that if there are infinitely many
edges with weight l, but only finitely many contains an edge of weight lj properly,
then s(l, l1, . . . , lk) = lj . If there is no such j, then set s(l, l1, . . . , lk) = l1.

If (l, l′) ∈ UL◦TL, then all edges of weight l must contain an edge of weight l′.
Suppose there is a circle of UL◦TL containing the edge (l, l′). There is an m ∈ L
so that (l,m) ∈ UL and (m, l′) ∈ TL. All edges of weight l must contain an edge
of weight l. Starting from an edge (f1, e1) of weight l one can get the edges
(f2, e2), (f3, e3) e.c., each contained in the previous, and each having weight l.
Furthermore, for each j > 0 either (fj , ej) can be chosen so that ej 6= ej−1, or
it can only be chosen so that there is an edge of weight m containing (fj , ej)
and contained in (fj−1, ej−1) that does not properly contain any edge of weight
l′. There are only finitely many such edges of weight m. Therefore, the (fj , ej)
edges can be chosen so that the sequence (ej)j∈N contains an infinite strictly
decreasing subsequence in γ1, a contradiction.

Theorem 3.4 gives an algorithm deciding whether L is representable with
DCC-posets. The algorithm is in EXPT IME .

Problem 3.5. Are there real numbers k and α such that for all finite lattice
L, |CL| < k|L|α?
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If the answer to this is “yes”, then the algorithm is actually in NP.

Conjecture 3.6. Deciding whether a finite lattice is representable with DCC-
posets is an NP-hard problem.

For comparison, deciding whether a finite lattice is lower bounded is in P.
(By Theorem 3.2, these are the lattices representable with posets on a finite
set. We note that an adaptation of the proof of Theorem 3.4 can be used to
prove that statement. One needs to use the D-rank characterization of lower
boundedness.)

3.2 Representation of arbitrary lattices

For a lattice L, denote with CYL the set of D-cycles of L consisting of completely
join irreducible elements. Introduce a binary relation on CYL:

EL := {((β1, . . . , βl), (α1, . . . , αk)) :

∃i : ∃j : αj+1 ≤ βi ∨ αj , αj+1 6≤ βi ∨ α∗j , αj+1 6≤ β∗i ∨ αj},

with the index j meant as modulo k and the index i as modulo l.
The following is a necessary condition for a lattice to be representable with

DCC posets.

Theorem 3.7. If L is representable with DCC-posets, then EL does not contain
a cycle.

Proof. Suppose the contrary, that

α(1)EL α
(2)EL . . . EL α

(t)EL α
(1),

with α(i) = (α
(i)
1 , . . . , α

(i)
ki

) for all 1 ≤ i ≤ t. For all 1 ≤ i ≤ t and 1 ≤ j ≤ ki,

there is a γ
(i)
j that α

(i)
j ≤ γ

(i)
j ∨ α

(i)
j+1 and α

(i)
j 6≤ γ

(i)
j ∨ (α

(i)
j+1)∗, with the index

j taken modulo ki. By the definition of EL, it may be assumed that for all i

there is an index mi such that γ
(i)
mi = α

(i+1)
1 for all 1 ≤ i ≤ t (taken modulo t),

and furthermore, α
(i)
mi 6≤ (α

(i+1)
1 )∗ ∨ α(i)

mi+1 is satisfied. Set µ as the join of all

the α
(i)
j .

Let the underlying set of the posets be X. Start with the inequality

α(1)
m1
≤ γ(1)m1

∨ (α
(1)
m1+1 ∧ (γ

(1)
m1+1 ∨ (α

(1)
m1+2 ∧ · · · ∨ (α

(1)
m1−1 ∧ (γ

(1)
m1−1 ∨α

(1)
m1

))))) =

α
(2)
1 ∨ (α

(1)
m1+1 ∧ (γ

(1)
m1+1 ∨ (α

(1)
m1+2 ∧ · · · ∨ (α

(1)
m1−1 ∧ (γ

(1)
m1−1 ∨ α

(1)
m1

))))) =

(α
(2)
1 ∧ (γ

(2)
1 ∨ (α

(2)
2 ∧ · · · ∨ (α

(2)
m2−1 ∧ (γ

(2)
m2−1 ∨ α

(2)
m2

)))))∨

(α
(1)
m1+1 ∧ (γ

(1)
m1+1 ∨ (α

(1)
m1+2 ∧ · · · ∨ (α

(1)
m1−1 ∧ (γ

(1)
m1−1 ∨ α

(1)
m1

))))).

We will call a sequence of L-elements a = c0, . . . , cr = b a realization of the

α
(1)
m1 edge (a, b) if the following are satisfied:
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• For all 1 ≤ s ≤ r, (cs, cs+1) is an edge of either α
(1)
m1 , or α

(2)
m2 , or γ

(2)
j for

an 1 ≤ j < m2, or γ
(1)
j for an 1 ≤ j < k1, j 6= m1.

• There are indexes 0 = r0 < r1 < · · · < rh = r such that

– For any even 0 ≤ h′ < h, (crh′ , crh′+1
) ∈ α

(2)
1 , and for any odd

0 ≤ h′ < h, (crh′ , crh′+1
) ∈ α(1)

m1+1,

– For even h′, if rh′ ≤ s1 < s2 ≤ rh′+1 and i0 are such that the set

{s : ((cs, cs+1) ∈ α(2)
m2
∨ ∃ i : i0 ≤ i < m2, (cs, cs+1) ∈ γ(2)i )}

contains all s′ satisfying s1 ≤ s′ < s2 but does not contain s1−1 and

s2, then (cs1 , cs2) ∈ α(2)
i0

,

– For odd h′, if rh′ ≤ s1 < s2 ≤ rh′+1 and i0 are such that the set

{s : ((cs, cs+1) ∈ α(1)
m1
∨

∃ i : i ∈ {i0, i0 + 1, . . . ,m1 − 1}, (cs, cs+1) ∈ γ(2)i )}

contains all s′ satisfying s1 ≤ j′ < s2 but does not contain s1−1 and
s2, then (cs1 , cs2) ∈ αi0 .

Note the connection between the definition of a realization and the inequality

preceding it. For each α
(1)
m1 edge we choose a single realization to get a canonical

realization. We likewise obtain canonical realizations for α
(i)
mi edges for all 1 ≤

i ≤ t (just switch the lower indexes everywhere in the definition cyclically by

i − 1). If an edge is at the same time an α
(i1)
mi1

and an α
(i2)
mi2

edge, it will get a

canonical realization both as an α
(i1)
mi1

and as an α
(i2)
mi2

edge.

For an edge (x1, x2) ∈ α(i)
mi , denote with R(i)

(x1,x2)
the set of the edges of the

canonical realization of (x1, x2) as an α
(i)
mi edge, and set

K(i)
(x1,x2)

= {(y1, y2) ∈ R(i)
(x1,x2)

: y2 6= x2, (y1, y2) ∈ α(i)
mi
∪ α(i+1)

mi+1
}.

Define a rank of the edge (x1, x2): it will be zero if K(i)
(x1,x2)

= ∅, otherwise, the

rank is recursively defined as the maximal rank of the elements of K(i)
(x1,x2)

plus

one. As µ satisfies DCC, all α
(i)
mi edge has a (finite) rank.

Take an α
(1)
m1 edge (x1, x2) of rank 0. In its canonical realization there is

at most one edge that is also an α
(1)
m1 or an α

(2)
m2 edge (the last edge of the
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realization). This means that

(x1, x2) ∈ η(1)0 :=

(α(1)
m1
∧ ((α

(2)
1 ∧ (γ

(2)
1 ∨ (α

(2)
2 ∧ · · · ∨ (α

(2)
m2−1 ∧ γ

(2)
m2−1))))∨

(α
(1)
m1+1 ∧ (γ

(1)
m1+1 ∨ (α

(1)
m1+2 ∧ · · · ∨ (α

(1)
m1−1 ∧ (γ

(1)
m1−1 ∨ α

(1)
m1

)))))))∨

(α(1)
m1
∧ ((α

(2)
1 ∧ (γ

(2)
1 ∨ (α

(2)
2 ∧ · · · ∨ (α

(2)
m2−1 ∧ (γ

(2)
m2−1 ∨ α

(2)
m2

)))))∨

(α
(1)
m1+1 ∧ (γ

(1)
m1+1 ∨ (α

(1)
m1+2 ∧ · · · ∨ (α

(1)
m1−1 ∧ γ

(1)
m1−1)))))).

We likewise define the L-elements η
(i)
0 for all 1 ≤ i ≤ t, with each containing all

the α
(i)
mi edges of rank 0. Note that the long expression above is not to be read

as one would initially think: it is not a join of four subexpression, but two, and

each of those two is a meet of α
(1)
m1 and an other (lengthy) expression.

We recursively define L-elements η
(i)
n ≤ α

(i)
mi for all 1 ≤ i ≤ t and all non-

negative integer n: for n = 0 they are already defined, and for n > 0 we set

η(i)n :=

(α(i)
mi
∧ ((α

(i+1)
1 ∧ (γ

(i+1)
1 ∨ (α

(i+1)
2 ∧ · · · ∨ (α

(i+1)
mi+1−1 ∧ (γ

(i+1)
mi+1−1 ∨ η

(i+1)
n−1 )))))∨

(α
(i)
mi+1 ∧ (γ

(i)
mi+1 ∨ (α

(i)
mi+2 ∧ · · · ∨ (α

(i)
mi−1 ∧ (γ

(i)
mi−1 ∨ α

(i)
mi

)))))))∨

(α(i)
mi
∧ ((α

(i+1)
1 ∧ (γ

(i+1)
1 ∨ (α

(i+1)
2 ∧ · · · ∨ (α

(i+1)
mi+1−1 ∧ (γ

(i+1)
mi+1−1 ∨ α

(i+1)
mi+1

)))))∨

(α
(i)
mi+1 ∧ (γ

(i)
mi+1 ∨ (α

(i)
mi+2 ∧ · · · ∨ (α

(i)
mi−1 ∧ (γ

(i)
mi−1 ∨ η

(i)
n−1))))))).

If (x1, x2) is an α
(i)
mi edge (x1, x2) of rank n, then in its canonical realization

all the α
(i)
mi and α

(i+1)
mi+1 edges except perhaps one have rank at most n− 1. From

this fact it is easily provable by induction that (x1, x2) ∈ η(i)n .

As α
(i)
mi is a completely join irreducible element of L, and it is the union

of all η
(i)
n (as they form an increasing chain, and all α

(i)
mi edge has finite rank),

there is an ni so that α
(i)
mi = η

(i)
ni . It can be supposed that among all the ni, n1

is (one of) the smallest.

As η
(1)
n1 is defined as the join of two elements of L that are smaller or equal

than α
(1)
m1 , and α

(1)
m1 is join irreducible in L, α

(1)
m1 is equal to either

α(1)
m1
∧ ((α

(2)
1 ∧ (γ

(2)
1 ∨ (α

(2)
2 ∧ · · · ∨ (α

(2)
m2−1 ∧ (γ

(2)
m2−1 ∨ η

(2)
n1−1)))))∨

(α
(1)
m1+1 ∧ (γ

(1)
m1+1 ∨ (α

(1)
m1+2 ∧ · · · ∨ (α

(1)
m1−1 ∧ (γ

(1)
m1−1 ∨ α

(1)
m1

))))))

or

α(1)
m1
∧ ((α

(2)
1 ∧ (γ

(2)
1 ∨ (α

(2)
2 ∧ · · · ∨ (α

(2)
m2−1 ∧ (γ

(2)
m2−1 ∨ α

(2)
m2

)))))∨

(α
(1)
m1+1 ∧ (γ

(1)
m1+1 ∨ (α

(1)
m1+2 ∧ · · · ∨ (α

(1)
m1−1 ∧ (γ

(1)
m1−1 ∨ η

(1)
n1−1)))))).
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From both equalities follows an inequality of the type

α(1)
m1
≤ (α

(2)
1 ∧ δ1) ∨ (α

(1)
m1+1 ∧ δ2).

Recall the definition of the α
(i)
j to see that a consequence of this is that α

(2)
1 ≤ δ1

and α
(1)
m1+1 ≤ δ2.

It follows from the α
(2)
1 ≤ δ1 type inequality in the first case that

α
(1)
m1−1 ≤ γ

(1)
m1−1 ∨ η

(1)
n1−1,

and in the second that
α
(1)
m1−1 ≤ γ

(1)
m1−1 ∨ η

(1)
n1−1.

Both are impossible: by the choice of n1, η
(2)
n1−1 ≤ (α

(2)
m2)∗ and η

(1)
n1−1 < (α

(1)
m1)∗,

so either of these inequalities contradicts the fact that α
(i)
j 6≤ γ

(i)
j ∨ (α

(i)
j+1)∗ is

satisfied by all possible i and j.

Problem 3.8. Is it true that L is representable if EK contains no cycle for any
K ≤ L? Is it true if, moreover, L is finite?

Here is an overview of the known properties of the class of representable
lattices.

Theorem 3.9. For the class R of lattices representable with DCC posets:

• R is closed to taking sublattices and products,

• R does not contain the lattice M3,

• R contains all lower bounded lattices,

• R is not contained in SD∨,

• it is algorithmically decidable if a finite lattice L is in R,

• if a lattice L is in R, then EL contains no circle.

Proof. The last two statements have been proved. M3 fails the condition of the
last statement, because the three middle elements form a D-cycle, and there
is an E-loop on that cycle. As it was mentioned in the introduction, all lower
bounded lattices are representable with posets satisfying both DCC and ACC
by Theorem 4.6. of [29].

Take the following three posets on the set N ∪ {∞}:

• α := {(a,∞) : a is even.} ∪ {(c, c) : c ∈ N ∪ {∞}}

• β := {(b,∞) : a is odd.} ∪ {(c, c) : c ∈ N ∪ {∞}}

• γ := {(x, y) ∈ N2 : x ≤ y} ∪ {(∞,∞)}
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These posets generate a (six-element) lattice of DCC-posets (their join is the
natural linear order on N ∪ {∞}). That lattice is not join semidistributive as
α ∨ γ = β ∨ γ > γ = (α ∧ β) ∨ γ.

The only item left is that R is closed to direct products. If Li ∈ R for all
i ∈ I such that Li is represented by DCC-posets on Xi (which can be assumed
to be disjoint),

∏
i∈I Li can be represented on

⋃
i∈I Xi: the element (li)i∈I will

be represented by the (disjoint) union of the posets representing the individual
li.

Problem 3.10. Is it true that R contains SD∨? Is there a nontrivial lattice
quasi-identity satisfied by all members of R?
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Chapter 4

Overview of tame
congruence theory

In this chapter, we go over those elements of tame congruence theory we will
generalize for quasiorders, as well as those that will be otherwise needed later.
We base everything here on [21], even when not noted.

4.1 Minimal algebras and tame quotients

Definition 4.1. A pair of elements (l1, l2) of a lattice is called a quotient of
that lattice if l1 < l2, and a prime quotient if l1 ≺ l2. If l1 ≤ l3 < l4 ≤ l2, then
(l3, l4) is a subquotient of (l1, l2).

The quotients (l1, l2) and (l3, l4) are perspective if either l2 ∧ l3 = l1 and
l2 ∨ l3 = l4 or l1 ∧ l4 = l3 and l1 ∨ l4 = l2 (equivalently, l1, l2, l3, l4 form a
sublattice isomorphic to the direct square of the two-element chain). The two
quotients are projective if there is a sequence of quotients beginning with the
first and ending with the second such that each successive pair is perspective.

Two quotients are prime perspective if both are prime quotients and they are
perspective. They are prime projective if there is a sequence of prime quotients
beginning with the first and ending with the second such that each successive
pair is perspective. (Note that prime projectivity is not projectivity restricted
to prime quotients.)

In this chapter, A is always a finite algebra, and α < β are quasiorders of it.

Definition 4.2. For any set U ⊆ A, the algebra A|U is an algebra with under-
lying set U , whose set of basic operations is the set of all polynomials of A to
which U is closed.

For a binary relation δ on A, δ|U denotes the binary relation δ ∩ U2 on U .
Sometimes, if it does not cause confusion, we write δ instead of δ|U .
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Proposition 4.3. For any U ⊆ A, A|U is an algebra in which any term and
any polynomial is a basic operation.

If δ is compatible and reflexive on A, then δ|U is compatible on A|U . Thus
δ 7→ δ|U induces a mapping from Quo A to Quo A|U (and from Con A to
Con A|U ), these mappings are meet homomorphisms.

If there is an idempotent unary polynomial e such that e(A) = U , then
δ 7→ δ|U is a surjective lattice homomorphism from Quo A to Quo A|U (and
thus also from Con A to Con A|U ).

Definition 4.4. A set U ⊆ A is (α, β)-minimal if there is a unary polynomial
p such that p(A) = U and p(β) * α (that is, there exists (x, y) ∈ β with
(p(x), p(y)) 6∈ α), but there is no q ∈ Pol1 A such that q(A) ( U and q(β) * α.

The set of all (α, β)-minimal sets of A is denoted by M(α, β).
A is an (α, β)-minimal algebra if A is an (α, β)-minimal set.
Finally, A is considered (γ, γ)-minimal for all γ ∈ Quo A.

The last part of the definition was only mentioned because technically, (γ, γ)
is not a quotient of Quo A. It is completely in line with the rest of the definition
otherwise.

Proposition 4.5. If U is an (α, β)-minimal set, then A|U is an (α, β)-minimal
algebra.

The next lemma is immediate from the definition of minimality.

Lemma 4.6. Suppose A is finite, α, β ∈ Quo A such that α < β and A is
(α, β)-minimal. Then A is also

• (α−1, β−1)-minimal.

• (α∧γ, β∧δ)-minimal and (α∨γ, β∨δ)-minimal for any quasiorder quotient
(γ, δ) such that A is also (γ, δ)-minimal.

• (γ, δ)-minimal whenever (γ, δ) is a subquotient of (α, β).

Corollary 4.7. Suppose that (α, β) and (γ, δ) are projective quotients of Quo A.
Then the (α, β)-minimal and the (γ, δ)-minimal sets of A coincide.

Lemma 4.8. Suppose that an algebra A is minimal with respect to one of its
quasiorder quotients. Then A is also minimal with respect to either a congruence
quotient or a quotient whose quasiorders have coinciding congruence parts.

Proof. Choose β ∈ Quo A so that there is a quasiorder α such that A is (α, β)-
minimal, and β is minimal among such quasiorders. According to Lemma 4.6,
for any γ ∈ Quo A either γ ≥ β or α ∧ γ = β ∧ γ.

If β is a congruence, take γ = α−1 < β to deduce α ∧ α−1 = β ∧ α−1 =
(β ∧ α)−1 = α−1, whence α is a congruence. If β is not a congruence, choosing
γ = β−1 yields that the congruence part of β is in α, therefore α∗ = β∗.
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Definition 4.9. The pair (α, β) is called a quasiorder tame quotient (congruence
tame quotient) if there is an (α, β)-minimal set U and an idempotent unary
polynomial e such that e(A) = U , and α|U < δ|U < β|U for all α < δ < β in
Quo A (in Con A).

We will use only “tame quotient” henceforth because of the following fact.

Proposition 4.10. If α and β are congruences, then (α, β) is a quasiorder
tame quotient iff it is a congruence tame quotient.

Proof. Suppose that (α, β) is congruence tame, with U and e as in Definition
4.9. If there is a quasiorder δ such that α < δ < β and δ|U = α|U (resp.
δ|U = β|U ), then ν := δ ∨ δ−1 (resp. ν := δ∗) is a congruence with α < ν ≤ β
(resp. α ≤ ν < β) and ν|U = α|U (resp. ν|U = β|U , because of Proposition 4.3).
By the (α, β)-minimality of U , ν cannot equal β (resp. cannot equal α). This
contradicts the assumption for U . Therefore (α, β) is also quasiorder tame. The
other direction is obvious.

The following is parts of Theorems 2.8. and 2.11. of [21] stated to qua-
siorders. The proofs there can be applied word-for-word, as they do not use
symmetry.

Theorem 4.11. If α ≺ β, then (α, β) is tame.
If (α, β) is tame, and U and V are (α, β)-minimal sets, then

• there is an idempotent unary polynomial e such that e(A) = U and e(β) *
α,

• there are unary polynomials p, q ∈ Pol1 A such that p(U) = V , q(V ) = U ,
q ◦ p is identical on U , and p ◦ q is identical on V ,

• the algebras A|U and A|V are isomorphic by p (with the assumption that
their signatures are fixed so that the basic operation s(x1, . . . , xk) of A|U
corresponds to the basic operation p(s(q(x1), . . . , q(xk))) of A|V ).

This theorem enables one to choose a single (α, β)-minimal set without losing
generality in most cases.

4.2 Types in the congruence lattice

In this section, α and β are congruences of the finite algebra A, and α ≺ β in
the congruence lattice (and so (α, β) is a tame quotient by Theorem 4.11).

Definition 4.12. A final algebra B is minimal, if it is (0B, 1B)-minimal.

Theorem 4.13. ([27]) The polynomial clone of a minimal algebra coincides
with one of the following:
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1. a clone generated by unary operations,

2. the polynomial clone of a vector space (with the same underlying set),

3. the set of all operations on it underlying set,

4. the polynomial clone of a two-element lattice (with the same underlying
set),

5. the polynomial clone of a two-element semilattice (with the same underly-
ing set).

Definition 4.14. A minimal algebra is of type 1 (unary type), type 2 (affine
type), type 3 (Boolean type), type 4 (lattice type), or type 5 (semilattice type),
depending on which of the above five categories its polynomial clone falls into.

Definition 4.15. A β-class that is not an α-class is called an (α, β)-trace of A.
The union of the (α, β)-traces are called the (α, β)-body, the complement of the
(α, β)-body the (α, β)-tail of A.

A has no tail if for every µ ≺ ν in Con A the (µ, ν)-tail of every (µ, ν)-
minimal set U is empty. A variety has no tail if every finite algebra in it has no
tail.

Theorem 4.16. ([21], Lemmas 4.13. and 4.20.) For any α, β-minimal set U
of A and (α|U , β|U )-trace N of A|U , the algebra A|N/α|N is a minimal algebra,
and its type does not depend on the choice of U and N .

With this theorem, a prime quotient in the congruence lattice is given a
type:

Definition 4.17. The type of (α, β), denoted by typ(α, β), is the type of A|N/
α|N for any (α|U , β|U )-trace N of A|U for any α, β-minimal set U of A.

For any i ∈ {1, 2, 3, 4, 5}, an algebra omits type i if none of its prime con-
gruence quotients has type i. A variety omits type i if all of its finite members
do.

This so-called “labeling” of the congruence lattice has the following proper-
ties:

Theorem 4.18. • if θ ∈ Con A, then the types of covering pairs in Con(A/
θ) are the same as the types of the corresponding pairs in Con A (pairs
over the congruence θ),

• any type depends only on the polynomial clone of the algebra, and not on
the principal operations or the terms,

• prime projective pairs have the same type,

• the solvability relation on Con A (µ and ν are in the same class if the
interval [µ∧ ν, µ∨ ν] omits types 3, 4, and 5) is a lattice congruence, and
factoring out with it gives an upper bounded lattice.
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The following definition is, for technical reasons, more liberal than the cor-
responding Definition 4.16 of [21]. Also, this is only part in this section that is
about quasiorders rather than congruences.

Definition 4.19. A pseudo-meet operation for an element a of an algebra is any
binary polynomial p which satisfies the equations p(a, x) = p(x, a) = p(x, x) = x.

For quasiorders γ < δ, a pseudo-meet operation for the quotient (γ, δ) is a
pseudo-meet operation for a source or a target of a δ\γ-edge. A pseudo-meet–
pseudo-join pair for this quotient is a collection of two pseudo-meet operations,
one for the source, one for the target of a δ\γ-edge.

Proposition 4.20. ([21], Lemmas 4.15. and 4.17.) If (γ, δ) is a congruence
prime quotient of type 3, 4 or 5, and A is (γ, δ)-minimal, then there is a pseudo-
meet operation for this quotient. If (γ, δ) is of type 3 or 4, then there is a
pseudo-meet–pseudo-join pair for it. Furthermore, in this latter case there is a
unique (γ, δ)-trace of A, which has exactly two-elements.

The remaining part of this section reviews the facts concerning the case when
an algebra is minimal to a non-prime quotient. This is equivalent to it being
minimal to all of the prime subquotients of this quotient.

Proposition 4.21. ([21], Theorem 4.23.) Suppose A is (µ, ν)-minimal, and
µ 6≺ ν in Con A. Then the interval [µ, ν] omits types 3, 4, and 5.

Proposition 4.22. ([21], Lemma 4.20.) If (µ, ν) is a congruence prime quo-
tient of type 2, then there is an idempotent ternary polynomial m such that for
any x that is in the (µ, ν)-body of A, and any y ∈ A, m(x, x, y) = m(y, x, x) = y.
(Consequently, m is a Mal’tsev-operation on the (µ, ν)-body of the A.)

Definition 4.23. A ternary term m satisfying the conditions of Proposition
4.22 is called a pseudo-Mal’tsev term for (µ, ν).

Lemma 4.24. Suppose that µ0 ≺ µ1 ≺ · · · ≺ µn in Con A, A is (µ0, µn)-
minimal, and typ(µi, µi+1) = 2 for all i. Then for each pair (a, b) ∈ µn, there
is a bijective unary polynomial of A mapping a/µ0 to b/µ0.

Proof. Suppose first that n = 1. If (a, b) ∈ µ0, then the statement is obvious.
Otherwise, a and b are in the (µ0, µ1)-body of the algebra, on which the pseudo-
Mal’tsev operation m acts as a Mal’tsev operation. Thus, the unary polynomial
m(a, x, b) maps a into b and b into a. This polynomial is bijective, because it
maps a µ1-edge ((a, b)) into a µ1\µ0-edge ((b, a)), and A is (µ0, µ1)-minimal.

The statement for greater n is a consequence of the n = 1 case: there is a
bijective polynomial that maps a into an an−1 which is in the µn−1-class of b,
an other which maps an−1 into an an−2 which is in the µn−2-class of b, and
so on. The succession of all these polynomials maps a into a0, which is in the
µ0-class of b.
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4.3 Description of some Mal’tsev classes

If A is not minimal to a congruence quotient (µ, ν), then it is a frequently
used tactic to take a (µ, ν)-minimal set U , and work with A|U instead of A.
This is informally called “descending to a (µ, ν)-minimal algebra”. This change
alters the variety generated by the algebra (it even alters the signature of the
algebra). However, for certain Mal’tsev classes, if A is in this Mal’tsev class (or,
equivalently, A has terms satisfying the identities of the Mal’tsev class), then
A|U is also in such a Mal’tsev class (equivalently, A|U also has terms satisfying
those identities).

Definition 4.25. A Mal’tsev class is characterized by linear identities if there
are identities p1 ≈ q1, . . . , pk ≈ qk characterizing it in the sense of Definition
2.20 such that each pi and q1 are of the form tj(e1, . . . , ear tj ), where e1, . . . , ear tj
are all (not necessarily different) projections. (The index j can be different for
different elements of {p1, . . . , pk, q1, . . . , qk}.)

For example, the identity expressing the commutativity of a binary op-
eration (p(x, y) ≈ p(y, x)) is linear, but the one expressing its associativity
((p(x, p(y, z)) ≈ p(p(x, y), z)) is not. This definition also considers the identity
expressing the idempotency of an operation (p(x, . . . , x) ≈ x) as linear. Note
that this is not always the case when encountering the term “linear identity” in
the literature. (And as an aside, sometimes “linear identity” can mean some-
thing altogether different.)

Proposition 4.26. If K is a Mal’tsev-class characterized by linear identities, A
is a finite algebra that generates a variety in K, and (α, β) is a tame quotient of
Quo A, then for any (α, β)-minimal set U the algebra A|U generates a variety
in K.

Proof. By Theorem 4.11, there is an idempotent unary polynomial e such that
e(A) = U . For any t ∈ Termk A there is a term t′ ∈ Termk A|U defined by
t′(x1, . . . , xk) = e(t(x1, . . . , xk)). It is straightforward to check that if the terms
p1, . . . , pk ∈ Term A satisfy some linear identities, then the terms p′1, . . . , p

′
n ∈

Term A|U also satisfy these identities.

There are connections between the congruence lattices of a variety, the con-
gruence types appearing in the variety, and certain Mal’tsev classes character-
ized by linear identities the variety may fall into. The following theorems show
some of the most important of these.

Theorem 4.27. For a locally finite variety V, the following are equivalent:

1. the algebras of V have modular congruence lattices,

2. no algebra of V has a congruence lattice having a sublattice isomorphic to
N5,

3. ([21], Theorem 8.5) V omits 1 and 5, and has no tail,

29



4. [8] V admits Day-terms, that is, there are d0, . . . , dn ∈ Term4 V satisfying

x ≈ p0(x, y, z, u)

di(x, y, y, x) ≈ x for all i

di(x, y, y, z) ≈ di+1(x, y, y, z) for even i

di(x, x, y, y) ≈ di+1(x, x, y, y) for odd i

dn(x, y, z, u) ≈ u

5. [14] V admits Gumm-terms, that is, there are p0, . . . , pn, q ∈ Term3 V
satisfying

x ≈ p0(x, y, z)

pi(x, y, x) ≈ x for all i

pi(x, y, y) ≈ pi+1(x, y, y) for even i

pi(x, x, y) ≈ pi+1(x, x, y) for odd i

pn(x, y, y) ≈ q(x, y, y)

q(x, x, y) ≈ y

Theorem 4.28. For a locally finite variety V, the following are equivalent:

1. V omits 1 and 2,

2. ([21], Theorem 9.10) the algebras of V have meet semidistributive congru-
ence lattices,

3. ([21], Theorem 9.10) no algebra of V has a congruence lattice having a
sublattice isomorphic to M3,

4. ([24], Theorem 2.8) V admits terms p ∈ Term3 V and q ∈ Term4 V satis-
fying

x ≈ p(x, x, x)

x ≈ q(x, x, x, x)

p(x, x, y) ≈ p(x, y, x) ≈ p(y, x, x)

q(x, x, x, y) ≈ q(x, x, y, x) ≈ q(x, y, x, x) ≈ q(y, x, x, x)

p(x, x, y) ≈ q(x, x, x, y)

Theorem 4.29. ([21], Theorem 9.11) For a locally finite variety V, the follow-
ing are equivalent:

1. V omits 1, 2, and 5,

2. the finite algebras of V have join semidistributive congruence lattices,
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3. V admits ternary terms d0, . . . , dn satisfying the following identities:

x ≈ d0(x, y, z)

di(x, y, y) ≈ di+1(x, y, y) for even i

di(x, y, x) ≈ di+1(x, y, x) for even i

di(x, x, y) ≈ di+1(x, x, y) for odd i

dn(x, y, z) ≈ z
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Chapter 5

Quasiorder types in finite
algebras

In this chapter, we adapt the types given to congruence prime quotients for the
quasiorder prime quotients. A more compact form of the definition can be seen
in the Summary.

5.1 Definition of types for quasiorder quotients

Suppose that A is a finite algebra, α ≺ β in Quo A. All the induced (α, β)-
minimal algebras of A are isomorphic, so it is sufficient to define the type of
(α, β) in the case where A is (α, β)-minimal (otherwise, the algebra will inherit
the type of the algebra induced by a minimal set). We will differentiate between
two cases.

Definition 5.1. Suppose A is (α, β)-minimal, and α∗ 6= β∗. If α∗ ≺ β∗ in
Con A, then set typ(α, β) = typ(α∗, β∗). Otherwise, set typ(α, β) = 1.

This may seem a little heavy-handed, as there are algebras minimal to one
of their non-prime quotients omitting 1 (the most basic example is a multidi-
mensional vector space), but as the next proposition shows, these non-prime
quotients cannot be the respective congruence parts of a quasiorder prime quo-
tient.

Proposition 5.2. If α ≺ β in Quo A, A is (α, β)-minimal, and there is a
congruence γ such that α∗ < γ < β∗, then the interval [α∗, β∗] does not omit type
1, more precisely, typ(α∗, µ) = 1 for any congruence µ such that α∗ ≺ µ < β∗

holds in Con A.

Proof. It follows from µ < β and µ 6≤ α that α ∨ µ = β. This means that there
exists an α-crossedge, i.e. an α-edge that is between different µ-classes, but lies
in a single β∗-class. A is of course also (α∗, β∗)-minimal, thus by Proposition
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4.21, the congruence interval [α∗, β∗] omits 3, 4, and 5. Now assume that
typ(α∗, µ) = 2. By Lemma 4.24, the source of the α-crossedge can be mapped
by a bijective unary polynomial into any α∗-class of its β∗-class. Hence, there
is an α-crossedge from every α∗-class in that β∗-class, and so there is an α-
crossedge from every element of that β∗-class. But that means that there is
a circle of α-crossedges, therefore, there is an α∗-class intersecting µ-classes, a
contradiction.

Corollary 5.3. If a congruence quotient is a prime quotient in the quasiorder
lattice, then its quasiorder and congruence types coincide.

Now assume α∗ = β∗. First it needs to be understood what (α, β)-minimality
means in this case.

Proposition 5.4. If α∗ = β∗ for the prime quasiorder quotient (α, β), and
(a, b) is a β\α-edge, then a/β∗ ≺β/β∗ b/β∗. Furthermore, if (c, d) is an other
β\α-edge, then (a/β∗, b/β∗) and (c/β∗, d/β∗) can be mapped into each other by
an automorphism of the poset β/β∗.

Proof. Obviously, a/β∗ 6= b/β∗. There are elements u′ and v′ in A/β∗ such that
a/β∗ ≤ u′ ≺ v′ ≤ b/β∗ in β/β∗, and (u′, v′) 6∈ α/β∗. Take any representants u
and v of u′ and v′ respectively. As β is the quasiorder generated by α∪{(a, b)},
there are elements u = c0, . . . , cl = v in A such that each (ci, ci+1) is either in
α, or is a polynomial image of the edge (a, b). These edges cannot all be in
α, and by (α, β)-minimality the one that is not in α is the image of (a, b) by
a bijective polynomial. The inverse of this polynomial maps (u′, v′) into (a/
β∗, b/β∗), which finishes the proof (bijective polynomials are automorphisms of
compatible relations).

The second statement is a result of the same argument: simply consider that
β is also generated by α ∪ {(c, d)}.

Definition 5.5. The enlargement of A by the quasiorder β (denoted by A+) is
the subalgebra of A3 consisting of triples (a, b, c) satisfying (a, b), (b, c) ∈ β. For
an arbitrary δ ∈ Quo A, the enlargement of δ is a congruence of A+ defined by

δ+ = Tr({((a, b, c), (a, b′, c)) ∈ A2
+ : (b, b′) ∈ δ ∪ δ−1}).

Informally, two triples are in δ+ if their first and last components coincide,
and there is a δ ∪ δ−1-path in A between their middle components that lies
entirely between the shared first and last component in β. It is easy to see that
δ+ is indeed a congruence of A+.

Proposition 5.6. The mapping δ 7→ δ+

• is a ∨-homomorphism from Quo A into Con A+,

• maps a quasiorder δ ≥ β into the product congruence 0A × 1A × 0A (so

(a1, a2, a3)
δ+←→ (b1, b2, b3) iff a1 = b1 and a3 = b3),

33



• maps α and β into different congruences, moreover,

β+\α+ = {((c, a, d), (c, b, d)) : c
β∗←→ a

β\α−−→ b
β∗←→ d}∪

{((c, a, d), (c, b, d)) : c
β∗←→ b

β\α−−→ a
β∗←→ d}

Proof. The first two points are easy deductions from the definition. We will
only prove the formula of the third point.

Any element of the right hand side is immediately in β+. That they are not
in α+ follows from the fact that (by Proposition 5.4) c/β∗ ≺β/β∗ d/β∗, so the
elements of A between c and d in β are the elements of the β∗-blocks of c and
d. Among these elements, there cannot be an α ∪ α−1-path between a and b,
because that would mean that (a, b) ∈ α.

Conversely, take an element ((c, a, d), (c, b, d)) of β+\α+. Note that both
((c, a, d), (c, d, d)) and ((c, d, d), (c, b, d)) are in β+. One of two must not be
in α+. If it is the first, then (a, d) ∈ β\α, if the second, then (b, d) ∈ β\α.
Similarly, either (c, a) or (c, b) is in β\α.

By the second statement of Proposition 5.4, it is impossible that both (c, a)
and (a, d) are in β\α, as (c/β∗, a/β∗) obviously cannot be mapped into (a/
β∗, d/β∗) by an automorphism of A/β∗. Likewise, (c, b), (b, d) ∈ β\α is also
impossible.

Assume (a, d), (c, b) ∈ β\α. By Proposition 5.4, c/β∗ can be mapped into
a/β∗ by a β/β∗-automorphism. But because (c, a) is in β, c and a are in the
same β∗-block. Consequently, (a, b) ∈ β\α. By the same argument, d and b are
in the same β∗-block. A similar argument shows that if (b, d), (c, a) ∈ β\α, then

c
β∗←→ b

β\α−−→ a
β∗←→ d.

In the case β = 1A, A+ = A3, and for all δ ∈ Quo A, δ+ = 0A × (δ ∨
δ−1)× 0A. This gives an easy example showing that δ 7→ δ+ is not generally a
∧-homomorphism: take δ as any non-symmetric quasiorder, γ = δ−1, then

δ+ ∧ γ+ = 0A × (δ ∨ δ−1)× 0A > 0A × (δ ∧ δ−1)× 0A = (δ ∧ γ)+.

Definition 5.7. Suppose A is (α, β)-minimal, and α∗ = β∗. If the inter-
val [α+, β+] in Con A+ does not omit 4, then set typ(α, β) = 4, otherwise,
typ(α, β) = 5 if the interval does not omit 5, and typ(α, β) = 1 if it does.

Admittedly, this definition is premature: we will soon prove that the interval
[α+, β+] necessarily omits 2 and 3, and cannot contain both types 4 and 5. It
is convenient, though, to be able to speak of quasiorder types even before this
is proved. In particular, we want to highlight the following consequence of the
definition:

Proposition 5.8. If a prime quasiorder quotient is of type 2 or 3, then it is a
*-quotient.
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5.2 Properties of different types

By the definition of the previous section, the type of a prime quasiorder quotient
is inherited from the type of its congruence part, or the congruence types be-
tween the enlargements of the quasiorders. We will refer to a prime quasiorder
quotient as *-quotient or +-quotient depending on whether the former or the
latter is the case.

First we prove that a prime quotient being a +-quotient is equivalent to the
congruence parts of the two quasiorders coinciding (this is true by definition
only if the algebra is minimal to this quotient).

Proposition 5.9. A prime quotient (α, β) is a +-quotient iff α∗ = β∗.

Proof. We have to show that if the congruence parts of α and β differ on A,
then they also differ on an (α, β)-minimal set M of A. This follows from the
fact (Proposition 4.3) that the restriction to M is a lattice homomorphism from
Quo A to Quo A|M , thus α|M ∨β∗|M = (α∨β∗)|M = β|M , while α|M ∨α∗|M =
α|M , so α∗|M and β∗|M must differ.

The following lemma informally states that when “descending” to a minimal
set of an enlargement, not too much “information” is lost, as the minimal set is
at least as large as the original (minimal) algebra.

Lemma 5.10. If A is (α, β)-minimal for the +-quotient (α, β), then for any
(α+, β+)-minimal set M of A+ and any c ∈ A, c is a middle component of one
of the elements of M .

Proof. Take any polynomial p ∈ Pol1 A+ that does not map β+ into α+. It
is easy to see that it acts componentwise, that is, there are p1, p2, p3 ∈ Pol1 A
such that p(a, b, c) = (p1(a), p2(b), p3(c)) for any (a, b, c) ∈ A+. By the (α, β)-
minimality of A, it is enough to show that p2 does not map β into α. This is
a consequence of Proposition 5.6: the middle components of the β+\α+-edges
are in (β\α) ∪ (β\α)−1, thus if p2 maps β into α, then p will map these edges
into α+-edges.

Now we can state the following crucial property of +-quotients.

Lemma 5.11. Suppose A is (α, β)-minimal, where (α, β) is a +-quotient. Then
for any α+ ≤ µ ≺ ν ≤ β+ (in Con A+), the type of the congruence quotient
(µ, ν) cannot be 2 or 3. If the type is 5, there is a pseudo-meet operation, if 4,
a pseudo-meet–pseudo-join pair for the quasiorder quotient (α, β).

Proof. If the type was 2 or 3, there would be a polynomial of A+ mapping a

β+\α+ edge (x, y) into a β+\α+ edge (y′, x′) so that x
α+←−→ x′ and y

α+←−→ y′

(take any ν\µ-edge of a (µ, ν)-minimal set). By Proposition 5.6, the middle
component of this polynomial would map a β\α edge into a (β\α)−1 edge (in
the case of type 2, note that a ν-block cannot contain more than two µ-blocks).
This contradicts β ∩ (β\α)−1 = ∅, which is a consequence of the fact that (α, β)
is a +-quotient.
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If the type of (µ, ν) is 4 or 5, take a (µ, ν)-minimal set M . There is a
pseudo-meet operation (a pseudo-meet–pseudo-join pair in the case of type 4)
for (µ, ν) in M by Proposition 4.20. By Lemma 5.10, its middle component is a
pseudo-meet operation (a pseudo-meet–pseudo-join pair) for (α, β), because it
follows from Proposition 5.6 that the middle component of a ν\µ edge is either
a β\α or a (β\α)−1 edge.

As a pseudo-meet operation for (γ∗, δ∗) is also one for (γ, δ):

Corollary 5.12. If an algebra is minimal with respect to a prime quasiorder
quotient of type 3,4 (of type 5), then there is a pseudo-meet–pseudo-join pair (a
pseudo-meet operation) for it.

Lemma 5.13. If A is minimal to a (not necessarily prime) quasiorder quotient
(α, β), and there is a pseudo-meet operation p for a ∈ A, then all β\α-edges
have a as either source or target.

Proof. For any x0 ∈ A\{a}, the unary polynomials p(x, x0) and p(x0, x) are not
bijective (mapping both x0 and a into x0), therefore they map β into α. This
means that for any (d1, d2) ∈ β\α, either d1 = a or d2 = a, because otherwise,

d1 = p(d1, d1)
α−→ p(d1, d2)

α−→ p(d2, d2) = d2.

Corollary 5.14. If A is minimal to the type 4 (type 5) +-quotient (α, β), then
β\α contains only a single edge (contains edges with either a common source or
a common target).

Proof. Suppose that (a0, b0) ∈ β\α such that there is a pseudo-meet operation
p for a0. Take an arbitrary (a, b) ∈ β\α, by Lemma 5.13 either a = a0 or b = a0.
The second case is impossible by Proposition 5.4, because no automorphism of
β/β∗ can map a into b, as (a, b) is a β\β∗ edge. So all the β\α-edges have a
shared source. If there is a pseudo-meet operation for b0 instead, then all the
β\α-edges will have a shared target. Finally, if there is a pseudo-meet–pseudo-
join pair, then the β\α-edges must coincide.

So, as was promised, the interval [α+, β+] cannot contain both types 4 and
5.

Corollary 5.15. If A is minimal to the type 4 +-quotient (α, β), then α+ ≺ β+
in Con A+.

Proof. By Corollary 5.14, there is only one β\α-edge, obviously, both its source
and target must be a singleton β∗-class. By Proposition 5.6, β+\α+ is a single
double edge.

Lemma 5.11 has a converse.

Lemma 5.16. If A is minimal to the +-quotient (α, β), and there is a pseudo-
meet operation for this quotient, then typ(α, β) ∈ {4, 5}. If there is a pseudo-
meet–pseudo-join pair for this quotient, then typ(α, β) = 4.
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Proof. We only prove the first statement of the lemma, as the second is much
the same.

Take a pair of congruences α+ ≤ µ ≺ ν ≤ β+ of A+, and let M be a (µ, ν)-
minimal set. By Proposition 5.6, there is an element of β+\α+ ∩M2 in the
form ((c, a, d), (c, b, d)), where (a, b) ∈ β\α, and (a, c), (b, d) ∈ α∗. By Lemma
5.13, the pseudo-meet operation p is for either a or b. It may be assumed that
p(a, x) = p(x, a) = p(x, x) = x for all x.

There is an idempotent unary polynomial e ∈ Pol1 A+ such that e(A+) = M
(Theorem 4.11). Define the binary polynomial p′ on A+|M with

p′((x1, x2, x3), (y1, y2, y3)) := e((p(x1, y1), p(x2, y2), p(x3, y3))).

As p is idempotent (as an operation) and e is idempotent (not as an operation,
but as a transformation: e2 = e), p′ is also an idempotent operation. Fur-
thermore, p′((c, a, d), (c, b, d)) = p′((c, b, d), (c, a, d)) = (c, b, d), so p′ is a proper
binary polynomial on an (α+, β+)-trace of M . This means that typ(α, β) 6= 1.
As the type of a +-quotient cannot be 2 or 3 (Lemma 5.11), the proof is done.

We summarize this section in the following theorem:

Theorem 5.17. If A is minimal to the prime quotient (α, β), then the type of
(α, β) is

• 3, iff β\α is a single double edge, and there is a pseudo-meet–pseudo-join
pair for it (this case is only possible if α∗ 6= β∗) ,

• 4, iff β\α is a single (directed) edge, and there is a pseudo-meet–pseudo-
join pair for it,

• 5, iff there is a pseudo-meet operation for it, but not a pseudo-meet–
pseudo-join pair (and in this case, the pseudo-meet operation is for either
the shared target or the shared source of all the β\α-edges),

• 2, iff (α∗, β∗) is a prime congruence quotient of type 2,

• 1 in any other case.

Proof. The +-quotient case is covered by Lemma 5.11, Lemma 5.16, and Propo-
sition 5.8. In the *-case, the statement for type 2 is the first statement of Propo-
sition 5.2. Finally, the statements for types 3, 4, and 5 for *-quotients can be
easily deduced by Lemma 5.13.

5.3 Types in a quasiorder lattice

There are two basic conditions about the labeling of congruence lattices: the
first is that prime perspective quotients must have the same type, the second
that the solvability and strong solvability relations must be congruences. The
first is also true for the labelings of quasiorder lattices.
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Figure 5.1: The subcase of Case 2 when typ(α, β) = 1

Theorem 5.18. Suppose that (α, β) and (γ, δ) are prime projective quotients
of Quo A. Then typ(α, β) = typ(γ, δ).

Proof. Throughout the proof, we will use Theorem 5.17 without explicit refer-
ences.

It can be assumed that the two quotients are prime perspective with β < δ,
this means that α ∧ δ = γ and α ∨ δ = β. As the minimal (α, β) and (γ, δ) sets
of the algebra coincide (Corollary 4.7), it can also be assumed that A is both
(α, β)- and (γ, δ)-minimal. Note that if (α, β) is a +-quotient, then so is (γ, δ).

CASE 1: Both are +-quotients
In this case, by Proposition 5.8, both types are among 1, 4, and 5.
If typ(α, β) = 4, then |β\α| = 1. As ∅ 6= δ\γ ⊆ β\α, this means that δ\γ =

β\α, hence there is a pseudo-meet–pseudo-join pair for (γ, δ), so typ(γ, δ) = 4.
If typ(α, β) = 5, then, as there is a pseudo-meet operation for any β\α-edge,

there is also one for (γ, δ). typ(γ, δ) = 4 is not possible, as it would mean that
there is a pseudo-meet–pseudo-join pair for (γ, δ), and it would also be one to
(α, β). Therefore typ(γ, δ) = 5.

Finally, if typ(α, β) = 1, there must not exist a pseudo-meet operation for
(γ, δ), because it would also be one for (α, β), so typ(γ, δ) = 1.

CASE 2: Both are *-quotients
First, assume that neither of the two types is 1. Then α∗ ≺ β∗, and γ∗ ≺ δ∗

in the congruence lattice because of Proposition 5.2. Notice that α∗∧δ∗ = γ∗ (as
ξ 7→ ξ∗ is a ∧-homomorphism) and α∗ ∨ δ∗ = β∗ (if α∗ ∨ δ∗ was α∗, then α∗ ∧ δ∗
would be δ∗). Therefore, (α∗, β∗) and (γ∗, δ∗) are prime perspective congru-
ence quotients, and by Theorem 4.18, typ(α, β) = typ(α∗, β∗) = typ(γ∗, δ∗) =
typ(γ, δ).

Now assume that 1 = typ(γ, δ) 6= typ(α, β). Again, α∗ ∧ δ∗ = γ∗, and
α∗ ∨ δ∗ = β∗, because (α∗, β∗) is a prime congruence quotient. Choose a con-
gruence η such that γ∗ ≺ η ≤ δ∗. By Proposition 5.2, typ(γ∗, η) = 1. But by
the congruence prime perspectivity of (α∗, β∗) and (γ∗, η) and Theorem 4.18,
typ(α, β) = typ(α∗, β∗) = typ(γ∗, η), a contradiction.
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Finally, assume that typ(γ, δ) 6= typ(α, β) = 1. Choose a congruence τ
such that α∗ ≤ τ ≺ α∗ ∨ δ∗. The type of (τ, α∗ ∨ δ∗) cannot be 3, 4, or 5,
because that (along with the (α∗, β∗)-minimality of the algebra) would mean
by Proposition 4.21 that τ = α∗, α∗ ∨ γ∗ = β∗, and so typ(α∗, β∗) ∈ {3, 4, 5}.
Hence, typ(γ, δ) = typ(γ∗, δ∗) = typ(τ, α∗ ∨ δ∗) = 2, because (γ∗, δ∗) and
(τ, α∗ ∨ δ∗) are prime perspective (It follows from Proposition 5.2 that (γ∗, δ∗)
is a prime congruence quotient.)

Now choose a congruence ρ such that α∗ ≺ ρ ≤ α∗ ∨ δ∗. (See Figure 5.1.)
By Proposition 5.2, typ(α∗, ρ) = 1. Consider an (α∗, ρ)-trace D. Denote with
C the α∗ ∨ δ∗-class that contains D.

Notice that any α∗-class of C must contain an element of the (γ∗, δ∗)-body
of the algebra (otherwise, C would be an α∗-class, and that is not compatible
with the fact that C contains an (α∗, ρ)-trace.). Consider the pseudo-Mal’tsev
operation d for the congruence quotient (γ∗, δ∗) that exists by Proposition 4.22.
As any α∗-class of D contains an element that is in the (γ∗, δ∗)-body, any α∗-
class of D, as well as D itself, is a subalgebra with respect to the polynomial
d (because d is idempotent on the (γ∗, δ∗)-body). Also, d acts as a Mal’tsev-
operation on the α∗-classes of D: if A1 and A2 are two such classes, then there
are a1 ∈ A1 and a2 ∈ A2 such that both a1 and a2 is in the (γ∗, δ∗)-body,
thus d(a1, a1, a2) = d(a2, a1, a1) = a2, and any element of d(A1, A1, A2) or
d(A2, A1, A1) must be in the same α∗-class as a2. This contradicts typ(α∗, ρ) =
1.

CASE 3: (α, β) is a *-quotient, while (γ, δ) is a +-quotient
By Proposition 5.8, the type of (γ, δ) is 1, 4, or 5.
If typ(γ, δ) = 4, δ\γ is a single edge (a, b). As α∗ 6= β∗, there is an edge

(c, d) ∈ β∗\α. There is an α-δ path from c to d, which is possible in only one
fashion: if

c
α−→ a

δ\γ−−→ b
α−→ d.

Consider the pseudo-meet operation p for a (so p(a, x) = p(x, a) = p(x, x) =
x for all x), and the path

c = p(c, a)
δ−→ p(c, b)

α−→ p(a, d) = d,

to deduce that c = a. Likewise, deduce d = b using the pseudo-meet operation
for b. So the pseudo-meet–pseudo-join pair for (γ, δ) acts on the unique (α∗, β∗)-
trace as lattice operations, thus typ(α, β) = 4 (the type is not 3, because that
would mean that (d, c) is also in β∗\α, which would yield that (d, c) is also
coinciding with (a, b)).

If typ(γ, δ) = 5, it can be assumed that the edges in δ\γ share a common
source a, and there is a pseudo-meet operation p for it. As in the previous case,
it can be deduced that for an arbitrary (c, d) ∈ β∗\α, c is coinciding with a,
furthermore, there is a b ∈ A such that

a
δ\γ−−→ b

α−→ d.

This means that there is a pseudo-meet operation for (c, d), we need only to
prove that it has no pseudo-join pair.
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Assume contrariwise that q is a bijective polynomial such that q(d, x) =
q(x, d) = q(x, x) = x, hence typ(α, β) ∈ {3, 4}, and thus (α∗, β∗) is a prime
quotient of type 3 or 4. Now consider

a = q(a, a)
δ−→ q(a, b)

α−→ q(a, d) = a,

to see that q(a, b) is in the β∗-class of a, but that class only contains a and d by
Proposition 4.20. If q(a, b) = d, then (a, d) ∈ δ\γ, which is a contradiction, as
there is a pseudo-meet–pseudo-join pair for (a, d). So q(a, b) = a, and likewise,
q(b, a) = a, thus there is a pseudo-meet–pseudo-join pair for (a, b), again a
contradiction.

Finally, set typ(γ, δ) = 1. If typ(α, β) ∈ {3, 4, 5}, then it can be assumed
there is an edge (a, b) ∈ β∗\α and a pseudo-meet operation p for a. By Lemma
5.13, taking an arbitrary δ\γ-edge, a is either a source or a target of it, so there
is a pseudo-meet operation for (γ, δ), which contradicts typ(γ, δ) = 1.

If typ(α, β) = 2, there is a pseudo-Mal’tsev operation m for (α∗, β∗) by
Proposition 4.22. Take an arbitrary edge (a, b) ∈ β∗\α∗, there is an α-δ\γ path
from a to b:

a
α−→ c1

δ\γ−−→ . . .
α−→ ck

δ\γ−−→ b

This path is entirely in β, and as it is between elements of the same β∗-class,
it must lie entirely in that β∗-class. Therefore, c1 and c2 are in the (α∗, β∗)-
body, so (c2, c1) = (m(c1, c1, c2),m(c1, c2, c2)) ∈ δ, and (c1, c2) ∈ δ∗\γ∗, which
contradicts the fact that (γ, δ) is a +-quotient.

On the other hand, the concept of solvability does not extend to quasiorder
lattices–at least, not in a natural way. Consider the semigroup S with the
following multiplication table:

0 1 2 3
0 0 0 0 0
1 1 1 1 1
2 0 1 2 2
3 0 1 2 3

The usual definition of solvability (α and β being in the same block iff
typ[α ∧ β, α ∨ β] ⊆ {1, 2}) does not yield a congruence in this case. Neither
does the definition of strong solvability (α and β being in the same block iff
typ[α ∧ β, α ∨ β] ⊆ {1}).

Proposition 5.19. There are α, β, γ, δ ∈ Quo S such that α ≺ β, γ ≺ δ < β∨γ,
typ(α, β) = 1, and typ(γ, δ) = 5.

Proof. Put

α = 0S, β = {(1, 0)}, γ = {(0, 1), (0, 2), (0, 3), (2, 1)},
δ = {(0, 1), (0, 2), (0, 3), (2, 1), (2, 3)},
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Figure 5.2: Quo S

with ω denoting the set of non-loop edges of a reflexive binary relation ω.
As the set {0, 1} is (α, β)-minimal, and the algebra induced on it is trivial,

typ(α, β) = 1. S is itself a (γ, δ)-minimal algebra, (2, 3) ∈ δ\γ, and the mul-
tiplication is a pseudo-meet operation for 3 (with there being no pseudo-meet
operation for 2), so typ(γ, δ) = 5 by Theorem 5.17.

One may try to alter the definition of the solvability relation for quasiorders
(or even the definition of types for quasiorders) to circumvent this problem. The
next proposition shows a limit to this approach.

Proposition 5.20. There is no congruence ρ of Quo S such that ρ|ConS =∼s,
more precisely, the congruence of Quo S generated by the congruence solvability
relation is 1S.

Proof. Let∼ be the congruence of Quo S generated by the congruence solvability
relation. We will need the following elements of Quo S:

τ = {(0, 1), (1, 0)}
η1 = {(0, 1), (0, 2), (2, 1), (3, 1)}
η2 = {(0, 1), (0, 2), (2, 1), (3, 1), (3, 2)}
η3 = {(0, 1), (0, 2), (0, 3), (2, 1)}
η4 = {(0, 1), (0, 2), (0, 3), (2, 1), (2, 3)}
η5 = {(0, 1), (3, 2)}
η6 = {(0, 1), (2, 3)}
η7 = {(0, 1), (0, 2), (2, 1)}
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Of course, τ is a congruence such that (0S, τ) is a congruence prime quotient
of type 1. Therefore, 0S ∼ τ , so as η1 ∨ τ = η2 ∨ τ and η3 ∨ τ = η4 ∨ τ , η1 ∼ η2
and η3 ∼ η4. Note that η5 < η2, η6 < η4, and η1 ∧ η5 = η3 ∧ η6 = η5 ∧ η6. From
these follows that η5 ∼ η5 ∧ η6 ∼ η6.

By η7 > η5 ∧ η6,

η7 = η7 ∨ (η5 ∧ η6) ∼ η7 ∨ η5 ∨ η6 ∼ η7 ∨ η5 ∨ η6 ∨ τ = 1S.

But as ∼s is closed to inversion (meaning that δ1 ∼s δ2 implies δ−11 ∼s δ−12 ), ∼
must also be closed to inversion. Thus, η−17 ∼ 1S, and 0S = η7 ∧ η−17 ∼ 1S, so
∼ is the full relation on Quo S.

We note that the above proof did not use the symmetry of ∼, so the qua-
siorder of Quo S generated by the congruence solvability relation is also the full
relation.

Problem 5.21. Is the solvability relation on the quasiorder lattices of algebras
that omit 1 for quasiorders/for congruences a lattice congruence? What about
varieties omitting 1?

An other difference for quasiorders is that Proposition 4.21 does not gener-
alize for them: a counterexample is the two-element lattice, which is obviously
a minimal algebra, yet its quasiorder lattice is the direct square of the two-
element lattice. A more elaborate counterexample: consider the semilattice
({0, 1, 2, 3},min). If α = {(0, 1), (0, 2), (1, 2)}, and β is the full order <, then
the semilattice is (α, β)-minimal, but the reader can easily check that the in-
terval [α, β] is the four-element chain. However, there are no other kinds of
counterexamples.

Theorem 5.22. Suppose A is (α, β)-minimal, and α 6≺ β in Quo A. Then the
interval [α, β] either:

• contains only types 4, and is isomorphic to the direct square of the two-
element lattice, or

• contains only types 5, and is a distributive lattice, or

• contains only types 1 and 2.

Proof. First suppose that (γ1, γ2) is a type 3 or a type 4 quasiorder prime
quotient in the interval, and take an edge (a, b) ∈ γ2\γ1. By Theorem 5.17,
there are pseudo-meet operations for both a and b, so by Lemma 5.13, all β\α
edges have a and b as either source ot target. Therefore, β\α ⊆ {(a, b), (b, a)},
and by α 6≺ β there must be equality. Furthermore, either α ∪ {(a, b)} or
α ∪ {(b, a)} must be a quasiorder.

We need yet to show that if either is a quasiorder, then both are. So suppose
that δ1 := α∪ {(a, b)} is a quasiorder, and δ2 := α∪ {(b, a)} is not. Notice that
δ2 is a preorder, as it is in the quasiorder β, and its transitive closure does
not contain (a, b), because there is no path from a to b containing only α-edges
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and the edge (b, a). This means that there is a unary polynomial p such that
p(δ2) 6∈ δ2. Any unary polynomial maps all α-edges into δ1-edges, and (b, a)
into a β edge, which means that p maps the edge (b, a) into (a, b). But then it
also maps (a, b) into (b, a), a contradiction.

So in this case, the interval [α, β] is isomorphic to the lattice 22. By Theorem
5.17 it only contains types 4, because the quasiorders of any prime quotient in it
differ only in a single edge ((a, b) or (b, a)), and there is a pseudo-meet–pseudo-
join pair for that edge.

Now suppose that (γ1, γ2) is a type 5 quasiorder prime quotient in the interval
[α, β], and (a, b) ∈ γ2\γ1. It can be assumed by Theorem 5.17 that there is a
pseudo-meet operation for a, in which case by Lemma 5.13, all β\α edges have
a as either source or target. So there are elements x1, . . . , xk, y1, . . . , yl ∈ A such
that

β\α = {(x1, a), . . . , (xk, a), (a, y1), . . . , (a, yl)},
with k or l possibly being zero.

Suppose there is an i so that there is a pseudo-meet operation for xi (the case
when there is one for yi is similar). This means that, by Lemma 5.13, all β\α
edges have xi as either source or target, so k = 1, and either l = 0 or l = 1 and
y1 = x1. The first case is impossible by α 6≺ β, in the second, the quasiorders
in any prime quotient in the interval [α, β] differ only in one edge, and there is
a pseudo-meet–pseudo-join pair for it, which by Theorem 5.17 contradicts the
assumption that this interval contains a type 5.

Therefore, there is no pseudo-meet operation for any of the xi or the yi.
By Theorem 5.17, this means that the interval [α, β] contains only types 5. To
prove that this interval is a distributive lattice, it is enough to note that for
quasiorders α ≤ δ1, δ2 ≤ β, δ1 ∨ δ2 = δ1 ∪ δ2, because for any 1 ≤ i ≤ k and
1 ≤ j ≤ l, the edge (xi, yj) is in α (as it is in β and a is neither its target or
source).

Problem 5.23. Is it true that for any finite distributive lattice L, there is a
finite algebra A, and quasiorders α, β ∈ Quo A such that A is (α, β)-minimal
and the interval [α, β] of Quo A contains only types 5 and is isomorphic to L?

About the third case, we can say a little more, if the interval omits type
1, namely, that in that case the interval is a modular lattice. This is true for
congruences without assuming minimality:

Theorem 5.24. ([21], Corollary 6.8) Suppose that α < β in Con A, and all
the congruence types in the interval N := [α, β] are 2. Then N is a modular
lattice.

Theorem 5.25. Suppose that α < β in Quo A, A is (α, β)-minimal, and all
the quasiorder types in the interval N := [α, β] are 2. Then N is a modular
lattice.

Proof. By Proposition 5.8, N contains only *-quotients. Consider the mapping
δ 7→ δ∗ from N into Con A. This is a ∧-homomorphism, and preserves the ≺
relation by Proposition 5.2. This means that it is also injective.
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Figure 5.3: The inclusion mapping from D1 to 23 is an order-preserving ∧-
homomorphism, but not a ∨-homomorphism

Claim 1. For any δ1, δ2 ∈ N ,

δ∗1 ∨ δ∗2 ∨ (δ1 ∧ δ2) = δ1 ∨ δ2.

To see this, notice that the left side is in N , and

(δ∗1 ∨ δ∗2 ∨ (δ1 ∧ δ2))∗ ≥ δ∗1 ,

thus, δ 7→ δ∗ being order-preserving,

δ∗1 ∨ δ∗2 ∨ (δ1 ∧ δ2) ≥ δ1.

The same is true for δ2 instead of δ1, which concludes the non-trivial direction
of the equality. The claim is proved.

Claim 2. δ 7→ δ∗ is also a ∨-homomorphism.

Suppose contrariwise that δ∗1 ∨ δ∗2 < (δ1 ∨ δ2)∗ in Con A. Since δ 7→ δ∗

preserves ≺, there is a chain α∗ = γ0 ≺ γ1 ≺ · · · ≺ γ2 = β∗ in Con A such
that typ(γi, γi+1) = 2 for all i. By Lemma 4.24, any α∗-class can be mapped
to any other α∗-class in the same β∗-class by a bijective unary polynomial.
Therefore, any δ∗1 ∨ δ∗2-class can be mapped to any other δ∗1 ∨ δ∗2-class in the
same (δ1 ∨ δ2)∗-class by a bijective unary polynomial.

We call a δ1 ∧ δ2 edge crossedge if it is between different δ∗1 ∨ δ∗2-classes of
the same (δ1 ∨ δ2)∗-class. Take a pair (a, b) ∈ (δ1 ∨ δ2)∗\(δ∗1 ∨ δ∗2). By Claim 1,
there is a (δ∗1 ∨ δ∗2)-(δ1 ∧ δ2) path from a to b. This path must contain at least
one crossedge (all edges in this path are in δ1 ∨ δ2, and (a, b) is in (δ1 ∨ δ2)∗, so
all edges in this path are in (δ1 ∨ δ2)∗).

Hence, there exists a crossedge. Its source can be mapped by a bijective
polynomial into any other δ∗1 ∨δ∗2-class of its (δ1∨δ2)∗-class, so from any δ∗1 ∨δ∗2-
class of that (δ1 ∨ δ2)∗-class there is a crossedge. Therefore, from any element
of that (δ1 ∨ δ2)∗-class there is a crossedge, consequently, there is a circle of
crossedges. This contradicts (δ1 ∧ δ2)∗ ≤ δ∗1 ∨ δ∗2 . The claim is proved.

Thus δ 7→ δ∗ must map any sublattice of N isomorphic to N5 to a sublattice
of the interval [α∗, β∗] of Con A isomorphic to N5, and for any two comparable
elements of this sublattice there must be a chain of type 2 quotients (in Con A).
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By Lemma 6.5 of [21], there is no such sublattice of Con A (the condition there
holds because the sublattice would have to lie in a solvability block–see Theorem
4.18).

Note: It is not generally true for (finite) lattices that a ≺-preserving ∧-
homomorphism is also a lattice homomorphism. As seen on Figure 5.3, omitting
the element (1, 0, 1) from the distributive lattice 23 yields a lattice isomorphic
to the lattice D1. The inclusion map from this latter lattice to 23 is a ∧-
homomorphism, preserves ≺, but it is not a ∨-homomorphism, as (1, 0, 0) ∨
(0, 0, 1) is (1, 0, 1) in the distributive lattice, and (1, 1, 1) in the other.

Problem 5.26. Is Theorem 5.24 true for quasiorders? If not, is it true if the
algebra generates a variety omitting 1?
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Chapter 6

Varieties omitting certain
types

When discussing varieties omitting certain types, there is no distinction between
congruence and quasiorder types:

Theorem 6.1. For any i ∈ {1, 2, 3, 4, 5} and any variety V, V omits i for
congruences iff it omits i for quasiorders.

Proof. Suppose that A is a finite algebra in V, (α, β) is a prime quasiorder
quotient of A with type i. If (α, β) is a *-quotient, then typ(α∗, β∗) = i, so
V does not omit i for congruences. i Now assume that (α, β) is a +-quotient.
By definition, its type is determined by types of congruence quotients in the
enlargement M+ of an (α, β)-minimal set M (for the sake of simplicity, we use
the notation M = A|M ).

By Theorem 4.11, there is an idempotent unary polynomial e mapping A
onto M such that e(β) 6⊆ α. If e(x) = t(x, a1, . . . , ak), where t is a term of A
and a1, . . . , ak ∈ A, we define e′(x) := t(x, (a1, a1, a1), . . . , (ak, ak, ak)), which is
an idempotent unary polynomial mapping A+ onto M+. (Both A+ and M+

are meant as enlargements by β.)
Consider the restriction mapping from Con A+ to Con M+. As M+ =

e′(A+), this mapping is onto by Proposition 4.3, more precisely, for any con-
gruence µ ∈ Con M+, the restriction of the congruence µ0 ∈ Con A+ generated
by µ to M+ is µ. Therefore, for any prime quotient (µ, ν) of Con M+, there
are congruences µ0 ≤ µ1 ≺ ν1 ≤ ν0 of Con A+ such that the restriction of µ1

and ν1 to M+ is µ and ν, respectively. But then, a minimal (µ1, ν1)-set of A+

contained in M+ (there is such a minimal set, for M+ is a polynomial image of
A+) is also a (µ, ν)-minimal set of M+. (Note that all polynomials of M+ can
be obtained as restrictions of polynomials of A+.) Thus typ(µ1, ν1) = typ(µ, ν),
so each type in the congruence lattice of M+ (including typ(α, β)) is present at
the congruence lattice of A+. As A+ ∈ V, i is not omitted by V for congruences
in this case, either.
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In contrast to the preceding theorem, it is not true that any algebra omits
the same congruence and quasiorder types. For example, take the algebra B =
({0, 1, 2}, {p, q}), where p and q are binary operations with multiplication tables
given below:

p 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

q 0 1 2
0 0 0 0
1 0 1 2
2 2 2 2

This is a simple algebra, (0B, 1B) has (congruence) type 5, and with δ =
{(0, 0), (0, 1), (0, 2), (1, 1), (2, 2)} and≤= {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)},
the quasiorder type of (0B, δ) is 5 and the type of (δ,≤) is 4. (It is easy to check
that δ and ≤ are indeed quasiorders.)

Problem 6.2. Which combinations of congruence and quasiorder omitting
types are possible in a finite algebra?

6.1 Congruence modular varieties

Lemma 6.3. Suppose that A is a finite algebra in a congruence modular variety
that is (α, β)-minimal for quasiorders α < β, where α∗ = β∗. Then β∗ has
exactly two blocks.

Proof. As β is not a congruence, there are elements a, b ∈ A such that a/
β∗ ≺β/β∗ b/β∗ and (a, b) 6∈ α. As A is in a congruence modular variety, it
admits Gumm terms p1, . . . , pn, q (see Theorem 4.27).

For each 1 ≤ i ≤ n,

a = pi(a, a, a)
β−→ pi(a, a, b)

β−→ pi(a, b, b)
β−→ pi(b, b, b) = b,

so both pi(a, a, b) and pi(a, b, b) is in the β∗-block of either a or b. Notice that
there must be a j so that pj(a, a, b) and pj(a, b, b) are in different β∗-blocks,
otherwise by the Gumm identities pn(a, b, b) would be in the β∗-block of a,

which contradicts b = q(a, a, b)
β−→ q(a, b, b) = pn(a, b, b).

The unary polynomial pj(a, x, b) thus maps (a, b) to a β\α-edge (as α∗ = β∗,
any edge with source in the β∗-block of a and target in the β∗-block of b must
not be in α). By the (α, β)-minimality of A, pj(a, x, b) must be a bijective
polynomial, but as

a = pj(a, x, a)
β−→ pj(a, x, b)

β−→ pj(b, x, b) = b,

this polynomial maps A to the union of the β∗-blocks of a and b. Thus β∗ only
has two blocks.

Lemma 6.4. Let A be a finite algebra in a congruence modular variety. If A
is minimal to a quasiorder quotient, then it either is a two-element algebra, or
has a Mal’tsev polynomial.
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Proof. By Lemma 4.8, A is minimal to either a congruence quotient or a qua-
siorder +-quotient (α, β). In the second case, by Lemma 6.3, β∗ has two blocks.
This is only possible if α = β∗, but then by Lemma 4.6, A is also (α, 1A)-
minimal.

Hence, A is necessarily minimal to a congruence quotient, and obviously, it
must then be minimal to a congruence prime quotient. By Theorem 4.27, that
quotient has either type 2, 3, or 4, and has no tail. In the type 2 case, the pseudo-
Mal’tsev term for this quotient (see Proposition 4.22) must be a Mal’tsev-term,
in the type 3 or 4 case the body of A (with respect to this congruence quotient)
equals A, and must be two-element by Proposition 4.20.

As a use of this lemma, we will generalize (only for locally finite varieties)
Theorem 2 of [5], which states that in a congruence modular variety, the transi-
tive closure of the intersection of two tolerances coincides with the intersection
of the transitive closures.

Theorem 6.5. Let A an algebra in a locally finite congruence modular variety,
and denote with δ the transitive closure of a compatible reflexive relation δ on A.
The equality ρ ∩ σ = ρ∩σ is satisfied for arbitrary reflexive compatible relations
ρ, σ of A. Thus taking transitive closures induces a homomorphism from the
lattice of compatible reflexive relations of A to Quo A.

Proof. Suppose ρ ∩ σ < ρ ∩ σ. It can be assumed that A is finite, as if (a, b)
is an element of the right side and not of the left, there are elements of A

c1, . . . , ck, d1, . . . , dl such that a
ρ−→ c1

ρ−→ . . .
ρ−→ ck

ρ−→ b and a
σ−→ d1

σ−→ . . .
σ−→

dl
σ−→ b, and the elements a, b, c1, . . . , ck, d1, . . . , dl generate a finite counterex-

ample.
Take a ν ∈ Quo A so that ρ ∩ σ ≺ ν ≤ ρ ∩ σ. It can be assumed that A is

a (ρ ∩ σ, ν)-minimal algebra, because otherwise, its restriction to a minimal set
will yield a counterexample of smaller cardinality.

By Lemma 6.4, A is either a two-element algebra, or has a Mal’tsev poly-
nomial. The first case is impossible: it is very easy to see that this theorem
does not have a two-element counterexample. In the second case, all the reflex-
ive compatible relations of A are tolerances: By Theorem 2 of [5] (what this
theorem generalizes), this is a contradiction.

In [18], the author and his advisor proved the following theorem:

Theorem 6.6. If a locally finite variety is congruence distributive, then it is also
quasiorder distributive. If it is congruence modular, then it is also quasiorder
modular.

We used directed Jónsson and directed Gumm terms (see [23]) to prove
this theorem. These satisfy equations that are a modifications of the equations
satisfied by the usual Jónsson and Gumm terms, and define equivalent Mal’tsev
classes (so, for example the existence of Day terms and directed Day terms
in an algebra are equivalent). With the use of Lemma 6.4, this theorem can
be generalized: it is true not only for distributivity and modularity, but any
identity between them.
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Theorem 6.7. Suppose that A is a finite algebra in a congruence modular
variety. Then Con A and Quo A satisfy the same lattice identities.

Proof. Obviously, any identity satisfied by Quo A is also satisfied by Con A.
Suppose that the converse is not true, that there is a lattice identity p ≈ q that
holds in Con A, and does not hold in Quo A. We will assume two things. Firstly,
that p ≤ q is an identity that holds in all lattices (and so p ≈ q is equivalent
to p 6< q). Secondly, that A is a minimal counterexample, in the sense that for
every B with smaller cardinality, if B lies in a congruence modular variety, and
Con B satisfies p ≈ q, then Quo B also satisfies p ≈ q.

The fact that p ≈ q is not satisfied by Quo A means that there are qua-
siorders α1, . . . , αn, µ, ν of A such that

p(α1, . . . , αn) ≤ µ ≺ ν ≤ q(α1, . . . , αn)

holds in Quo A (p and q are assumed to be n-ary). For a (µ, ν)-minimal set
U , the algebra A|U is in a congruence modular variety (Proposition 4.26 and
Theorem 4.27), Quo A|U does not satisfy p ≈ q, but Con A|U does (because it
is a homomorphic image of Con A by Proposition 4.3 and Theorem 4.11).

Therefore, by the minimality assumption, A must be (µ, ν)-minimal. By
Lemma 6.4, it is either a two-element algebra or has a Mal’tsev polynomial.
Both are impossible. In the first case the congruence lattice of the algebra is
isomorphic to the two-element lattice, and the quasiorder lattice is isomorphic
either to the same, or to its direct square, so they satisfy the same identities.
In the second case, Quo A = Con A by Proposition 2.24.

Corollary 6.8. Suppose that P is a lattice identity so that each variety whose
congruence lattices satisfy P is congruence modular. Then if all congruence
lattices of a locally finite variety satisfy P, then so do all the quasiorder lattices
of the variety.

We note that the condition here for P is weaker then the condition that it
should be a stronger lattice identity than modularity. For example, the so-called
Arguesian identity is a weaker lattice identity than modularity, but a variety is
congruence Arguesian precisely if it is congruence modular (see [22]).

Problem 6.9. For which lattice identities is it true that if the congruence
lattices of a locally finite variety satisfy it, then so do the quasiorder lattices of
the variety? Does the answer change without assuming locally finiteness? In
particular, is it true that for any lattice identity stronger than modularity, if the
congruence lattices of the variety satisfy it then so do the quasiorder lattices?

Problem 6.10. Is Corollary 6.8 true for quasi-identities?

Problem 6.11. Is there a general way of obtaining Quo A from Con A for a
finite A in a congruence modular variety using the H, S, P operators? (Accord-
ing to 6.7, they are in the same lattice variety. The answer to the this problem
is given in [7] for lattices: the quasiorder lattice of a lattice is isomorphic the
direct square of the congreuence lattice.)
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In Chapter 5 we posed the question whether the solvability relation is a
congruence on the quasiorder lattice for varieties omitting type 1. While we
think that the slightly more likely answer to this is “no”, we will prove that
for (finite) algebras in congruence modular varieties, it is indeed a congruence.
This is a purely lattice-theoretic consequence of Theorem 5.18.

We cannot use the same notation for quasiorder and congruence solvability,
because we do not know whether the former is an extension of the latter.

Definition 6.12. For quasiorders α, β of the finite algebra A, the pair (α, β)
is in the solvability relation of Quo A (denoted by α ∼qs β) if the interval
[α ∧ β, α ∨ β] of Quo A omits types 3, 4 and 5. (As Proposition 5.20 showed,
∼qs is generally not a lattice congruence.)

The following proposition is evident from Dedekind’s modularity condition.

Proposition 6.13. If a ≺ b in a modular lattice L, then a ∧ c � b ∧ c and
a ∨ c � b ∨ c hold for every c ∈ L, and there cannot be equality at both.

Theorem 6.14. Suppose that A is a finite algebra and Quo A is a modular
lattice. Then the solvability relation of Quo A is a lattice congruence.

Proof. We will prove the compatibility of ∼qs first. Suppose that α ∼qs β, and
take any quasiorder δ, we will show that α ∧ δ ∼qs β ∧ δ. It can be assumed
that α < β, because (α ∧ β) ∧ δ ∼qs (α ∨ β) ∧ δ is a stronger statement than
α ∧ δ ∼qs β ∧ δ.

Suppose that α ∧ δ ≤ µ ≺ ν ≤ β ∧ δ with typ(µ, ν) 6∈ {1, 2}. As µ ∧ α =
ν ∧α = α∧ δ, it follows from Proposition 6.13 that µ∨α ≺ ν ∨α. As µ∨α and
ν∨α are in the interval [α, β], typ(µ∨α, ν∨α) ∈ {1, 2}. This is a contradiction:
(µ, ν) and (µ ∨ α, ν ∨ α) are prime perspective quotients, so by Theorem 5.18,
they have the same type.

A dual reasoning shows that the join with any given quasiorder also preserves
∼qs, and as ∼qs is reflexive, it is compatible.

We still need to prove that ∼qs is transitive: take quasiorders such that
α ∼qs β ∼qs γ, and suppose that there is a prime quotient (µ, ν) in the interval
[α ∧ γ, α ∨ γ] that has type other than 1 and 2. By Proposition 6.13, either
µ ∧ β ≺ ν ∧ β or µ ∨ β ≺ ν ∨ β, we will assume that the first holds of the two
(the other case is similar).

Now, again by Proposition 6.13, either (µ∧β)∨α ≺ (ν∧β)∨α, or µ∧β∧α ≺
ν∧β∧α. In the second case, as µ∧β∧α∧γ = ν∧β∧α∧γ, another application
of Proposition 6.13 shows that (µ ∧ β ∧ α) ∨ γ ≺ (ν ∧ β ∧ α) ∨ γ. In either
case, there is a quotient that is prime projective to (µ, ν) in one of the intervals
[α ∧ β, α ∨ β] or [β ∧ γ, β ∨ γ], which contradicts α ∼qs β ∼qs γ by Theorem
5.18.

Quasiorder solvability for algebras in congruence modular varieties has ad-
ditional properties.

Theorem 6.15. If A is a finite algebra in a congruence modular variety, then
Quo A/ ∼qs is a distributive lattice.
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Proof. We need to show that (α ∧ γ) ∨ (β ∧ γ) ∼qs (α ∨ β) ∧ γ for any α, β, γ ∈
Quo A. Assume that this is not true, with A being a counterexample of minimal
cardinality. There are quasiorders µ and ν with

(α ∧ γ) ∨ (β ∧ γ) ≤ µ ≺ ν ≤ (α ∨ β) ∧ γ

and typ(µ, ν) 6= 2. Take a (µ, ν)-minimal set U , the algebra A|U is in a congru-
ence modular variety by Proposition 4.26 and Theorem 4.27. As by Propositions
4.3 and 4.11,

(α|U ∧ γ|U ) ∨ (β|U ∧ γ|U ) ≤ µ|U ≺ ν|U ≤ (α|U ∨ β|U ) ∧ γ|U ,

and typ(µ|U , ν|U ) = typ(µ, ν) by the definitions of types, A|U is a counterexam-
ple. Hence by the assumption of minimal cardinality, A must be (µ, ν)-minimal.

According to Lemma 6.4, A has either only two elements, or has a Mal’tsev
polynomial. The first case is impossible because a two-element algebra has a
quasiorder lattice that is isomorphic to either 2 or 22, and both are distributive.
In the second case, Quo A = Con A, and clearly ∼qs=∼s, so Con A/ ∼s should
be a nondistributive lattice. But that cannot be, because it is an upper bounded
lattice by Theorem 4.18, and obviously it is also modular.

Lemma 6.16. Suppose that A is a finite algebra in a congruence modular
variety. If the interval [µ, ν] of Con A contains only type 2 prime quotients,
then the same interval in Quo A also only contains type 2 prime quotients.

Proof. Suppose that the triple (A, µ, ν) is a counterexample such that the |A| is
minimal, and the interval [µ, ν] is also minimal (with respect to inclusion). There
is a quasiorder prime quotient (α, β) in this interval such that typ(α, β) 6= 2.
The assumption for [µ, ν] means that µ = α∗ and ν = β ∨ β−1.

A is (α, β)-minimal, otherwise restricting to an (α, β)-minimal set would
yield a smaller counterexample (see a more detailed explanation of this idea in
the proof of Theorem 6.15, for example).

It follows from Proposition 6.13 that either (α∧α−1, β∧α−1) or (α∨α−1, β∨
α−1) is a prime quotient. Whichever is prime quotient, it is prime perspective
to (α, β), therefore it has type other than 2 by Theorem 5.18, and is in the
interval [µ, ν]. In the second case, this means by the minimality assumption for
[µ, ν] that α ∨ α−1 = µ, consequently, α = µ. We can also assume α = µ in the
first case, because then the quotient (α, β) can be exchanged to (µ, β ∧ α−1).

So from now on α = µ, which means by Lemma 4.6 that A is (µ, ν)-minimal.
Obviously, µ 6≺ ν in Quo A, so Theorem 5.22 can be used. As A is in a congru-
ence modular variety, which omits types 1 and 5 by Theorem 4.27, and [µ, ν]
contains a quasiorder type that is not 2, the only possibility is that this interval
(of Quo A) is isomorphic to 22, and contains only types 4. By Theorem 5.17,
β\α is a single edge, and there is a pseudo-meet–pseudo-join pair for it. That
edge is also a ν\µ edge. But as the congruence type of (µ, ν) is 2, and A is
(µ, ν)-minimal, there cannot be a pseudo-meet operation for a ν\µ edge.
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Theorem 6.17. Suppose that A is a finite algebra in a congruence modular va-
riety. Then the solvability relation of Quo A is the lattice congruence generated
by the congruence solvability relation.

Proof. Lemma 6.16 shows that ∼s is contained in the restriction of ∼qs to
Con A, so ∼s generates a congruence of Quo A not larger than ∼qs. For the
other direction, take a quasiorder prime quotient (α, β) of type 2. By Proposi-
tion 5.8, it is a *-quotient, and by the definition of types of *-quotients, α∗ ≺ β∗
in Con A, and typ(α∗, β∗) = 2. As (α, β) = (α∗ ∨ α, β∗ ∨ α), and α∗ ∼s β∗,
(α, β) is in the congruence of Quo A generated by ∼s. As ∼qs is the congruence
generated by the type 2 quasiorder quotients, indeed ∼qs is in the congruence
of Quo A generated by ∼s.

These theorems show that solvability generalizes quite well for quasiorders
in congruence modular varieties. A concept strongly related to solvability is the
commutator, a binary operator on the congruence lattice of a (not necessarily
finite) algebra (see [26]).

Definition 6.18. The commutator of the congruences α, β ∈ Con A (denoted
by α?β) is the smallest congruence δ such that for any t ∈ Termk A and for any
a, b, c2, . . . , ck, d2, . . . , dk ∈ A satisfying (a, b) ∈ α, (ci, di) ∈ β for all 2 ≤ i ≤ k,

(t(a, c2, . . . , ck), t(a, d2, . . . , dk)) ∈ δ ⇔ (t(b, c2, . . . , ck), t(b, d2, . . . , dk)) ∈ δ

holds.

We avoided the usual notation for the commutator–[α, β]–because we used
that frequently for lattice intervals, especially in this section.

Nothing in this definition uses symmetry, so there is no problem of extending
it for quasiorders. Unfortunately, this definition does not seem to be meaningful.
While for congruences α?β ≤ α∧β, moreover, the commutator is commutative
for congruence modular varieties, for quasiorders neither are/ true. To see this,
consider the variety of lattices with 0 and 1. The natural order ≤ of a lattice is a
quasiorder. For any quasiorder β, and any pair of lattice elements (c, d) ∈ β, it

follows from the certainly true 0∧c ≤?β−−−→ 0∧d and (0, 1) ∈ α that 1∧c ≤?β−−−→ 1∧d.
Thus, (c, d) ∈ β implies (c, d) ∈≤ ?β, so β =≤ ?β (the other inclusion follows
from the definition).

Problem 6.19. What are the properties of the commutator for quasiorders,
particularly in the congruence modular case? What is its relation to the solv-
ability relation? Is there a way to extend the commutator on the congruence
lattice (in a meaningful way) so that α ? β ≤ α∧ β and/or α ? β = β ? α remain
true?

6.2 Varieties omitting types 1 and 2

Theorem 6.20. Suppose A is finite, and generates a variety that omits 1. If
M is a simple sublattice of Quo A, then it is a modular lattice. If HSP(A) also
omits 2, then M must be a trivial or a two-element lattice.
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Proof. It can be assumed that A is (0M , 1M )-minimal, because if 0M ≤ γ1 ≺
γ2 ≤ 1M in Quo A, and U is a (γ1, γ2)-minimal set, then A|U generates a variety
omitting 1, and its quasiorder lattice contains a sublattice isomorphic to a non-
trivial homomorphic image of M. (Because δ 7→ δ|U is a lattice homomorphism
from Quo A to Quo A|U which does not collapse γ1 and γ2, and M is simple.)

By Theorem 5.22, the interval [0M , 1M ] is either a distributive lattice, or it
only contains types 2. In the latter case, the interval is modular by Theorem
5.25, thus M is also modular as its sublattice. If the variety omits 2 as well as
1, then M is a simple distributive lattice, hence it is a two-element lattice.

As an immediate consequence, Theorem 9.10. of [21] can be extended. (See
Theorem 6.22. there for the implication (4)⇒ (3).)

Corollary 6.21. For a locally finite variety V, the following are equivalent.

1. V omits 1 and 2,

2. V is congruence meet semidistributive,

3. no congruence lattice of algebras in V contains a sublattice isomorphic to
M3,

4. no congruence lattice of finite algebras in V contains a sublattice isomor-
phic to M3,

5. no quasiorder lattice of finite algebras in V contains a sublattice isomorphic
to M3,

We do not know such an extension of Theorem 9.6. describing locally finite
varieties omitting 1.

Corollary 6.21 feels lacking, as only one of the three equivalent congruence
conditions has its quasiorder analogue there. To see that the analogues of the
other two are not equivalent to these conditions, it is sufficient to study the
quasiorder lattices of semilattices. The variety of semilattices is the most basic
example for a congruence meet semidistributive lattice (it obviously only con-
tains type 5). It is also clearly locally finite. The class of congruence lattices of
semilattices is quite rich, satisfying no nontrivial lattice identities ([11]).

Theorem 6.22. The quasiorder lattice of FS(3) (the 3-generated free semilat-
tice) is not a meet semidistributive lattice.

Proof. Let X = {a, b, c}. Take α0, β0, and γ as the quasiorders of FS(X)
generated respectively by (a, b), (b, c), and (a, c). Both (γ ∧ α0)\β0 and (γ ∧
β0)\α0 contain only a single edge, namely, (a∧ b∧ c, b∧ c), and (a∧ b, a∧ b∧ c),
respectively. Therefore, with α = Tr(α0 ∪ {(a ∧ b, a ∧ b ∧ c)}), and β = Tr(β0 ∪
{(a ∧ b ∧ c, b ∧ c)}),

α ∧ γ = β ∧ γ < (α ∨ β) ∧ γ,

the inequality holding because only the right side contains (a, c). Note that α
and β are quasiorders: both (a∧b∧c, b∧c), and (a∧b, a∧b∧c) are mapped into
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a b c

a ∧ b a ∧ c b ∧ c

a ∧ b ∧ c

a b c

a ∧ b a ∧ c b ∧ c

a ∧ b ∧ c

a b c

a ∧ b a ∧ c b ∧ c

a ∧ b ∧ c

α β γ

Figure 6.1: The quasiorders α, β, γ of FS(3) satisfying α∧γ = β∧γ < (α∨β)∧γ

themselves or a loop by any unary polynomial, so α0 ∪ {(a ∧ b, a ∧ b ∧ c)} and
β0 ∪ {(a ∧ b ∧ c, b ∧ c)} are compatible reflexive relations, hence their transitive
closures are quasiorders. Thus Quo(FS(X)) fails meet semi-distributivity.

A little more can be said. A characterization of a locally finite variety
omitting 1 (according to the aforementioned Theorem 9.6. of [21]) is that the
congruence lattices of the variety are meet semidistributive over modular, that
is, each has a congruence such that all of its classes are modular, and the factor
with it is a meet semidistributive lattice. As that congruence (for finite algebras
of the variety, at least) is the solvability relation, which is trivial for semilattices,
one does not expect this to generalize for quasiorders. Indeed, it does not.

Theorem 6.23. Quo(FS(5)) (the 5-generated free semilattice) is not a meet
semidistributive over modular lattice.

Proof. It will be enough to repeat the argument used in the proof of Theorem
6.22 with a modification: we essentially double everything so that the interval
[α ∧ γ, γ] will be large enough to not be modular.

Let X = {a, b, c, d, e}. Take α0, β0, and γ as the quasiorders of FS(X)
generated respectively by {(a, b), (c, d)}, {(b, c), (d, e)}, and {(a, c), (c, e)}. The
quasiorders α and β are gained by adding the β0 ∧ γ-edges to α0, and the
α0∧γ-edges to β0, respectively, and taking transitive closures. It can be checked
manually that

α ∧ γ = β ∧ γ < γ = (α ∨ β) ∧ γ,

and the interval [α ∧ γ, γ] of Quo(FS(X)) contains a sublattice isomorphic to
N5. (Add first the edge (a, c), (a ∧ b, b ∧ e), and (a ∧ c, a ∧ c ∧ e), second, the
edges (a, c) and (a, e), finally, the edge (c, e) to α∧ γ, and generate quasiorders.
These three quasiorders generate a lattice isomorphic to N5.)

Now any congruence of Quo(FS(X)) with a meet semidistributive factor
must contain the interval [α ∧ γ, γ] in the same class, and therefore that class
cannot be modular. The proof is finished.

The remainder of this section is concerned about quasiorders of infinite semi-
lattices. We begin with giving an example of a lattice of posets on an infinite

54



γ1

γ2

γ3

γ2

γ3

γ

γ3

γ1

γ2

γ1

γ3

γ1

γ3

γ1

γ2

γ1

γ2

γ3

γ2

γ1

γ2

γ1

γ2

γ3

γ2

γ3
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Figure 6.2: The core edges of the γi

set isomorphic to M3. Note that by Theorem 3.2 this cannot be done on a finite
set.

Example 6.24. Take C as the set of finite ternary fractions in the interval
[0, 1].

We define on C the preorders γ1, γ2, γ3 by giving a generating set for each
(to which we will refer to as their cores). The set of the core edges consists of all
the pairs of the form ( a3j ,

a+1
3j ), where a, j are integers, 0 ≤ j and 0 ≤ a ≤ 3j−1.

A core edge is called an up, a neutral, or a down edge, depending on whether
the remainder of a modulo 3 is 0, 1, or 2.

The allocation of the core edges to exactly one of the γi will be done re-
cursively. The pair (0, 1) is in the core of γ1. Assume that ( a3j ,

a+1
3j ) is in the

core of γi. Then ( 3a
3j+1 ,

3a+1
3j+1 ) and (3a+2

3j+1 ,
3a+3
3j+1 ) will be in the core of γi+1, while

( 3a+1
3j+1 ,

3a+2
3j+1 ) will be in the core of γi−1.

In the above example and henceforth until the end of this section, the index
i is meant to be modulo 3.

Lemma 6.25. In Example 6.24, the sublattice generated by γ1, γ2 and γ3 in
the lattice of preorders of C contains only partial orders, and it is isomorphic
to M3.
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Proof. It is enough to show that the intersection of any two of the γi is 0C , as
by γi ⊆ γi+1 ◦ γi−1 ◦ γi+1 the join of any two of them is the natural full order
≤ of C.

We have to prove that if x < y, and there is a path of core γi-edges from x
to y, then there is no path of core γi+1-edges from x to y. Suppose the contrary.
Notice that in a path of core edges (of a given γi) there is at most one neutral
edge, which must precede all the up edges, and must be preceded by all the
down edges. If there is no neutral edge, any down edge must precede any up
edge.

Suppose that a
3j ≤ x < y ≤ a+1

3j (where j is minimal).
If there are only up edges in the core γi-path from x to y, then the length

of any edge of this path is at most the third of the length of the preceding
edge. This means that the first edge is ( 3a

3j+1 ,
3a+1
3j+1 ). Any neutral or down core

γi+1-edge from 3a
3j+1 is at least 1

3j long, which is longer than the length of the
γi-path. Hence the γi+1-path must contain only up edges. This is impossible:
the first edge of this path is either at least thrice, or at most third the length
of the first edge of the γi-path. In the first case the length of the γi+1-edge is
at least twice the length of the γi-edge, in the second case at most half of it.

Thus, the path of core γi-edges, and likewise, the path of core γi+1-edges,
must start with either a neutral or a down edge. But there is either a single
neutral or a single down edge starting at any element of C (besides 1), and that
cannot be a core edge of both γi and γi+1.

Now, we inject Example 6.24 into a semilattice, namely, FS(C). All elements
of FS(C) are intersections of finitely many elements of C, we will refer to those
elements as the factors of the given semilattice element (so, for example, 0 ∧ 1
is an element of FS(C) having two factors: 0 and 1).

Note that the γi are binary relations of this semilattice, but they are not
quasiorders (not even preorders, as reflexivity fails). In order to get a sublat-
tice in Quo(FS(C)) isomorphic to M3 we will use a similar construction as in
the proof of Theorem 6.22: from preorders of the free generator, we take the
quasiorders generated by them, then add any edge that is in two of them to
the third. The difference is that this time, this construction does not yield qua-
siorders, and so we repeat this step (generating quasiorders, then adding edges
so their pairwise intersections coincide) infinitely, then take the limit.

So, denote the quasiorders of FS(C) generated by γi with γ
(0)
i . Fortunately,

these quasiorders are easily understandable (the proof of the following lemma
is trivial):

Lemma 6.26. Let X be a set, δ ∈ Quo(X), and δ(0) the quasiorder of FS(X)

generated by δ. Then for c1, . . . , cm, d1, . . . , dn ∈ X, c1∧· · ·∧cm
δ(0)−−→ d1∧· · ·∧dn

holds iff for each 1 ≤ i ≤ m and each 1 ≤ j ≤ n there are i′, j′ such that ci
δ−→ dj′

and ci′
δ−→ dj.

Any two of the γ
(0)
i generate the same quasiorder, but their pairwise in-

tersections do not coincide. This is because by the previous lemma, for any
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a, b, c, d ∈ C satisfying

a
γ1−→ b

γ2←− c γ1−→ d,

the edge (a∧ c∧ d, a∧ b∧ d) is in γ
(0)
1 ∧ γ

(0)
2 . It is easy to choose such elements

of C:

0
γ1−→ 1 =

3

3

γ2←− 2

3
=

18

27

γ1−→ 19

27
.

As neither 0, 1, or 19
27 is above 2

3 in the quasiorder γ3,

(0 ∧ 2

3
∧ 19

27
, 0 ∧ 1 ∧ 19

27
) ∈ (γ

(0)
1 ∧ γ(0)2 )\γ(0)3 .

Set recursively for k > 0

γ
(k)
i = γ

(0)
i ∨ (γ

(k−1)
i−1 ∧ γ(k−1)i+1 ),

it is immediate by induction that for each i these form an ascending chain. Let
γi be their union. The goal is to prove that the γi generate a sublattice of
Quo(FS(C)) isomorphic to M3. The easier part is the following lemma.

Lemma 6.27. The pairwise meets of the γi-s coincide, as do their pairwise
joins.

Proof. For any element e ∈ γi−1 ∧ γi+1, there is a k such that e ∈ γ
(k)
i−1 and

e ∈ γ(k)i+1, hence e ∈ γ(k+1)
i ⊆ γi.

For joins, notice that as the pairwise joins of the γ coincide, so do the pairwise

joins of the γ
(0)
i , denote this join with ν. (Actually, ν is the quasiorder of FS(C)

generated by the full order < on C). Clearly, for any i and any k, γ
(k)
i ≤ ν,

thus γi−1 ∨ γi+1 ≤ ν. As γi ≥ γ(0)i , γi−1 ∨ γi+1 ≥ ν also holds for each i.

We need yet to show that the γi-s do not coincide. The way the γi-s were

obtained from the γ
(0)
i -s is a little more complicated then the way the γ

(0)
i were

obtained from the γi. We need a vocabulary to deal with them, hence the need
for the following (atrociously long) definition.

Definition 6.28. For a pair u, v ∈ FS(C), a nonnegative integer s and i ∈
{1, 2, 3}, we say that a pair (K, d), where K is a finite set and d is a mapping

d : K → {0, 1, . . . , s} (called the height function), is a diagram verifying u
γ
(s)
i−−→

v, if the following hold:

• The elements of K are elements of FS(C) indexed by a nonnegative in-
teger (essentially, K is a subset of FS(C), with certain elements possibly
appearing multiple times),

• there is a natural m such that there are elements k0, . . . , km ∈ K such
that:

– k0 = u, km = v, and k0, . . . , km are precisely the elements of K whose
height is s,
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Figure 6.3: Diagram example

– for any 0 ≤ j < m, either kj
γ
(0)
i−−→ kj+1, or there are subsets

L+, L− ⊆ K such that the pairs (L+, d+) and (L−, d−) are diagrams

respectively verifying kj
γ
(s−1)
i+1−−−−→ kj+1 and kj

γ
(s−1)
i−1−−−−→ kj+1, where d+

and d− are just the restrictions of d to L+ and L− with the exception
that d+(kj), d+(kj+1), d−(kj) and d−(kj+1) equal s− 1 instead of s
(such diagrams are called subdiagrams),

• for any proper subset K ′ of K, the pair (K ′, d|K′) does not satisfy the
preceding property.

It is immediate from the definition that two elements of FS(C) are in γ
(s)
i iff

there is a diagram verifying it. We make the following observations of diagrams.

Lemma 6.29. For a diagram (K, d) verifying u
γ
(s)
i−−→ v, there is both a γ

(0)
i ∪γ

(0)
i+1

path and a γ
(0)
i ∪ γ

(0)
i−1 path from kj1 to kj2 in K for any 0 ≤ j1 < j2 ≤ m (so

specifically also from u to v).

Proof. We use induction on s. It is enough to prove that there are such paths

from kj to kj+1 for all 0 ≤ j < m. If kj
γ
(0)
i−−→ kj+1, this is immediate. Otherwise,

there are subdiagrams of (K, d) verifying both kj
γ
(s−1)
i−1−−−−→ kj+1 and kj

γ
(s−1)
i+1−−−−→

kj+1, and by using the inductive assumption the needed paths are gained.

Lemma 6.30. Suppose u, v ∈ FS(C), and (K, d) a diagram verifying u
γ
(s)
i−−→ v.

Take the denominators of all the factors of the elements of K (written so the
nominators and denominators are coprime). The largest of these denominators
appears as a denominator of one of the factors of u or v.
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Proof. We use induction on s, without fixing i. Define (for all i) γ
(−1)
i as

the equality relation on FS(C). Note that this is in accordance with γ
(k)
i =

γ
(0)
i ∨ (γ

(k−1)
i−1 ∧ γ(k−1)i+1 ).

Now the lemma is obvious for s = −1. For s > −1, an element of K
containing a factor with a maximal denominator either equals a kj for some

0 ≤ j ≤ m, or is in a subdiagram verifying kj′
γ
(s−1)

i′−−−−→ kj′+1 for some 0 ≤ j′ < m
and i′ ∈ {1, 2, 3}. By the inductive assumption, in the latter case there also is
a kj having a factor with a maximal denominator.

Suppose that kj = c1 ∧ · · · ∧ ct, where c1 = b
3r , with 3r being the largest

denominator appearing among the factors of the elements of K, and b not being
divisible by 3. We will assume that the remainder of b modulo 3 is 1 (the other
case is similar, only it yields that u has a factor with denominator 3r). Thus
( b
3r ,

b+1
3r ) is a neutral core edge of γi′′ for an i′′ ∈ {1, 2, 3}.

By Lemma 6.29, there is both a γ
(0)
i ∪ γ

(0)
i−1 path and a γ

(0)
i ∪ γ

(0)
i+1 path from

kj to v in K.
Suppose first that i differs from i′′, in this case we will consider the first of

these paths.
By Lemma 6.26, the path

kj = d0
γ
(0)
i−−→ d1

γ
(0)
i−1−−−→ d2

γ
(0)
i−−→ . . .

γ
(0)
i−1−−−→ dh = v

in K implies a path

b

3r
= e0

γi−→ e1
γi−1−−−→ e2

γi−→ . . .
γi−1−−−→ eh

in C, with et being a factor of dt for all 0 ≤ t ≤ h.
There is no γi edge, and at most one γi−1 edge from b

3r whose target has

denominator not greater than 3r: the edge ( b
3r ,

b+1
3r ). If this is indeed a γi−1

edge (this is so in the i′ = i − 1 case), then ( b+1
3r ,

b+2
3r ) is a (down) γi+1 edge,

which means that there is no γi or γi−1 edge from b+1
3r with a target whose

denominator is not greater than 3r. Therefore, all the et are equal to b
3r or b+1

3r

(those equal to the first preceding in the above path those equal to the second).

Now suppose that i = i′′, and consider the γ
(0)
i ∪ γ

(0)
i+1 path. As in the first

case, we have the paths

kj = d0
γ
(0)
i−−→ d1

γ
(0)
i+1−−−→ d2

γ
(0)
i−−→ . . .

γ
(0)
i+1−−−→ dh = v

and
b

3r
= e0

γi−→ e1
γi+1−−−→ e2

γi−→ . . .
γi+1−−−→ eh,

with et being a factor of dt for all 0 ≤ t ≤ h. Now ( b
3r ,

b+1
3r ) is a γi edge, but

( b+1
3r ,

b+2
3r ) is neither a γi or γi+1 edge, and again all the et are equal to either

b
3r or b+1

3r .

As eh is a factor of v, and (in both cases) equals either b
3r or b+1

3r where the
remainder of b modulo 3 is 1, the proof is finished.
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Lemma 6.31. γ1 6= γ2.

Proof. Suppose 0
γ2−→ 1. There must be a diagram verifying it, and by Lemma

6.30 that diagram can only contain elements of FS(C) that have only factors
with denominator 1. Such a diagram can only contain 0, 1, or 0 ∧ 1, and it is
obvious that no such diagram exists.

With the preceding lemma, we have proved the following theorem.

Theorem 6.32. Quo(FS(ω)) contains a sublattice isomorphic to M3.

M3 was of interest to show that the third point of Corollary 6.21 does not
extend into quasiorders. But it is natural to ask whether Theorem 6.32 is true
for other lattices.

Conjecture 6.33. Any lattice is embeddable into the quasiorder lattice of a
suitable semilattice.

We give here a method that, for any lattice L, obtains a semilattice S and a
homomorphism L 7→ Quo S that we believe–but cannot prove–to be one-to-one.
It is a modification of the method used in the proof of Theorem 6.32.

• Take a set X0 and for any l ∈ L preorders γ
(0,∗)
l ∈ PreX0 such that

l 7→ γ
(0,∗)
l is an embedding. This can be done by Theorem 3.1.

• Take S0 as the semilattice freely generated by X0, and let γ
(0,0)
l be the

quasiorder of S0 generated by γ
(0,∗)
l . Now l 7→ γ

(0,0)
l is a join homomor-

phism.

• Set recursively for k > 0

γ
(0,k)
l := γ

(0,k−1)
l ∨

∨
l1∧l2≤l

(γ
(0,k−1)
l1

∧ γ(0,k−1)l2
),

and
γ(0) :=

⋃
γ
(0,k)
l .

Now l 7→ γ
(0)
l is a meet homomorphism. Unfortunately, it is not necessarily

a join homomorphism. It was so for M3. That was because the only

nontrivial joins for M3 are all 1, and γ
(0,0)
1 and γ

(0)
1 coincides. On the

other hand, the reader can check that for Figure 6.4,

γ(0)r1 ∨ γ
(0)
r2 = γ(0,0)r1 ∨ γ(0,0)r2 = γ(0,0)r < γ(0)r .

• X1 will be a set that is gained by adding an element xy1,y2,r,r1,r2 to the
set S0 for any tuple (y1, y2, r, r1, r2) ∈ S2

0 × L3 such that

(y1, y2) ∈ γ(0)r \γ(0)r1 ∨ γ
(0)
r2 .
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r1 r2

r

Figure 6.4: A lattice such that l 7→ γ
(0)
l is not a lattice homomorphism

• S1 is the semilattice that is presented by the generating set X1 with all the

identities that are true in S0. The preorders γ
(1,∗)
l ∈ PreS1 are obtained

by adding all edges of the form (y1, xy1,y2,r,l,r2) and (xy1,y2,r,r1,l, y2) to γ
(0)

l

for all l ≥ l.

• Define γ
(1,0)
l as the quasiorder of S1 generated by γ

(1,∗)
l . (Now, again,

l 7→ γ
(1,0)
l is a join homomorphism!) From this, define {γ(1)l : l ∈ L} the

same way as {γ(0)l : l ∈ L} was defined from {γ(0,0)l : l ∈ L}.

• Continuing in this fashion, for all natural k the set Xk, the semilattice Sk,

and (for all l ∈ L) quasiorders γ
(k,0)
l < γ

(k)
l are defined, so that l 7→ γ

(k,0)
l

is a join homomorphism, and l 7→ γ
(k)
l is a meet homomorphism for any

k. Furthermore, γ
(k)
l is γ

(k+1,0)
l constricted to Sk.

• Define S as the direct union of the Sk, and γl as the direct union of the

γ
(k)
l . Now l 7→ γl is a lattice homomophism.

6.3 Varieties omitting 1, 2, and 5

The aim of this section is to generalize Freese, Kearnes, and Nation’s result
[12] stating that in a variety omitting 1, 2, and 5, the congruence lattices of
the finite algebras are not only ∨-semidistributive (Theorem 4.29), but lower
bounded. (This is part of Corollary 27 of [12]. We do not know whether the
other part–that these lattices are also upper bounded–is true for quasiorders.
Theorem 23–the main theorem–is not, for two reasons: first, as Proposition 5.19
shows, one cannot even generally talk about Quo A/ ∼s, second, according to
Theorem 6.22, the quasiorder lattices of semilattices are not necessarily upper
bounded, and the solvability relation for semilattices is the equality relation.)

Before we can prove lower boundedness, we first need to prove ∨-semidistribu-
tivity.
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δ1 δ2

β

Figure 6.5: An involutive lattice not embeddable into a lattice of preorders, the
involution being vertical reflection

Lemma 6.34. Suppose that C is an arbitrary set, L ≤ PreC is a lattice of
preorders on C, and β ∈ C. Then the mapping δ 7→ δ ∧ β−1 is a lattice homo-
morphism from the ideal (β] of L to the ideal (β∗].

Proof. It is obvious that this mapping preserves meets. We need to show that
for any δ1, δ2 ≤ β:

(δ1 ∨ δ2) ∧ β−1 ⊆ (δ1 ∧ β−1) ∨ (δ2 ∧ β−1).

Consider an edge (a, b) from the left side. There must be elements of C a =
c0, c1, . . . , ck = b so that for each 0 ≤ i < k, (c1, ci+1) is in either δ1 or δ2. As

a = c0
β−→ c1

β−→ . . .
β−→ ck = b

β−→ a,

all the ci are in the same β∗-block, so each (ci, ci+1) is in either δ1 ∧ β−1 or
δ2 ∧ β−1.

Corollary 6.35. For any set C, the following involutive lattice identity holds
in PreC:

((δ1 ∧ β) ∨ (δ2 ∧ β)) ∧ β−1 = (δ1 ∧ β ∧ β−1) ∨ (δ2 ∧ β ∧ β−1).

The above involutive lattice identity is nontrivial, as the Figure 6.5 shows.
We note that Czédli in [6] gave a nontrivial involutive lattice quasi-identity that
is satisfied in any preorder lattices. It is an interesting question whether there is
a finite set of involutive lattice identities that characterizes preorder lattices, or
at least the variety generated by them–but this question is outside of the scope
of this thesis.

Theorem 6.36. Suppose that A is a finite algebra in a variety omitting 1, 2,
and 5. Then Quo A is join semidistributive.
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Proof. Suppose that α, γ1, γ2 ∈ Quo A are such that α∨γ1 = α∨γ2 > α∨ (γ1∧
γ2). It can be assumed that α = α∨(γ1∧γ2), and that β := α∨γ1 � α. Suppose
that A is such that |A| is minimal among counterexamples to the theorem, and
the quasiorders are such that β is minimal.

It follows from the minimal cardinality of A that A is (α, β)-minimal, be-
cause for any (α, β)-minimal set U , the algebra A|U is in a variety omitting 1,
2, and 5 (see Proposition 4.26 and Theorem 4.29), and

α|U ∨ γ1|U = α|U ∨ γ2|U = β|U > α|U = α|U ∨ (γ1|U ∧ γ2|U )

holds by Proposition 4.3 and Theorem 4.11.
We will consider two cases depending on whether (α, β) is a *-quotient or a

+-quotient.
If α∗ 6= β∗, β must be a congruence, otherwise intersecting α, γ1, γ2 with β−1

would yield a counterexample contradicting the minimality of β (see Lemma
6.34). As A is (α, β)-minimal, it also is (α∗, β)-minimal. By Proposition 4.21,
(α∗, β) is a prime congruence quotient. As typ(α∗, β) ∈ {3, 4}, there is a unique
two-element (α∗, β)-body (say, {u, v}). Either (u, v) or (v, u) is not in α. That
edge must be in γ1, as it is in β = α ∨ γ1, and {u, v} is a β-block. Similarly, it
must be in γ2, which contradicts γ1 ∧ γ2 ≤ α.

Now assume α∗ = β∗. In this case, by Proposition 5.8 and Theorem 5.17,
β\α must be a single edge. This is impossible: by α∨ γ1 = α∨ γ2 = β, both γ1
and γ2 must contain this edge, but then γ1 ∧ γ2 6≤ α.

Problem 6.37. Is it true that any algebra in a congruence join semidistributive
variety is quasiorder join semidistributive? If not, is it true with the assumption
that the variety is locally finite? Is it true that if the congruence lattices are all
join semidistributive over modular, then so are the quasiorder lattices?

We refer to [19] and Chapter 9 of [21] for more on the join semidistributive
over modular property for congruence lattices. As it relates to the solvability
relation, the expected answer to the last question is “no”. For other reasons
(mainly to do with the proof of Theorem 6.32) we also expect “no” to be the
answer to the other question.

Lemma 6.38. Suppose L is a lattice, and θ is a congruence on L such that all
θ-blocks have at most two elements. Then if L is join semidistributive, then so
is L/θ.

Proof. Suppose there are elements a, b, c ∈ L so that

(a ∨ b)/θ = (a ∨ c)/θ > (a ∨ (b ∧ c))/θ.

By the join semidistributivity of L, a∨ b = a∨ c is impossible, but a∨ b and
a∨ c are in the same (necessarily two-element) θ-block. It may be assumed that
a ∨ c ≺ a ∨ b.

We claim that
a ∨ ((a ∨ c) ∧ b) = a ∨ c.
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It is obvious that ≤ is satisfied in the above equality, but also, the two sides are
in the same θ-block by

a ∨ ((a ∨ c) ∧ b) θ←→ a ∨ ((a ∨ b) ∧ b) = a ∨ b θ←→ a ∨ c,

and a ∨ c is the smallest element of that θ-block.
Now, the join semidistributivity of L implies

a ∨ c = a ∨ (c ∧ (a ∨ c) ∧ b) = a ∨ (b ∧ c),

which contradicts (a ∨ c)/θ > (a ∨ (b ∧ c))/θ.

Lemma 6.39. Suppose L is a finite lattice, and θ is a congruence on L so that
all θ-blocks have at most two elements. If L is join semidistributive and L/θ is
lower bounded, then L is also lower bounded.

Proof. Let L′ := L/θ, and denote with K the set of elements of L′ corresponding
to two-element θ-classes. For any k ∈ K, there are elements kb ≺ kt of L such
that kb/θ = kt/θ = k. Introduce the binary relation  on K with

k(1)  k(2) ⇔ (k
(1)
t ∨ k

(2)
b = k

(2)
t ) ∧ (k

(1)
t ∧ k

(2)
b = k

(1)
b ),

this is a partial order onK. We denote with∼ the equivalence relation generated
by it.

Claim 1. ∼= −1 ◦ .

As  is a partial order, it is enough to show  −1 ◦ ⊆ ◦ −1. Suppose
that k(1)  k(2)  −1 k(3). By the join semidistributivity of L and

k
(2)
b ∨ k

(1)
t = k

(2)
b ∨ k

(3)
t = k

(2)
t ,

it follows that k
(1)
t ∧ k

(3)
t 6≤ k(2)b , thus

k
(1)
t ∧ k

(3)
t 6= k

(1)
b ∧ k

(3)
b .

This means that k(1) ∧ k(3) ∈ K, and it is easy to check that k(1)  −1 k(1) ∧
k(3)  k(3). The claim is proved.

Claim 2. For k(1), k(2) ∈ K, k(1) ∼ k(2) is equivalent to k(1)  −1 k(1) ∧ k(2)  
k(2).

By the previous claim, we only have to prove that if k(1)  −1 k(3)  k(2),

then one can exchange k(3) into k(1) ∧ k(2). By k
(3)
b ≤ k

(1)
b , k

(2)
b , it follows that

k(3) ≤ k(1)∧k(2). But k
(3)
t 6≤ k(1)b , k

(2)
b , which is only possible if k

(1)
b ∧k

(2)
b is the

bottom element of a two-element θ-class, whose top element is not lower than

either k
(1)
b or k

(2)
b . This means precisely that k(1)  −1 k(1) ∧ k(2)  k(2).

Claim 3. The ∼-classes are lower pseudointervals in L′.
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The previous claim shows that they are closed to meets, all we need to prove
is that they are convex. Suppose that k(1) ≤ l′ ≤ k(2), where l′ ∈ L′, and
k(1) ∼ k(2). Again by the previous claim, we get that there is an h ∈ K so

that ht ≤ k
(1)
t and ht 6≤ k

(2)
b , therefore k

(1)
t 6≤ k

(2)
b , and k(1)  k(2). Hence,

l′ ∈ K, because otherwise k
(1)
t would be smaller then the (unique) element of

L corresponding to l′, which would be smaller then k
(2)
b . Now if k(1) 6 l′, then

k
(1)
t ≤ l′b, but then also k

(1)
t ≤ k

(2)
b , a contradiction. Therefore, l′ is in the

∼-class of k(1), and the claim is proved.
As the ∼-classes are obviously disjoint, by Theorem 2.32 we only have to

prove that when doubling the ∼-classes in L′, one gets a lattice isomorphic to
L. To do that, check that for k(1) ∼ k(2),

k
(1)
b ≤ k(2)b ⇔ k(1) ≤ k(2) ⇔ k

(1)
t ≤ k(2)t ⇔ k

(1)
b ≤ k(2)t ,

and k
(1)
t ≤ k

(2)
b is impossible (by Claim 2), and if for l1, l2 ∈ L, l1/θ 6∼ l2/θ,

then
l1 ≤ l2 ⇔ l1/θ ≤ l2/θ.

Lemma 6.40. Suppose L is a finite join semidistributive lattice, and θ is a
congruence on L so that all θ-blocks having at least three elements are isomorphic
to the direct square of the two-element lattice. If θ is an atom in Con L, then
no block of it contains more than two elements.

Proof.

Claim 1. Suppose that a ≺ b with a and b being in the same θ-block. Then
a ∨ c � b ∨ c and a ∧ c � b ∧ c for any c ∈ L.

Assume first that a∨c < x, y < b∨c (the case when a∨c and b∨c are not in
a one- or two-element θ-block). As neither x nor y can be larger than (or equal
to) b,

x ∨ y = x ∨ b = b ∨ c > x = x ∨ a = x ∨ (y ∧ b),

contradicting join semidistributivity. Likewise, if a ∧ c < x, y < b ∧ c, then
neither x nor y can be smaller than (or equal to) a, and

a ∨ x = a ∨ y = b > a = a ∨ (a ∧ c) = a ∨ (x ∧ y)

contradicts join semidistributivity. The claim is proved.
Introduce the relation on the set of those prime quotients of L whose two

elements are in the same θ-block with

(x1, x2) (y1, y2)⇔ (x2 ∨ y1 = y2) ∧ (x2 ∧ y1 = x1).

This is a preorder.

Claim 2. The transitive closure of this relation is ∼:= −1 ◦ .
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Suppose that
(x1, x2) (y1, y2) −1 (z1, z2),

and let us show that

(x1, x2) −1 (x1 ∧ z1, x2 ∧ z2) (z1, z2).

By the join semidistributivity of L it follows that x2 ∧ z2 6≤ y1, otherwise

y1 ∨ x2 = y1 ∨ z2 = y2 > y1 = y1 ∨ (x2 ∧ z2),

hence x1 ∧ z1 6= x2 ∧ z2. By the previous claim,

x1 ∧ z1 � x1 ∧ z2, x2 ∧ z1 � x2 ∧ z2,

so if x1 ∧ z1 and x2 ∧ z2 were respectively the bottom and the top element of
a θ-class, then the other two elements would have to be x1 ∧ z2 and x2 ∧ z1
(because x1 ∧ z2 = x2 ∧ z1 > x1 ∧ z1 is clearly not the case). But that would
mean that

(x1 ∧ z2) ∨ (x2 ∧ z1) = x2 ∧ z2,

which contradicts x2 ∧ z2 6≤ y1. Thus, (x1 ∧ z1, x2 ∧ z2) is a prime quotient in a
θ-block, and as x2 ∧ z2 ≤ x1 or x2 ∧ z2 ≤ z1 would mean x2 ∧ z2 ≤ y1, the claim
is proved.

Now assume that there is a θ-block with elements a < b, c < d. As θ is an
atom in Con L, it is the congruence generated by the edge (a, b). The set

ρ := {(x, y) ∈ L2 : x = y or (x, y) ∼ (a, b)}

is closed under the unary polynomials of L by Claim 1: for any (x, y) ∈ ρ any
any z, x ∨ z ≺ y ∨ z means (x, y)  (x ∨ z, y ∨ z) and x ∧ z ≺ y ∧ z means
(x, y) −1 (x∧ z, y∧ z). Therefore, θ is the symmetric and transitive closure of
ρ. This is only possible if (b, d) ∈ ρ (because if (a, c) ∈ ρ, then by (a, c) (b, d)
one sees that (b, d) is also in ρ).

By Claim 2, there is a prime quotient (e, f) in L so that (a, b) −1 (e, f) and
(e, f) (b, d). The first relation implies that f ≤ b, the second that f ∨ b = d,
this contradiction finishes the proof.

Lemma 6.41. Suppose L is a finite lattice, and θ is a congruence on L such that
all θ-blocks having at least three elements are isomorphic to the direct square of
the two-element lattice. If L is join semidistributive and L/θ is lower bounded,
then L is also lower bounded.

Proof. Suppose that in the congruence lattice of L,

0L ≺ θ1 ≺ · · · ≺ θk = θ.

We use induction on k. The case k = 1 is an obvious consequence of Lemmas
6.39 and 6.40.
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If k > 1, then by Lemmas 6.38 and 6.40, L/θ1 is a join semidistributive
lattice. Notice that θ/θ1 is a congruence of L/θ1 that does not have a block
with more than two elements that is not isomorphic with the direct square of the
two-element lattice. Hence by the inductive hypothesis L/θ1 is a lower bounded
lattice, and then so is L, because the k = 1 case of the lemma is already proved,
and it can be applied for θ1 in the place of θ.

Theorem 6.42. Suppose that A is a finite algebra in a variety omitting 1, 2,
and 5. Then Quo A is a lower bounded lattice.

Proof. We use induction on |A|.
For any prime quotient α ≺ β in Quo A such that A is not (α, β)-minimal,

take an (α, β)-minimal set M . The algebra A|M is in a variety omitting 1, 2,
and 5 by Proposition 4.26 and Theorem 4.29, thus by the inductive hypothesis
Quo A|M is a lower bounded lattice. By Proposition 4.3 and Theorem 4.11, the
restriction to M is a lattice homomorphism from Quo A onto Quo A|M . Denote
the kernel of this homomorphism with θα,β . Note that α and β are in different
θα,β-blocks, and that Quo A/θα,β ∼= Quo A|M is a lower bounded lattice.

Introduce
θ :=

∧
Ais not (α,β)-minimal

θα,β .

As
Quo A/θ ≤S

∏
Ais not (α,β)-minimal

Quo A/θα,β ,

A/θ is a lower bounded lattice by Theorem 2.33. As for each α ≺ β in Quo A
such that A is not (α, β)-minimal, (α, β) 6∈ θα,β , each θ-block is such that A is
minimal to each prime quotient in it.

Consequently, A is minimal for any quasiorders γ < δ satisfying (γ, δ) ∈ θ.
By Theorem 5.22, all θ-blocks have either one or two elements, or are isomorphic
to the lattice 22 (as A is in a variety omitting 1, 2, and 5). By Theorem 6.36,
Quo A is a join semidistributive lattice. Thus by Lemma 6.41, Quo A is a lower
bounded lattice.

Corollary 6.43. Suppose that V is a variety omitting 1, 2, and 5, and the finite
algebras in the variety all have meet semidistributive quasiorder lattices. Then
the quasiorder lattices of the finite algebras of V are all bounded lattices.

Proof. This is an immediate consequence of Theorem 6.42 and Day’s Theorem
(Theorem 2.64 of [10]) stating that if a lattice is semidistributive, then it is
either neither lower nor upper bounded, or bounded.

6.4 Quasiorder meet semidistributivity

According to Theorem 6.36, if a finite algebra generates a congruence join
semidistributive variety, it is quasiorder join semidistributive. According to
Theorem 6.7, this is also true for distributivity and modularity, and indeed any
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quasi-idenity stronger than modularity. But Theorem 6.22 shows that meet
semidistributivity is an other matter. This raises the following question.

Problem 6.44. Characterize those varieties whose every algebra is quasiorder
meet semidistributive. Characterize those varieties whose every finite algebra is
quasiorder meet semidistributive.

There is reason to believe that these two questions have different answers:
in the variety of semilattices, the congruence lattice of no finite algebra contains
a sublattice isomorphic to M3 (Theorem 6.20), but there is an infinite algebra
whose congruence lattice does (Theorem 6.32). Note that for locally finite va-
rieties, not having a congruence lattice with a sublattice isomorphic to M3 is
equivalent to congruence meet semidistributivity (Theorem 4.28).

Conjecture 6.45. Suppose that A is a finite algebra such that Quo A does
not omit 5. Then there is a finite algebra in the variety generated by A whose
quasiorder lattice is not meet semidistributive.

If this conjecture is true, that will mean that quasiorder meet semidistribu-
tivity is a consequence of join semidistributivity for finite algebras of a variety.
For congruences, the implication goes the other way (see Theorems 4.28 and
4.29). It would, of course, still be possible that both implications hold, but
while we believe that Conjecture 6.45 is true, we do not know whether finite al-
gebras lying in a variety omitting 1, 2, and 5 need to have meet semidistributive
quasiorder lattices. It may be that quasiorder meet semidistributivity is equiv-
alent to quasiorder distributivity (for varieties). In any case, by Corollary 6.43,
it would follow from Conjecture 6.45 that quasiorder meet semidistributivity
means quasiorder boundedness for finite algebras of a variety.
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Chapter 7

Summary

This thesis is about quasiorders of algebras. A quasiorder is a preorder (reflex-
ive and transitive binary relation) on the underlying set of the algebra that is
compatible with the algebra’s operations. The quasiorders of an algebra A form
a lattice with respect to inclusion, denoted by Quo A.

For a trivial algebra, each preorder is a quasiorder. Lattices of preorders
are quite complicated in the following sense: each lattice can be embedded into
a preorder lattice (of a large enough underlying set), moreover, this can be
done so the embedding is into a principal ideal of the preorder lattice which is
generated by an antisymmetric preorder. In other words, each lattice can be
represented as a lattice of posets. It is not true, however, that each finite lattice
is representable as a lattice of posets on a finite underlying set: this can only
be done if the lattice is (McKenzie-) lower bounded [30, 2].

Lower boundedness is a property that can be checked for final lattices in
polynomial (cube) time. If a and b are distinct join irreducible elements of the
lattice L, then a and b are said to be D-related (aD b) if there is a c ∈ L such
that a ≤ b ∨ c but a 6≤ d ∨ c for any d < b. A lattice is lower bounded if it is
finally generated and the D relation does not contain an infinite path.

In the thesis we first inquire about the following question: which lattices
can be represented as a lattice of posets satisfying DCC (that is, posets not
containing infinite descending chains). We give a necessary condition for this.

Definition 7.1. An element c ∈ L is completely join irreducible if either it is
the smallest element of L or there is a c∗ ∈ L that is the greatest of all elements
of L smaller than c.

Definition 7.2. Let a := a1Da2D . . .D akDa1 and b := b1D b2D . . .D blD b1
D-circles in L consisting only of completely join irreducible elements. The circle
a is said to depend on the circle b if there are indices i and j such that

• aj+1 ≤ bi ∨ aj ,

• aj+1 6≤ bi ∨ a∗j ,
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• aj+1 6≤ b∗i ∨ aj .

Theorem 3.7. If dependency, as a binary relation on the D-circles of L itself
contains a circle, then L is not representable with posets satisfying DCC.

For finite lattices, we prove a sufficient and necessary condition. It shows
that deciding whether a finite lattice can be represented by posets satisfying
DCC is in EXPT IME (and probably in NP).

Definition 7.3. For a finite lattice L, CL denotes the set of nontrivial join
covers of join irreducibles, i.e. the set

{(l, l1, . . . , lk) ∈ J(L)k+1 : l ≤ l1 ∨ l2 ∨ · · · ∨ lk,
l 6≤ (l1)∗ ∨ l2 ∨ · · · ∨ lk, l 6≤ l1 ∨ (l2)∗ ∨ · · · ∨ lk, . . . , l 6≤ l1 ∨ l2 ∨ · · · ∨ (lk)∗}

Theorem 3.4. A finite lattice L is representable with DCC posets if and only
if there is a mapping s : CL 7→ L satisfying the following:

• for any (l, l1, . . . , lk) ∈ CL, s(l, l1, . . . , lk) ∈ {l1, . . . , lk},

• s is symmetrical in all but the first variable, i.e. for any permutation
π ∈ Sk,

s(l, l1, . . . , lk) = s(l, lπ(1), . . . , lπ(k)),

• for the binary relations

TL := {(l, li) : (l, l1, . . . , lk) ∈ CL, s(l, l1, . . . , lk) 6= li}

and

UL := Tr({(l, l) : l ∈ L}∪{(l, li) : (l, l1, . . . , lk) ∈ CL, s(l, l1, . . . , lk) = li}),

the relation UL ◦ TL does not contain a circle.

There is a related question explored in the thesis: which lattices can be
embedded into quasiorder lattices of semilattices? The main result: the lattice
M3 is embeddable (while it is not embeddable into a congruence lattice of a
semilattice). The construction can be extended to any (potentially infinite)
lattice to give a homomorphism of the lattice to the quasiorder lattice of a
semilattice. Our (unproven) conjecture is that this homomorphism is always an
embedding.

The remaining parts of the thesis are universal algebra. The main ques-
tion: in what way can the Hobby-McKenzie tame congruence theory [21] be
extended to quasiorders, and how far that extension can be taken? Tame con-
gruence theory gives a type from 1 to 5 to every covering pair of a congruence
lattice (Con A) of a finite algebra A. This so-called “labeling” has the following
properties:

• if θ ∈ Con A, then the types of covering pairs in Con(A/θ) are the same as
the types of the corresponding pairs in Con A (pairs over the congruence
θ),
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• if the covering pairs α ≺ β and γ ≺ δ are prime perspective, that is,
β ∧ γ = α and β ∨ γ = δ, then the types of the two pairs are the same,

• any type depends only on the polynomial clone of the algebra, and not on
the principal operations or the terms,

• the solvability relation on Con A (µ and ν are in the same class if the
interval [µ ∧ ν, µ ∨ ν] does not contain types 3, 4, and 5) is a lattice
congruence, and factoring out with it gives an upper bounded lattice.

A major part in the definition of types is a “descent” to a minimal algebra
(with respect to the given congruence pair). We will not give details here, only
mention that this can be done to quasiorder pairs without trouble, and the
resulting minimal algebra will be essentially unique.

We give a definition of types for covering pairs of the quasiorder lattice. This
still has all but the last of the preceding properties, and is really an extension:
if a covering quasiorder pair consists of two congruences, then the pair has the
same congruence and quasiorder types. The following method will give the type
of a covering edge (α, β) of Quo A:

• “Descend” to an (α, β)-minimal algebra. From now on, A is assumed
to be (α, β)-minimal, so any non-bijective polynomial maps β-edges into
α-edges.

• Take the congruences α∗ := α∧α−1 and β∗ := β∧β−1. First assume that
α∗ 6= β∗. If β∗ covers α∗ in the congruence lattice, then (α, β) will inherit
the congruence type of (α∗, β∗). Otherwise, the type of (α, β) will be 1.

• From now on, α∗ = β∗. We define A+, the enlargement of A by β. It
consists of those elements (a, b, c) ∈ A3 satisfying (a, b), (b, c) ∈ β. (So it
is a subalgebra of A3).

• For every δ ∈ Quo A, there is a congruence δ+ ∈ Con A+ defined as the
transitive closure of the following relation:

{((a, b, c), (a, b′, c)) ∈ A2
+ : (b, b′) ∈ δ ∪ δ−1}.

• It can be proved that α+ and β+ are different congruences of A+. Let us
list which (congruence) types are there in the interval [α+, β+]. If there
is a type 4, then the quasiorder pair (α, β) will have type 4. If there is no
type 4 in the interval, but there is type 5, then (α, β) will have type 5. In
all other cases, the type of (α, β) will be 1.

This definition has the following important properties:

Theorem 6.1. For any i ∈ {1, 2, 3, 4, 5} and any variety V, V omits i for
congruences iff it omits i for quasiorders.

Theorem 5.18. Prime perspective quasiorder pairs have the same type.
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The important property not necessarily true for quasiorder lattices is that the
solvability relation is a congruence. For this we give a four-element semigroup as
an example. This example also shows that there is no way to define solvability
in an other way so it is a congruence on the quasiorder lattice and an extension
of the solvability relation of the congruence lattice. On the other hand, if the
algebra is finite and generates a congruence modular variety, then the solvability
relation is a congruence on the quasiorder lattice, and factoring out with it yields
a distributive lattice.

We have studied quasiorder lattices in locally finite varieties omitting certain
types. We want to highlight the following theorems:

Theorem 6.7. Suppose that A is a finite algebra in a congruence modular
variety. Then Quo A and Con A satisfy the same lattice identities.

Theorem 6.20. If A is a finite algebra, and HSP(A) is a variety omitting
1, then Quo A does not contain a nonmodular simple sublattice. Furthermore,
if the variety also omits 2, then Quo A does not contain any simple sublattice
other than the trivial and the two-element lattice.

Theorem 6.42. If A is a finite algebra, and HSP(A) is a variety omitting 1,2,
and 5, then Quo A is a lower bounded lattice.
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Chapter 8

Összefoglaló

A disszertáció algebrák kvázirendezéseiről szól. Kvázirendezésnek nevezzük egy
algebra alaphalmazának olyan preorderjeit (reflex́ıv és tranzit́ıv binér reláci-óit),
melyek kompatibilisek az algebra alapműveleteivel. Egy A algebra kváziren-
dezései a tartalmazásra nézve hálót alkotnak, ezt Quo A-val jelöljük.

Triviális algebra esetén minden preorder kvázirendezés. A preorderhálók
elég bonyolultak a következő értelemben: minden háló beágyazható (elég nagy
alaphalmazhoz tartozó) preorderhálóba, sőt, az is elérhető, hogy a preorderháló
egy (lineáris) rendezés által generált főideáljába történjen a beágyazás [1]. Ezt
úgy is mondhatjuk, hogy minden háló reprezentálható poset-ek hálójaként.
Nem igaz azonban, hogy minden véges háló reprezentálható véges alaphalmazon
megadott poset-ek hálójaként: egy véges háló csak akkor reprezentálható ı́gy,
ha (McKenzie-) alulról korlátos [30, 2].

Az alulról korlátosság a (véges) hálók jól (köbös időben) ellenőrizhető tulaj-
donsága. Ha a és b az L háló két különböző egyeśıtés irreducibilis eleme, akkor
azt mondjuk, hogy a és b D-relációban vannak (aD b), amennyiben van olyan
c ∈ L, hogy a ≤ b ∨ c, de a 6≤ d ∨ c tetszőleges d < b esetén. Egy háló alulról
korlátos, ha végesen generált és a D-reláció nem tartalmaz végtelen hosszú utat.

A disszertációban először egy ehhez kapcsolódó kérdést vizsgálunk: milyen
hálók reprezentálhatóak olyan poset-ekkel, amelyik teljeśıtik az ún. DCC tulaj-
donságot, vagyis nem tartalmaznak végtelen csökkenő láncot. Megadunk egy
feltételt, melyet egy hálónak mindenképp teljeśıteni kell, hogy reprezentálható
lehessen ı́gy. Ez a feltétel a következő:

Defińıció 8.1. Egy c ∈ L teljesen egyeśıtés irreducibilis, ha vagy az L legkisebb
eleme, vagy létezik egy c∗ ∈ L elem, ami a legnagyobb a c-nél kisebb elemek
között.

Defińıció 8.2. Legyenek a := a1D . . .D akDa1 és b := b1D . . .D blD b1 csupa
teljesen egyeśıtés irreducibilis elemekből álló D-körök L-ben. Azt mondjuk, hogy
a függ b-től, ha léteznek i és j indexek, melyekre:

• aj+1 ≤ bi ∨ aj ,
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• aj+1 6≤ bi ∨ a∗j ,

• aj+1 6≤ b∗i ∨ aj

Tétel 3.7. Ha a függőség, mint az L D-körein értelmezett binér reláció tartal-
maz kört, akkor L nem reprezentálható a DCC-t teljeśıtő poset-ekkel.

Véges hálókra egy szükséges és elégséges feltételt bizonýıtunk. Ez mutatja,
hogy annak eldöntése, hogy egy háló reprezentálható-e DCC-t teljeśıtő poset-
ekkel, EXPT IME-ban (és valósźınűleg NP-ben) van.

Defińıció 8.3. Egy véges L háló esetén CL jelöli a minimális nemtriviális
egyeśıtés irreducibilisek közötti fedéseket, vagyis a következö halmazt:

{(l, l1, . . . , lk) ∈ J(L)k+1 : l ≤ l1 ∨ l2 ∨ · · · ∨ lk,
l 6≤ (l1)∗ ∨ l2 ∨ · · · ∨ lk, l 6≤ l1 ∨ (l2)∗ ∨ · · · ∨ lk, . . . , l 6≤ l1 ∨ l2 ∨ · · · ∨ (lk)∗}

Tétel 3.4. Egy véges L háló akkor és csak akkor reprezentálható DCC poset-
ekkel, ha létezik egy s : CL 7→ L leképezés, melyre:

• minden (l, l1, . . . , lk) ∈ CL esetén s(l, l1, . . . , lk) ∈ {l1, . . . , lk},

• s szimmetrikus az elsőt leszámı́tva az összes változójában, vagyis minden
π ∈ Sk permutációra

s(l, l1, . . . , lk) = s(l, lπ(1), . . . , lπ(k)),

• a
TL := {(l, li) : (l, l1, . . . , lk) ∈ CL, s(l, l1, . . . , lk) 6= li}

és

UL := Tr({(l, l) : l ∈ L} ∪ {(l, li) : (l, l1, . . . , lk) ∈ CL, s(l, l1, . . . , lk) = li})

binér relációkra az UL ◦ TL reláció nem tartalmaz kört.

A disszertáció egy másik, a fentiekhez közeli témával is foglalkozik: mely
hálók ágyazhatók be félháló kvázirendezés-hálójába. A fő eredmény az, hogy
az M3 háló beágyazható (félháló kongruenciahálójába ez a háló nem ágyazható
be). A konstrukció kiterjeszthető tetszőleges (akár végtelen) hálóra, eredményül
egy, a hálóból egy félháló kvázirendezés-hálójába menő homomorfizmust adva.
(Bizonýıtatlan) sejtésünk az, hogy ez a homomorfizmus mindig beágyazás.

A disszertáció további része univerzális algebra. A fő kérdés: miként és med-
dig lehet a Hobby-McKenzie féle TCT-t [21] kiterjeszteni kvázirendezésekre? A
TCT egy véges A algebra kongruenciahálójának (Con A) fedő párjaihoz ren-
del egy 1 és 5 közötti t́ıpust. Ez a hozzárendelés többek között a következő
tulajdonságokkal rendelkezik:

• ha θ ∈ Con A, akkor Con(A/θ) fedő párjainak t́ıpusa megegyezik az adott
A/θ-beli kongruenciáknak A-ban megfelelő (θ fölötti) kongruenciák által
alkotott pár t́ıpusával,
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• ha az α ≺ β és γ ≺ δ fedő párok pŕım perspekt́ıvek, vagyis β ∧ γ = α és
β ∨ γ = δ, akkor a két pár t́ıpusa megegyezik,

• a párok t́ıpusa csak az algebra polinomjainak klónjától függ, nem az alge-
bra alapműveleteitől vagy kifejezéseitől,

• a Con A-n értelmezett feloldhatósági (solvability) reláció (µ és ν akkor van
relációban, ha a [µ∧ ν, µ∨ ν] intervallum nem tartalmaz 3-as, 4-es, illetve
5-ös t́ıpust) egy kongruencia a kongruenciahálón, és a vele vett faktor egy
felülről korlátos háló.

A t́ıpusok defińıciójának lényeges eleme a “lemenetel” (egy adott párra nézve)
minimális algebrára. Ezt nem részletezzük, de kvázirendezés párokra gond
nélkül átvihető a fogalom, és a minimális algebra lényegében egyértelmű lesz.

Megadunk egy olyan defińıciót kvázirendezés-hálók fedő párjainak t́ıpusára,
amely a fentiek közül az összes tulajdonságot teljeśıti az utolsó kivételével, és
kiterjesztés: ha két kongruencia fedi egymást a kvázirendezés-hálóban, akkor a
pár t́ıpusa ugyanaz marad. A következő eljárás dönti el egy Quo A-ban fedő
(α, β) pár t́ıpusát:

• “Menjünk le” minimális algebrára. A továbbiakban A (α, β)-minimális,
vagyis minden nem bijekt́ıv egyváltozós polinom a β-éleket α-élekbe viszi.

• Tekintsük az α∗ := α ∧ α−1 és a β∗ := β ∧ β−1 kongruenciákat. Tegyük
fel, hogy α∗ 6= β∗. Ha β∗ fedi α∗-ot a kongruenciahálóban, akkor (α, β)
örökölje (α∗, β∗) t́ıpusát. Ha nincs fedés, legyen (α, β) t́ıpusa 1.

• A továbbiakban α∗ = β∗. Definiáljuk A+-ot, A β-val vett felfúltját,
ami A3 azon (a, b, c) elemeiből áll, melyekre (a, b) és (b, c) β-beli (ez egy
részalgebrája A3-nek).

• Minden δ ∈ Quo A-nak megfeleltetünk egy δ+ ∈ Con A+-ot, amit úgy
definiálunk, mint a következő reláció tranzit́ıv lezártját:

{((a, b, c), (a, b′, c)) ∈ A2
+ : (b, b′) ∈ δ ∪ δ−1}.

• Bizonýıtható, hogy α+ és β+ különböző kongruenciák A+-ban. Nézzük
meg, milyen (kongruencia) t́ıpusok vannak [α+, β+]-ban. Ha van 4-es
t́ıpus, akkor az (α, β) kvázirendezés párnak a t́ıpusa is 4 lesz. Ha nincs
4-es, de van 5-ös, akkor (α, β) t́ıpusa is 5. Minden más esetben (α, β)
t́ıpusa 1.

A defińıciónak fontos tulajdonságai az alábbiak:

Tétel 6.1. Legyen V egy varietás, i ∈ {1, 2, 3, 4, 5}. V véges algebráinak kongru-
encia t́ıpusai között akkor és csak akkor jelenik meg az i t́ıpus, ha a kvázirendezés
t́ıpusok között is megjelenik.

Tétel 5.18. Pŕım pepspekt́ıv kvázirendezés párok t́ıpusa megegyezik.
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A lényeges tulajdonság, ami nem feltétlen teljesül kvázirendezés-hálokra,
az a feloldhatósagi reláció kongruencia volta. Erre egy négyelemű félcsoportot
hozunk példának. Ez a példa azt is mutatja, hogy nem lehet a feloldhatóságot
máshogy sem definiálni úgy, hogy az kongruencia legyen a kvázirendezés-hálón,
és kiterjesztése legyen a kongruencia feloldhatósági relációnak. Ellenben ha egy
algebra véges és kongruencia moduláris varietást generál, akkor a feloldhatósági
reláció kongruencia a kvázirendezés-hálón, és a vele vett faktor egy disztribut́ıv
háló.

Vizsgáltuk azt, hogy mit lehet mondani egy adott t́ıpust nem tartalmazó,
lokálisan véges varietás kvázirendezés-hálóiról. A következő tételeket ḱıvánjuk
kiemelni:

Tétel 6.7. Tegyük fel, hogy A egy véges algebra, amely kongruencia moduláris
varietást generál. Ekkor Quo A és Con A ugyanazokat a hálóazonosságokat
eléǵıtik ki.

Tétel 6.20. Ha A egy véges algebra, és HSP(A) egy 1-es t́ıpust nem tartal-
mazó varietás, akkor Quo A nem tartalmaz nemmoduláris egyszerű részhálót.
Amennyiben a varietás nem tartalmaz 2-es t́ıpust sem, akkor Quo A semmilyen
egyszerű részhálót sem tartalmaz, leszámı́tva a triviális és a kételemű hálót.

Tétel 6.42. Ha A egy véges algebra, és HSP(A) egy 1-es, 2-es, és 5-ös t́ıpust
nem tartalmazó varietás, akkor Quo A alulról korlátos háló.
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[28] P. Pudlák and J. Tůma: Every finite lattice can be embedded in the lattice
of all equivalences over a finite set, Algebra Universalis 10 (1980), pages
74–95.

79



[29] M. V. Semenova: Lattices that Are Embeddable in Suborder Lattices, Alge-
bra and Logic, 44 (4) (2005), pages 270–285.

[30] B. Sivak: Representation of finite lattices by orders on finite sets, Mathe-
matica Slovaca, 28 (2) (1978), pages 203–215.

[31] P. M. Whitman: Lattices, equivalence relations, and subgroups, Bull. Amer.
Math. Soc. 52 (1946), pages 507–522.

80


