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Abstract. In this paper, we investigate the class of lattices repre-
sentable with posets satisfying the DCC condition. We describe a way
to decide whether a finite lattice is in this class. We also give a nec-
essary condition for an arbitrary lattice to be in this class. This hints
at a notion that would be a weaker version of lower boundedness. lat-
tice representation and lower bounded lattices and DCC posets and D
relation

1. Introduction

Probably the most basic representation theorem of lattice theory is that
every lattice is embeddable into the lattice of equivalences of a large enough
set ([8]). A complementary result is proved by Schein in [1]: any lattice is
representable as a lattice of posets on a set. (The partial orders of a set
do not form a lattice with respect to inclusion. The reflexive and transitive
binary relations do, however, and when we talk about a lattice of posets, we
mean a sublattice of this containing only antisymmetric relations.)

For finite lattices, the equivalance representation can be given on an un-
derlying finite set ([5]). This is not true for the poset representation. Sivák
in [7] gave a characterization for lattices representable as lattices of posets
on a finite set using the notion of small congruences of a lattice (a kind of
congruences where every congruence class has at most two elements). In
[2], the authors note that this characterization precisely describe the class
of finite lower bounded lattices.

This can be seen as a generalization of a theorem of Caspard [3], namely
that the lattice of permutations of a finite set is (both lower and upper)
bounded. Here the lattice of permutations means the lattice induced by the
following order: we fix a linear order on the underlying set, and a permu-
tation π1 will be smaller than the (distinct) permutation π2 iff for every
pair i < j of the underlying set, π1(i) > π1(j) implies π2(i) > π2(j). The
result about lattices of posets is a generalization of this because the lattice
of permutations can be seen as dually isomorphic to a lattice of posets: for
every permutation π, take the poset ≤π defined by i ≤π j iff either i = j,
or i < j and π(i) < π(j). We leave it to the reader to check that π →≤π
indeed defines an injective dual lattice homomorphism.

Semenova in [6] proves something more general (see Proposition 1.6 and
Theorem 4.6): any finite lattice embeddable into the suborder lattice of a
poset containing no infinite chain must be lower bounded, and all lower
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bounded lattices are embeddable into such a lattice. Being embeddable into
a suborder lattice of a poset containing no infinite chain means (at least for
lattices with a largest element) being representable with posets satisfying
both the ascending and descending chain conditions. (A poset satisfies both
the DCC and ACC if and only if it has no infinite chain.)

So any lattice can be represented as a lattice of posets, but if we require
a finiteness condition for the appearing posets, then we get a much smaller
class, which is closely related to the well-known class of lower bounded
lattices. This paper is concerned with the following question: what if we
require a weaker finiteness condition–only the DCC, but not the ACC–of the
posets? Obviously, all lower bounded lattices will be representable in such a
way. But it turns out that even among finite lattices, there are representable
ones that are not lower bounded.

We give an algorithmic characterization of representable finite lattices,
and a general necessary condition. The latter is a weaker version of lower
boundedness: instead of D-cycles, it forbids cycles of D-cycles.

The reader is invited to find a class that is closely related to the class
of lattices representable with DCC posets (for example, having the same
finite members), thus discovering a connection alike to the one between
lower bounded lattices and lattices representable with posets containing no
infinite chains.

2. Preliminaries

A preorder on a set X is a reflexive and transitive binary relation on
X. The set of all preorders on X with respect to inclusion forms a lat-
tice, denoted by PreX. Naturally, the meet operation is the set-theoretic
intersection, and the join operation is equivalent to

(a, b) ∈ α∨β ⇔ ∃k ∈ N : ∃c1, . . . , ck ∈ X : a = c1, b = ck, ∀i : (ci, ci+1) ∈ α∪β.

A sublattice of PreX that only contains antisymmetric preorders is called
a lattice of posets on X. A lattice of posets can be considered as a set C
of posets on the same underlying set such that C is closed to set-theoretic
intersection and for any α, β ∈ C the transitive closure of α ∪ β is also in C.

One says that a poset satisfies the descending chain condition (DCC)
if there are no elements a1, a2, . . . such that (with respect to this poset)
a1 > a2 > . . . . The dual of the DCC is the ascending chain condition (ACC).
We call a lattice of posets a lattice of DCC-posets if all of its elements satisfy
the DCC.

We use the following definitions and statements from [4] to introduce the
notions of (and related to) lower bounded lattices.

An element l of a lattice L is join irreducible if there are no elements
l1, l2 < l such that l1 ∨ l2 = l. It is completely join irreducible if there is a
largest element l∗ among all the elements of the lattice smaller than l. If an
element is completely join irreducible, then it is also join irreducible, and
for finite lattices the converse is also true. The set of the join irreducible
elements of L is denoted by J(L). The element l is join prime if for all l1, l2
satisfying l1 ∨ l2 ≥ l either l1 ≥ l or l2 ≥ l.
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The join dependency relation, D, is a binary relation on the set of join
irreducible elements of L. It is defined by

a D b⇔ a 6= b, (∃c : a ≤ b ∨ c, ∀d < b : a 6≤ d ∨ c).
If b is completely join irreducible, this is simplified into

a D b⇔ a 6= b, (∃c : a ≤ b ∨ c, a 6≤ b∗ ∨ c).
A lattice L is lower bounded if there is a finitely generated free lattice Fn

and a congruence θ ∈ Con Fn such that all θ-classes have a smallest element,
and L u Fn/θ. A lower bounded lattice cannot contain an infinte D-path
(that is, the graph induced by D does not contain an infinite path).

A D-cycle is a cycle in the graph of D (vertices appearing multiple times
is permitted). As a D-cycle naturally gives rise to an infinite D-path, it also
cannot appear in a lower bounded lattice. For finite lattices, the opposite is
also true: if the lattice contains no D-cycle, it is lower bounded.

Finally, any lower bounded lattice is join semidistributive.

3. Representation of finite lattices

The problem of whether a finite lattice is representable with DCC posets
(i.e. is isomorphic to a lattice of DCC posets) is decidable, as Theorem 3.1
will show. We will start with the idea for the characterization, then state
the theorem and give the (quite technical) proof.

Suppose that we have a finite lattice L, and DCC posets δl for each l ∈ L
on the same underlying set, l → δl is order-preserving, but not quite a
lattice homomorphism. Either it does not commute with meet or it does
not commute with join, so there are elements l1 and l2 such that either
δl1∧l2 < δl1 ∧ δl2 or δl1∨l2 > δl1 ∨ δl2 . In the first case the natural idea is
to add edges to δl1∧l2 so that it coincides with δl1 ∧ δl2 . After this l → δl
may not be order-preserving anymore, hence we need to add any δl′′-edge
to δl′ for all l′ > l′′. The second case can be addressed with adding an extra
element x to our underlying set for each (y1, y2) ∈ δl1∨l2\(δl1 ∨δl2) edge, and
adding either (y1, x) or (x, y2) to δl1 , and the other to δl2 .

This process may be infinite, but it has a limit, at which l → δl is a
homomorphism. The problem is that while each step maintains the DCC
for the appearing posets, the whole process does not necessarily does so.
Note that it is not always a problem if the process if infinite: if we need an
extra element x1 for the edge (y1, y2), then an extra element x2 for (x1, y2),
then an extra element x3 for (x2, y2), and so on–always a new element for
the top segment–then we will get an infinite ascending chain, but no infinite
descending one. On the other hand, if we always need a new element for the
bottom segment, we will get an infinite descending chain. This shows that
it matters that which of (y1, x) and (x, y2) goes into δl1 and which into δl2 .

Unfortunately, the process described above is too complicated, as it needs
to correct problems both with meets and with joins. Therefore, we will
use a different process: we will concentrate only on the images of the join
irreducible elements of L. Instead of the mapping preserving meets and join,
we will concentrate on the mapping being order-preserving, and having the
following property: if l ≤ l1 ∨ · · · ∨ lk for some l, l1, . . . , lk ∈ J(L), then δl
must be included in δl1 ∨ · · · ∨ δlk . We will try to ensure this the same way
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Figure 1. The lattice D2
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Figure 2. Edges added by our process beginning with a δc-edge

we wanted to ensure that δ preserved joins, only in this case we need to add
k − 1 extra elements to the underlying set.

To illustrate this process, let us take for example the lattice D2 (Figure
1). We will only consider the nonzero join irreducible elements of this lattice,
which are marked on the figure. Suppose that we have or DCC posets δa < δc
and δb < δd. If, for example, δc ≤ δa ∨ δd does not hold because of an edge
(y1, y2), our process will continously add elements to develop a picture like
the one seen on Figure 2. Note that in Figure 2, the bottom segments are
in γa or γb, while the top segments are in γc or γd. This results in the DCC
poset seen on the figure.

Definition 3.1. For a finite lattice L, let CL denote the set of nontrivial
join covers of join irreducibles by join irreducibles, i.e. the set

{(l, l1, . . . , lk) : k ≥ 2, (l, l1, . . . , lk) ∈ J(L)k+1 : l ≤ l1 ∨ l2 ∨ · · · ∨ lk,
l 6≤ (l1)∗ ∨ l2 ∨ · · · ∨ lk, l 6≤ l1 ∨ (l2)∗ ∨ · · · ∨ lk, . . . , l 6≤ l1 ∨ l2 ∨ · · · ∨ (lk)∗}

Theorem 3.1. A finite lattice L is isomorphic to a lattice of DCC posets
if and only if there is a mapping s : CL → J(L) satisfying the following:

• for any (l, l1, . . . , lk) ∈ CL, s(l, l1, . . . , lk) ∈ {l1, . . . , lk},
• s is symmetrical in all but the first variable, i.e. for any permutation
π ∈ Sk,

s(l, l1, . . . , lk) = s(l, lπ(1), . . . , lπ(k)),

• for the binary relations

T := {(l, li) : (l, l1, . . . , lk) ∈ CL, s(l, l1, . . . , lk) 6= li}

and

U := Tr({(l, l) : l ∈ L} ∪ {(l, li) : (l, l1, . . . , lk) ∈ CL, s(l, l1, . . . , lk) = li}),

the relation U ◦T does not contain a cycle (Tr denotes the transitive
closure).
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Proof. ⇒ Suppose that there is such a mapping s. We will use the process
described above, with s telling us that when adding the extra elements to
our underlying set, into which poset the top segment will go.

The process will yield a set X, partial orders γl ⊆ X2 for all l ∈ L such
that the mapping l → γl is an injective lattice homomorphism from L into
PreX, and all γl satisfy DCC.

We begin with a set X(0) = {xl,1 : l ∈ L} ∪ {xl,2 : l ∈ L}, and for any

l ∈ J(L) we define the binary relation γ
(0)
l := {(xl,1, xl,2)} on X(0).

Now we recursively define for all natural j and l ∈ J(L) the sets X(j) and

binary relations γ
(j)
l on X(j). Firstly, X(j) will be a set containing X(j−1),

and γ
(j)
l a relation containing γ

(j−1)
l . Secondly, for any (l, l1, . . . , lk) ∈ CL and

any (y1, y2) ∈ γ(j−1)l \(γ(j−1)l1
∨· · ·∨γ(j−1)lk

), add the elements xy1,y2,l,l1,...,lk,1, . . . , xy1,y2,l,l1,...,lk,k−1

to X(j). Use the notion xy1,y2,l,l1,...,lk,0 = y1, xy1,y2,l,l1,...,lk,k = y2. For
0 ≤ r < k, we add the edge (xy1,y2,l,l1,...,lk,r, xy1,y2,l,l1,...,lk,r+1) into one of the

γ
(j)
li

in a way that exactly one edge goes into each of the γ
(j)
li

, and the last

edge (that is, (xy1,y2,l,l1,...,lk,k−1, y2)) goes into γ
(j)
s(l,l1,...,lk)

.

Finally, set X =
⋃
X(j) and for any l ∈ L set

γl = Tr({(x, x) : x ∈ X} ∪
⋃
{γ(j)l′ : j ∈ N, l′ ∈ J(L), l′ ≤ l}).

It is easy to see that all γl are partial orders on X, and that γl1 < γl2 iff
l1 < l2. (The inequality is strict because there is an l′ ∈ J(L) such that
l′ ≤ l2 and l′ 6≤ l1, and then (xl′,1, xl′,2) is in γl2\γl1 .)

We will prove that l→ γl preserves meets and joins. For the “join” part,
as l→ γl is order-preserving, it is enough to show that γl1∨l2 ≤ γl1 ∨ γl2 and
to do that, it is enough to show that for all l′ ∈ J(L) with l′ ≤ l1 ∨ l2, and

all j, γ
(j)
l′ ⊆ γl1 ∨ γl2 .

L is a finite lattice, so each of its elements is a join of join irreducible
elements: l1 = p1 ∨ · · · ∨ pm, and l2 = q1 ∨ · · · ∨ qn. Now as l′ ≤ l1 ∨ l2 =
p1 ∨ . . . pm ∨ q1 · · · ∨ qn,

γ
(j)
l′ ⊆ Tr(γ(j+1)

p1 ∪ · · · ∪ γ(j+1)
pm ∪ γ(j+1)

q1 ∪ · · · ∪ γ(j+1)
qn ) ⊆ γl1 ∨ γl2 .

For the “meet” part, take a (non-loop) edge (x1, x2) ∈ γl1 ∧ γl2 . If both

x1 and x2 are in X(0), there is an l′ ∈ J(L) such that (x1, x2) = (xl′,1, xl′,2).
Therefore, l′ ≤ l1 and l′ ≤ l2, so l′ ≤ l1 ∧ l2, and (x1, x2) ∈ γl1∧l2 .

Otherwise, we can assume that both x1 and x2 are in X(j), but x1 is not
in X(j−1), so x1 = xy1,y2,l′,l′1,...,l′k,r, where y1, y2 ∈ X(j−1), l′ ≤ l′1∨· · ·∨l′k, and

(y1, y2) ∈ γ(j−1)l′ \(γ(j−1)
l′1

∨ · · · ∨ γ(j−1)
l′k

). Suppose that x2 = xy1,y2,l′,l′1,...,l′k,r′

for some r < r′, in which case (x1, x2) ∈ γl1 ∧ γl2 is only possible if

(xy1,y2,l′,l′1,...,l′k,r, xy1,y2,l′,l
′
1,...,l

′
k,r+1), . . . , (xy1,y2,l′,l′1,...,l′k,r′−1, xy1,y2,l′,l

′
1,...,l

′
k,r
′) ∈

γl1 ∧ γl2 ,

because any γl on X(j) coincides with the reflexive and transitive closure

of γ
(j)
l . Hence, l1, l2 ≤ l′r, . . . , l

′
r′−1, and thus l1 ∧ l2 ≤ l′r, . . . , l

′
r′−1, and

(x1, x2) ∈ γl1∧l2 .
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Figure 3. How to get the sequence (bi)i∈N from the se-
quence (ai)i∈N. Nodes to the left/right of each other are
meant to represent the same element.

If x2 is not of the form xy1,y2,l′,l′1,...,l′k,r′ , then (again because γl on X(j)

coincides with the reflexive and transitive closure of γ
(j)
l ) (x1, x2) ∈ γl1 ∧

γl2 is only possible if (x1, y2) and (y2, x2) are both in γl1 ∧ γl2 . As y2 =
xy1,y2,l′,l′1,...,l′k,k, by the previous argument, (x1, y2) ∈ γl1∧l2 .

We still need that (y2, x2) ∈ γl1∧l2 . If x2 is in X(j−1), then we are done
by induction. Otherwise, by repeating to (y2, x2) what we did to (x1, x2),

we will get an y′1 ∈ X(j−1) such that it is enough to prove (y2, y
′
1) ∈ γl1∧l2

to prove (y2, x2) ∈ γl1∧l2 . That, again, can be done by induction.
We have shown that l → γl is strictly order-preserving and is a lattice

homomorphism. Therefore, it is a lattice embedding. The only thing left to
show is that γ1 satisfies DCC (1 denoting the largest element of L).

For any l ∈ L, the difficulty of l will denote the length of the longest
U ◦ T -path starting from l. This is finite because L is a finite lattice, and
U ◦ T contains no cycle.

An edge of the type (xl,1, xl,2) will be called an original edge, an edge of
the type (xy1,y2,l,l1,...,lk,r, xy1,y2,l,l1,...,lk,r+1) with r < k − 1 a lower part, an
edge (xy1,y2,l,l1,...,lk,k−1, y2) an upper part of the edge (y1, y2). An edge is a
core edge if it is either original, or a lower or upper part of a (core) edge.
Thus, each γl is the reflexive and transitive closure of the set of the core γl
edges. An edge is an upper edge if it is of the form (xy1,y2,l,l1,...,lk,h, y2) for
some 0 < h < k.

Suppose (ai)i∈N is an infinite (strictly) decreasing sequence in γ1. We can
assume that each of the (ai+1, ai) is a core edge (otherwise, it is the concate-
nation of core edges, and we split it to core edges). Now after any upper core
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edge (xy1,y2,l,l1,...,lk,k−1, y2) in the sequence, the following edge is either an-
other upper core one, or it is the lower core edge (xy1,y2,l,l1,...,lk,k−2, xy1,y2,l,l1,...,lk,k−1),
after which the only possible lower core one is (xy1,y2,l,l1,...,lk,k−3, xy1,y2,l,l1,...,lk,k−2),
and so on. We can assume that there is an upper core edge before reaching
(y1, xy1,y2,l,l1,...,lk,1), because otherwise we can exchange all these edges to
their concatenation (y1, y2), which is still a core edge. Thus, by concatenat-
ing any upper part edge with all the lower part ones following it before the
next upper part, we get a sequence of γ1-edges (bi+1, bi)i∈N such that all of
those edges are upper edges (though not necessarily cores).

An illustration of this process can be seen on Figure 3: the edge (a2, a1)
is an upper part (of four parts) of the edge (u, a1), so a2 = xu,a1,l,l1,...,l4,3
for some (l, l1, . . . , l4) ∈ CL. We choose the smallest j such that there is an
element of the sequence (ai)i∈N smaller than xu,a1,l,l1,...,l4,j. We can assume
that (ai)i∈N does not have an element below u, because otherwise u would
equal ah to some h, and we could throw out the elements a2, . . . , ah−1 from
the sequence. So j = 1, and we set b2 = xu,a1,l,l1,...,l4,j = a6. Now, as
(a7, a6) is an upper part of (u, b2), we choose the smallest j′ such that there
is an element of (ai)i∈N smaller than xu,b2,l′,l′1,...,l′4,j′ (here l′, l′1, . . . , l

′
4 are

such that a7 = xu,b2,l′,l′1,...,l′4,3). Assuming that no ai is smaller than v, j′

must be 2, and we choose b3 accordingly.
The following claim presents an immediate contradiction to the existence

of such (bi)i∈N.

Claim 1. For any b = xy1,y2,l,l1,...,lk,r, any path of upper edges ending in b has
length not greater than the difficulty of the lj satisfying (xy1,y2,l,l1,...,lk,r−1, b) ∈
γlj .

Let d = xy1,y2,l,l1,...,lk,r−1.
The claim is proved by induction on the difficulty of lj . Suppose first that

it is 0. This means that there is no T -edge with source lj , consequently, lj
is a join prime, and there is no element of the form xd,b,h,h1,...,ht,q, and no
upper edge ending in b.

Now suppose that the difficulty of lj is positive. Let (c, b) be an upper
edge, thus c is of the form xz,b,m,m1,...,mt,q. The edge (z, b) can be obtained
by repeatedly taking upper parts of the edge (y1, b), therefore (lj ,m) ∈ U .
Suppose that (xz,b,m,m1,...,mt,q−1, c), which is a lower part of the edge (z, b),
is in γmj′ , then (m,mj′) ∈ T . Thus (lj ,mj′) ∈ U ◦T , so the difficulty of mj′

is smaller than the difficulty of lj . By the inductive hypothesis, any path of
upper part core edges ending in c has length smaller than the difficulty of
lj . The claim is proved.

⇐ Assume that l → γl is a lattice embedding from L into PreX. For
any edge (z1, z2) ∈ γ1 there is a smallest k ∈ L such that (z1, z2) ∈ γk, the
weight of this edge.

An edge (c, d) is called contained in the edge (a, b) if both (a, c) and (d, b)
are in γ1, but (c, d) 6= (a, b). It is properly contained if moreover d < b.

Let (l, l1, . . . , lk) ∈ CL, and take an edge (a1, a2) ∈ γl\γl∗ , this edge has
weight l. There are elements a1 = b0, b1, . . . , br = a2 in X such that for all
0 ≤ i < r, (bi, bi+1) ∈ γl1 ∪ · · · ∪ γlk . Among these edges there must be at



8 GERGŐ GYENIZSE

least one with weight lj for all 1 ≤ j ≤ l, otherwise

(a1, a2) ∈ γl ∩ (γl1 ∨ · · · ∨ γ(lj)∗ ∨ · · · ∨ γlk) ⊆ γl∗ .

So each edge with weight l contains at least one edge of weight l1, at least
one of weight l2, e.c., and it contains these edges properly with at most one
exception.

Now define the mapping s on (l, l1, . . . , lk) so that if there are infin-
itely many edges with weight l, but only finitely many contains an edge
of weight lj properly, then s(l, l1, . . . , lk) = lj . If there is no such j, then set
s(l, l1, . . . , lk) = l1.

If (l, l′) ∈ U ◦T , then all edges of weight l must contain an edge of weight
l′. Suppose there is a cycle of U ◦ T containing the edge (l, l′). There is
an m ∈ L so that (l,m) ∈ U and (m, l′) ∈ T . All edges of weight l must
contain an edge of weight l. Starting from an edge (f1, e1) of weight l we
can get the edges (f2, e2), (f3, e3) etc., each contained in the previous, and
each having weight l. Furthermore, for each j > 0 either (fj , ej) can be
chosen so that ej 6= ej−1, or it can only be chosen so that there is an edge
of weight m containing (fj , ej) and contained in (fj−1, ej−1) that does not
properly contain any edge of weight l′. There are only finitely many such
edges of weight m. Therefore, the (fj , ej) edges can be chosen so that the
sequence (ej)j∈N contains an infinite strictly decreasing subsequence in γ1,
a contradiction. � �

This theorem gives an algorithm deciding whether L is representable with
DCC posets. The algorithm is in EXPT IME .

Problem 3.1. Are there real numbers k and α such that for any finite
lattice L, |CL| < k|L|α?

If the answer to this is “yes”, then the algorithm is actually in NP.

Conjecture 3.1. Deciding whether a finite lattice is representable with
DCC posets is an NP-hard problem.

For comparison, deciding whether a finite lattice is lower bounded is in
P, because D is computable in polynomial time.

4. Representation of arbitrary lattices

For a lattice L, denote with CYL the set of D-cycles of L consisting of
completely join irreducible elements. Introduce a binary relation on CYL:

EL := {((β1, . . . , βl), (α1, . . . , αk)) :

∃i : ∃j : αj+1 ≤ βi ∨ αj , αj+1 6≤ βi ∨ (αj)∗, αj+1 6≤ (βi)∗ ∨ αj},

with the index j meant as modulo k and the index i as modulo l.
The following is a necessary condition for a lattice to be representable

with DCC posets.

Theorem 4.1. If L is representable with DCC posets, then EL does not
contain a cycle.
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Proof. Suppose the contrary, that

α(1)EL α
(2)EL . . . EL α

(t)EL α
(1),

with α(i) = (α
(i)
1 , . . . , α

(i)
ki

) for all 1 ≤ i ≤ t. For all 1 ≤ i ≤ t and 1 ≤ j ≤ ki,
there is a γ

(i)
j that α

(i)
j ≤ γ

(i)
j ∨α

(i)
j+1 and α

(i)
j 6≤ γ

(i)
j ∨(α

(i)
j+1)∗, with the index

j taken modulo ki. By the definition of EL, we may assume that for all i

there is an index mi such that γ
(i)
mi = α

(i+1)
1 for all 1 ≤ i ≤ t (taken modulo

t), and furthermore, α
(i)
mi 6≤ (α

(i+1)
1 )∗ ∨ α(i)

mi+1 is satisfied. Set µ as the join

of all the α
(i)
j .

Let the underlying set of the posets be X. Start with the inequality

α(1)
m1
≤ γ(1)m1

∨(α
(1)
m1+1∧(γ

(1)
m1+1∨(α

(1)
m1+2∧· · ·∨(α

(1)
m1−1∧(γ

(1)
m1−1∨α

(1)
m1

))))) =

α
(2)
1 ∨ (α

(1)
m1+1 ∧ (γ

(1)
m1+1 ∨ (α

(1)
m1+2 ∧ · · · ∨ (α

(1)
m1−1 ∧ (γ

(1)
m1−1 ∨ α

(1)
m1

))))) =

(α
(2)
1 ∧ (γ

(2)
1 ∨ (α

(2)
2 ∧ · · · ∨ (α

(2)
m2−1 ∧ (γ

(2)
m2−1 ∨ α

(2)
m2

)))))∨

(α
(1)
m1+1 ∧ (γ

(1)
m1+1 ∨ (α

(1)
m1+2 ∧ · · · ∨ (α

(1)
m1−1 ∧ (γ

(1)
m1−1 ∨ α

(1)
m1

))))).

We will call a sequence of L-elements a = c0, . . . , cr = b a realization of

the α
(1)
m1 edge (a, b) if the following are satisfied:

• For all 1 ≤ s ≤ r, (cs, cs+1) is an edge of either α
(1)
m1 , or α

(2)
m2 , or γ

(2)
j

for an 1 ≤ j < m2, or γ
(1)
j for an 1 ≤ j < k1, j 6= m1.

• There are indices 0 = r0 < r1 < · · · < rh = r such that

– For any even 0 ≤ h′ < h, (crh′ , crh′+1
) ∈ α(2)

1 , and for any odd

0 ≤ h′ < h, (crh′ , crh′+1
) ∈ α(1)

m1+1,

– For even h′, if rh′ ≤ s1 < s2 ≤ rh′+1 and i0 are such that the
set

{s : ((cs, cs+1) ∈ α(2)
m2
∨ ∃ i : i0 ≤ i < m2, (cs, cs+1) ∈ γ(2)i )}

contains all s′ satisfying s1 ≤ s′ < s2 but does not contain s1−1

and s2, then (cs1 , cs2) ∈ α(2)
i0

,

– For odd h′, if rh′ ≤ s1 < s2 ≤ rh′+1 and i0 are such that the set

{s : ((cs, cs+1) ∈ α(1)
m1
∨

∃ i : i ∈ {i0, i0 + 1, . . . ,m1 − 1}, (cs, cs+1) ∈ γ(2)i )}

contains all s′ satisfying s1 ≤ j′ < s2 but does not contain s1−1
and s2, then (cs1 , cs2) ∈ αi0 .

Note the connection between the definition of a realization and the in-
equality preceding it: the inequality tells us that each α

(1)
m1 edge will have a

realization.
For each α

(1)
m1 edge we choose a single realization by the axiom of choice

to get a canonical realization. We likewise obtain canonical realizations for

α
(i)
mi edges for all 1 ≤ i ≤ t (just switch the lower indices everywhere in the

definition cyclically by i − 1). If an edge is at the same time an α
(i1)
mi1

and
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a

cd1

cd2

cd3

b

γ
(2)
1

α
(2)
2

γ
(2)
1

γ
(1)
3

γ
(1)
1

γ
(1)
3

α
(1)
2

γ
(1)
3

γ
(1)
1

α
(1)
2

α
(2)
2

γ
(2)
1

α
(2)
2

γ
(2)
1

α
(2)
1

α
(2)
1

α
(1)
1

α
(3)
1

α
(1)
1

α
(1)
1

α
(3)
1

Figure 4. A realization of the α
(1)
m1 edge (a, b) with t = 3,

k1 = 3, k2 = 2, k3 = 3, m1 = 2, m2 = 2, m3 = 1. Nodes to
the left/right of each other are meant to represent the same
element.

an α
(i2)
mi2

edge, it will get a canonical realization both as an α
(i1)
mi1

and as an

α
(i2)
mi2

edge.

For an edge (x1, x2) ∈ α(i)
mi , denote with R(i)

(x1,x2)
the set of the edges of

the canonical realization of (x1, x2) as an α
(i)
mi edge, and set

K(i)
(x1,x2)

= {(y1, y2) ∈ R(i)
(x1,x2)

: y2 6= x2, (y1, y2) ∈ α(i)
mi
∪ α(i+1)

mi+1
}.

Define a rank of the edge (x1, x2): it will be zero if K(i)
(x1,x2)

= ∅, otherwise,

the rank is recursively defined as the maximal rank of the elements of K(i)
(x1,x2)

plus one. As µ satisfies DCC, all α
(i)
mi edge has a (finite) rank.

Take an α
(1)
m1 edge (x1, x2) of rank 0. In its canonical realization there is

at most one edge that is also an α
(1)
m1 or an α

(2)
m2 edge (the last edge of the
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realization). This means that

(x1, x2) ∈ η(1)0 :=

(α(1)
m1
∧ ((α

(2)
1 ∧ (γ

(2)
1 ∨ (α

(2)
2 ∧ · · · ∨ (α

(2)
m2−1 ∧ γ

(2)
m2−1))))∨

(α
(1)
m1+1 ∧ (γ

(1)
m1+1 ∨ (α

(1)
m1+2 ∧ · · · ∨ (α

(1)
m1−1 ∧ (γ

(1)
m1−1 ∨ α

(1)
m1

)))))))∨

(α(1)
m1
∧ ((α

(2)
1 ∧ (γ

(2)
1 ∨ (α

(2)
2 ∧ · · · ∨ (α

(2)
m2−1 ∧ (γ

(2)
m2−1 ∨ α

(2)
m2

)))))∨

(α
(1)
m1+1 ∧ (γ

(1)
m1+1 ∨ (α

(1)
m1+2 ∧ · · · ∨ (α

(1)
m1−1 ∧ γ

(1)
m1−1)))))).

We likewise define the L-elements η
(i)
0 for all 1 ≤ i ≤ t, with each containing

all the α
(i)
mi edges of rank 0. Note that the long expression above is not to

be read as one would initially think: it is not a join of four subexpression,

but two, and each of those two is a meet of α
(1)
m1 and an other (lengthy)

expression.

We recursively define L-elements η
(i)
n ≤ α

(i)
mi for all 1 ≤ i ≤ t and all

nonnegative integer n: for n = 0 they are already defined, and for n > 0 we
set

η(i)n :=

(α(i)
mi
∧ ((α

(i+1)
1 ∧ (γ

(i+1)
1 ∨ (α

(i+1)
2 ∧ · · · ∨ (α

(i+1)
mi+1−1 ∧ (γ

(i+1)
mi+1−1 ∨ η

(i+1)
n−1 )))))∨

(α
(i)
mi+1 ∧ (γ

(i)
mi+1 ∨ (α

(i)
mi+2 ∧ · · · ∨ (α

(i)
mi−1 ∧ (γ

(i)
mi−1 ∨ α

(i)
mi

)))))))∨

(α(i)
mi
∧ ((α

(i+1)
1 ∧ (γ

(i+1)
1 ∨ (α

(i+1)
2 ∧ · · · ∨ (α

(i+1)
mi+1−1 ∧ (γ

(i+1)
mi+1−1 ∨ α

(i+1)
mi+1

)))))∨

(α
(i)
mi+1 ∧ (γ

(i)
mi+1 ∨ (α

(i)
mi+2 ∧ · · · ∨ (α

(i)
mi−1 ∧ (γ

(i)
mi−1 ∨ η

(i)
n−1))))))).

If (x1, x2) is an α
(i)
mi edge (x1, x2) of rank n, then in its canonical realization

all the α
(i)
mi and α

(i+1)
mi+1 edges except perhaps one have rank at most n − 1.

From this fact we can easily prove by induction that (x1, x2) ∈ η(i)n .

As α
(i)
mi is a completely join irreducible element of L, and it is the union of

all η
(i)
n (as they form an increasing chain, and all α

(i)
mi edge has finite rank),

there is an ni so that α
(i)
mi = η

(i)
ni . We can suppose that among all the ni, n1

is (one of) the smallest.

As η
(1)
n1 is defined as the join of two elements of L that are smaller or equal

than α
(1)
m1 , and α

(1)
m1 is join irreducible in L, α

(1)
m1 is equal to either

α(1)
m1
∧ ((α

(2)
1 ∧ (γ

(2)
1 ∨ (α

(2)
2 ∧ · · · ∨ (α

(2)
m2−1 ∧ (γ

(2)
m2−1 ∨ η

(2)
n1−1)))))∨

(α
(1)
m1+1 ∧ (γ

(1)
m1+1 ∨ (α

(1)
m1+2 ∧ · · · ∨ (α

(1)
m1−1 ∧ (γ

(1)
m1−1 ∨ α

(1)
m1

))))))

or

α(1)
m1
∧ ((α

(2)
1 ∧ (γ

(2)
1 ∨ (α

(2)
2 ∧ · · · ∨ (α

(2)
m2−1 ∧ (γ

(2)
m2−1 ∨ α

(2)
m2

)))))∨

(α
(1)
m1+1 ∧ (γ

(1)
m1+1 ∨ (α

(1)
m1+2 ∧ · · · ∨ (α

(1)
m1−1 ∧ (γ

(1)
m1−1 ∨ η

(1)
n1−1)))))).

From both equalities follows an inequality of the type

α(1)
m1
≤ (α

(2)
1 ∧ δ1) ∨ (α

(1)
m1+1 ∧ δ2).
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Recall the definition of the α
(i)
j to see that a consequence of this is that

α
(2)
1 ≤ δ1 and α

(1)
m1+1 ≤ δ2.

From the α
(2)
1 ≤ δ1 type inequality, we can deduce in the first case that

α
(1)
m1−1 ≤ γ

(1)
m1−1 ∨ η

(1)
n1−1,

and in the second that

α
(1)
m1−1 ≤ γ

(1)
m1−1 ∨ η

(1)
n1−1.

Both are impossible: by the choice of n1, η
(2)
n1−1 ≤ (α

(2)
m2)∗ and η

(1)
n1−1 <

(α
(1)
m1)∗, so either of these inequalities contradicts the fact that α

(i)
j 6≤ γ

(i)
j ∨

(α
(i)
j+1)∗ is satisfied by all possible i and j. � �

Problem 4.1. Is it true that a lattice L is representable with DCC posets
if and only if EK contains no cycle for any K ≤ L? Is it true if, moreover,
L is finite?

Here is an overview of the known properties of the class of representable
lattices.

Theorem 4.2. For the class R of lattices representable with DCC posets:

• R is closed under taking sublattices and products,
• R does not contain the lattice M3,
• R contains all lower bounded lattices,
• even the finite part of R is not contained in SD∨,
• it is algorithmically decidable if a finite lattice L is in R,
• if a lattice L is in R, then EL contains no cycle.

Proof. The last two statements have been proved. M3 fails the condition of
the last statement, because the three middle elements form a D-cycle, and
there is an E-loop on that cycle. As it was mentioned in the introduction, all
lower bounded lattices are representable with posets satisfying both DCC
and ACC by Theorem 4.6 of [6].

For the statement about join semidistributivity, consider the lattice D2

(Figure 1). It is not join semidistributive, but we can show that it is in R.
This can be done either by following through on the construction described
in the beginning of Section 3, or by directly applying Theorem 3.1: it is easy
to check that CD2 = {(c, a, d), (c, d, a), (d, b, c), (d, c, b)}, and we can define s
so it maps the first two elements of CD2 to c and the second two to d. Now

T = {(c, a), (d, b)}

and

U = {(a, a), (b, b), (c, c), (c, d), (d, c), (d, d)},
so indeed U ◦ T does not contain a cycle.

The only item left is that R is closed to direct products. If Li ∈ R for
all i ∈ I such that Li is represented by DCC posets on Xi (which can be
assumed to be disjoint),

∏
i∈I Li can be represented on

⋃
i∈I Xi: the element

(li)i∈I will be represented by the (disjoint) union of the posets representing
the individual li. � �
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Problem 4.2. Is it true that R contains SD∨? Is there a nontrivial lattice
quasi-identity satisfied by all members of R?
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