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Abstract. An element of a finitely generated free lattices is called sym-
metric if it is fixed by all automorphisms of the lattice. We examine the
lattice formed by these elements. It is known to be nonfinitely gener-
ated, and containing a sublattice isomorphic to any finitely generated
free lattice. We show that it is also weakly atomic, and prove two further
statements regarding the doubly prime elements of this lattice.

1. Introduction

Free structures are essential in universal algebra. For some algebraic
classes (for example, semigroups and abelian groups), free algebras are quite
trivial. They can also be almost hopelessly complicated. For the class of
lattices, neither is the case: the study of free lattices yielded a large amount
of deep yet digestible literature.

One of the earliest results in this subfield is due to Whitman [7]: for
m ≥ n ≥ 3 free lattices generated by m elements are embeddable into the
free lattice generated by n elements. In 2016, Czédli proved a sharper ver-
sion of this: this embedding can be done in a self-dual way [1]. In 2019,
this was strengtened further by him, Kunos, and the author: it can be done
in a self-dual and symmetric way, that is, so the image of the embedding is
closed to all the automorphisms and anti-automorphisms of the n-generates
free lattice [2]. On the way to that result, we have made some observa-
tions about the sublattices of the finitely generated free lattices induced
by the symmetric terms. In particular, these sublattices were shown to be
nonfinitely generated for n ≥ 3.

In the present paper, we continue the study of these lattices. We prove
that they are weakly atomic. We extend the description of their structure by
proving that for odd n ≥ 3, they contain an element t so that each element
of the lattice is either smaller or equal than t or larger or equal than its dual.
Finally, we prove that it is decidable whether a given element is join(meet)
prime/irreducible in the symmetric part of a free lattice.

As free lattices are crucial in the study of lattice varieties, we hope that
these results will be useful in the study of lattice varieties characterized by
symmetric identities.
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2. Preliminaries

The lattice freely generated by the generating set {x1, . . . , xn} will be de-
noted by FL(n). The elements of FL(n) are called (n-ary) lattice terms. Free
lattices (and their sublattices) satisfy Whitman’s Condition: the inequality
u1 ∧ · · · ∧ uk ≤ v1 ∨ · · · ∨ vl holds in FL(n) if and only if there is either a
1 ≤ i ≤ k so that ui ≤ v1 ∨ · · · ∨ vl or a 1 ≤ j ≤ l so that u1 ∨ · · · ∨ uk ≤ vj
(Theorem 1.8 of [4]).

The dual of a lattice term t, denoted by t, is the term obtained from t by
substituting meets with joins, and joins with meets. (In other words, t is
the image of t by the unique anti-automorphism of FL(n) that fixes all the
xi.)

We denote by Sn the symmetric group on the set {1, 2, . . . , n}. Let σ ∈ Sn.
Then there is a unique automorphism of FL(n) mapping xi to xσ(i). The
image of t by this automorphism will be denoted by tσ. The term t is
symmetric if t = tσ for all σ. The symmetric terms form a sublattice of
FL(n) denoted by SFL(n).

There are two symmetrizations of the term t:∨
π

t :=
∨
σ∈Sn

tσ,

and ∧
π

t :=
∧
σ∈Sn

tσ.

(In this paper, we reserve the latter π for symmetrizations, and do not use
it to refer to any particular permutation.) Clearly, the symmetrizations of
a term are symmetric, and both symmetrizations of a symmetric term are
the term itself.

The smallest element of SFL(n) is 0FL(n) = x1 ∧ · · · ∧ xn, and its largest
element is 1FL(n) = x1∨· · ·∨xn. By [2], SFL(n)\{0FL(n), 1FL(n)} is a sublat-
tice of SFL(n), we will denote this lattice by SFL∗(n). The smallest element
of SFL∗(n) is

m :=
∨
π

(x1 ∧ · · · ∧ xn−1),

and the largest element of SFL(n) is m. All the elements of SFL∗(n) are
near-unanimity operations, i.e. they satisfy the idenetities

f(x, x, . . . , x, y) ≈ f(x, x, . . . , y, x) ≈ · · · ≈ f(y, x, . . . , x) ≈ x.

A key concept in the study of free lattices and lattice varieties is bounded-
ness, introduced by McKenzie in [6]. A lattice homomorphism f : L1 → L2

is lower bounded if for all l2 ∈ L2, the set {l1 ∈ L1 : f(l1) ≤ l2} has a largest
element. It is upper bounded if for all l2 ∈ L2, the set {l1 ∈ L1 : f(l1) ≥ l2}
has a smallest element. A homomorphism is bounded if it is both lower and
upper bounded. A lattice L is bounded if there is a bounded surjective
homomorphism FL(n) → L for some n. By Theorem 2.13 of [4], if L is
bounded, then any lattice homomorphism mapping to L is bounded. By
Corollary 2.17 of [4], the class of finite bounded lattices is closed to taking
homomorphic images, sublattices, and finite direct products.
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We define the depth of a term t ∈ SL(n) recursively as follows: the depth
of the xi are 0. Let k ≥ 0, and assume that we have defined terms of depth
s for s ≤ 2k. Then the depth of a term t will be 2k+ 1 if it does not already
have a (smaller) depth, and it is the meet of some terms of depth at most
2k. The depth of t will be 2k + 2 if it does not already have depth at most
2k + 1, but it is a join of terms with depths at most 2k + 1.

An element l of a lattice L is join prime, if for any k1, k2 ∈ L, k1 ∨ k2 ≥ l
implies that k1 ≥ l or k2 ≥ l. It is join irreducible if k1 ∨ k2 = l implies that
k1 = l or k2 = l. Meet primeness and meet irreducibility are defined dually.
An element is doubly prime if it is both join and meet prime, and doubly
irreducible if it is both join and meet irreducible. Join/meet/doubly prime
elements are clearly join/meet/doubly irreducible. Also, doubly irreducible
elements must be contained in any generating set of a lattice. Accordingly,
in FL(n) the only doubly irreducible elements are the free generators, which
are also doubly prime.

The lattice L is weakly atomic if for any l1, l2 ∈ L satisfying l1 < l2, there
are elements u, v ∈ L so that u1 ≤ u ≺ v ≤ u2. (In other words, all intervals
contain a covering pair.)

In this paper, we will use the lattices 2 (the two element chain), Mn

(for n ≥ 3), as well as N5 to L4. We note that all of these are subdirectly
irreducible lattice that generate small lattice varieties (see [5]).

3. Weak atomicity

In [4], it is proved–following Alan Day–that FL(n) is weakly atomic for all
n (Corollary 2.85). Actually, weak atomicity is proved there for a substan-
tially larger class, including, for example, all finitely generated projective
lattices, however, all elements of this class are finitely generated. As we
have seen in [2], SFL(n) is not finitely generated for n ≥ 3, because it
contains infinitely many doubly prime elements. Still, by adapting Day’s
argument we can prove that weak atomicity holds for these lattices.

Theorem 3.1. For any natural n > 2, the lattice SFL(n) is weakly atomic.

Proof. Suppose that p < q holds in SFL(n). By Theorem 2.84 of [4], there is
a finite bounded lattice K and a surjective homomorphism f : FL(n) → K
so that f(p) < f(q). Let q′ ∈ SFL(n) be such that p < q′ ≤ q, f(p) < f(q′),
but there is no q1 ∈ SFL(n) so that p ≤ q1 < q′ and f(p) < f(q1) < f(q′).
Such q′ exists because of the finiteness of K.

We choose an enumeration of the elements of Sn: Sn := {σ1, . . . , σn!},
and then we define the mapping

f̂ : FL(n)→ Kn!, f̂(r) := (f(rσi))
n!
i=1.

The mapping f̂ is bounded, because Kn! is bounded. Let θ := ker f̂ .
There is a largest element s in the θ-class of p. As p is a symmetrical

term, f̂(p) is a constant tuple. As s is in the same θ-class as p, f̂(s) is also

a constant tuple. This means that for all 1 ≤ i ≤ n!, f̂(sσi) = f̂(s), and
so sσi ≤ s by the definition of s. Hence, s =

∨
π s (notice that the right

side contains s), which means that s is symmetric. Likewise, the smallest
element t in the θ-class of q′ is also symmetric.



4 GERGŐ GYENIZSE

0

d1 d2 . . . dn−1 dn

1

0

a

b

c

1

Figure 1. The lattices Mn and N5

We claim that p ≤ (p ∨ t) ∧ s ≺ p ∨ t ≤ q′ ≤ q holds in SFL(n). The
inequalities are obvious, and (p ∨ t) ∧ s and p ∨ t cannot coincide, because
the former is in the θ-class of p, and the latter is in the θ-class of q′.

Suppose that (p∨ t)∧ s < u < p∨ t for some u ∈ SFL(n). As u ≥ p, u ≥ t
cannot hold, so u is not in the θ-class of q′. Also, as u ≤ s is impossible, u

cannot be in the θ-class of p. Thus, f̂(p) < f̂(u) < f̂(q′), but as both p, u,
and q′ are symmetrical, this means that f(p) < f(u) < f(q′), contradicting
the choice of q′. Therefore, p∨ t indeed covers (p∨ t)∧ s in SFL(n), and we
are ready.

�

4. The cut induced by N5

In [2] we introduced a natural cut on SFL(n), a homomorphism SFL(n)→
2 that mapped a term t to 0 iff it mapped t to 1. This cut was induced by the
lattice Mn in the sense that t was mapped into 0 if and only if t(d1, . . . , dn)
held in Mn. In this section, we describe a somewhat similar cut that is
induced by the lattice N5.

Definition 4.1. Fix an n ≥ 3, 1 ≤ k ≤ n− 1, a finite lattice L and a tuple
(a1, . . . , an) so that {a1, . . . , an} is a (not necessarily n-element) generating

set of L. We define the n-ary lattice terms p
(0)
ai := xi and then recursively

p
(k+1)
l :=

∨
d∈N

l1∧···∧ld≤l

(p
(k)
l1
∧ · · · ∧ p(k)ld ).

(If ai = aj , then p
(0)
ai and p

(0)
aj will be considered different, but for k > 0,

p
(k)
ai and p

(k)
aj will be the same.) These terms are called the upper limit terms

corresponding to the tuple (a1, . . . , an).

It is easy to see the following:

Proposition 4.2. For each k and l ∈ L, p(k)l is the largest n-ary lattice term
of depth at most 2k that induces a term function of L that maps (a1, . . . , an)
to an element smaller or equal than l. �

As a1 ∧ · · · ∧ an is the smallest element of L, p
(k)
l is defined for every l for

k ≥ 1. It is obvious from the definition that for such k, the mapping

L→ FL(n), l 7→ p
(k)
l
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is monotone. It is also injective for large enough k: as {a1, . . . , an} is a
generating set, there is a term s so that s(a1, . . . , an) = l. Obviously, s
cannot be smaller than any term that maps (a1, . . . , an) to anything strictly

smaller than l, so if 2k is not smaller than the depth of s, then p
(k)
l (a1, . . . , an)

must be l.

Definition 4.3. A finite lattice L together with an n-tuple of elements
(a1, . . . , an) is called cut-inducing if

|{f(a1, . . . , an) : f ∈ SFL∗(n)}| = 2,

and in this case the the kernel of the homomorphism

SFL∗(n)→ L, f 7→ f(a1, . . . , an)

is called the cut induced by this tuple. This cut is self-dual if for all f ∈
SFL∗(n), f and f are in different classes of the cut.

So the aforementioned natural cut of Mn is the cut induced by (a1, . . . , an)
in that lattice.

Now we consider the lattice N5. Observe that if f ∈ SFL(n) is a near
unanimity operation, and 1 ≤ k ≤ n − 2, then f(a . . . a︸ ︷︷ ︸

k

c . . . c︸ ︷︷ ︸
n−k−1

b) can be

only a or c. As m(a . . . a︸ ︷︷ ︸
k

c . . . c︸ ︷︷ ︸
n−k−1

b) = a and m(a . . . a︸ ︷︷ ︸
k

c . . . c︸ ︷︷ ︸
n−k−1

b) = c, the tuple

(a, . . . , a,︸ ︷︷ ︸
k

c, . . . c,︸ ︷︷ ︸
n−k−1

b) is cut-inducing. Obviously, the induced cut will be self-

dual precisely if k = n−1
2 .

A straightforward calculation shows the following:

Proposition 4.4. The upper limit terms corresponding to (a, . . . , a,︸ ︷︷ ︸
k

c, . . . c,︸ ︷︷ ︸
n−k−1

b)

in N5 are

p
(1)
0 = (x1 ∧ xn) ∨ · · · ∨ (xn−1 ∧ xn)

p(1)a = x1 ∨ · · · ∨ xk ∨ (xk+1 ∧ xn) ∨ · · · ∨ (xn−1 ∧ xn)

p
(1)
b = xn

p(1)c = x1 ∨ · · · ∨ xn−1

p
(1)
1 = x1 ∨ · · · ∨ xn

p
(2)
0 = p

(1)
b ∧ p

(1)
c = xn ∧ (x1 ∨ · · · ∨ xn−1)

p(2)a = p(1)a ∨ (p
(1)
b ∧ p

(1)
c ) = x1 ∨ · · · ∨ xk ∨ (xn ∧ (x1 ∨ · · · ∨ xn−1))

p
(2)
b = p

(1)
b = xn

p(2)c = p(1)c = x1 ∨ · · · ∨ xn−1

p
(2)
1 = x1 ∨ · · · ∨ xn

p
(k)
l = p

(2)
l for any k > 2 and l ∈ N5

�
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As for any symmetric n-ary term f , f(a . . . a︸ ︷︷ ︸
k

c . . . c︸ ︷︷ ︸
n−k−1

b) = c is equivalent to

f(c . . . c︸ ︷︷ ︸
k

a . . . a︸ ︷︷ ︸
n−k−1

b) = c:

Corollary 4.5. Let n ≥ 3, 1 ≤ k ≤ n − 2, and f ∈ SFL∗(n). Then
f(a . . . a︸ ︷︷ ︸

k

c . . . c︸ ︷︷ ︸
n−k−1

b) = a if and only if

f ≤
∧
π

(x1 ∨ · · · ∨ xk ∨ (xn ∧ (x1 ∨ · · · ∨ xn−1))),

and f(a . . . a︸ ︷︷ ︸
k

c . . . c︸ ︷︷ ︸
n−k−1

b) = c if and only if

f ≥
∨
π

(x1 ∧ · · · ∧ xk ∧ (xn ∨ (x1 ∧ · · · ∧ xn−1))).

�

This means that in these cuts, both congruence classes have a smallest
and a largest element. This was not the case for the cut induced by Mn:

the upper limit terms there did not converge, and neither did the
∧
π p

(k)
0 .

On, the other hand, there is a similarity: in the case of M3, all the
∧
π p

(k)
0

and
∨
π p

(k)
1 were doubly prime elements. This also holds for N5:

Proposition 4.6. Let n ≥ 3, 1 ≤ k ≤ n− 2, and

t :=
∧
π

(x1 ∨ · · · ∨ xk ∨ (xn ∧ (x1 ∨ · · · ∨ xn−1))) ∈ SFL(n).

Then t is a doubly prime element of SFL(n).

Proof. Suppose first that t ≤ h1 ∨ h2 for some h1, h2 ∈ SFL∗(n). By Whit-
man’s Condition, either t ≤ h1, t ≤ h2, or there is a permutation σ such
that

(x1 ∨ · · · ∨ xk ∨ (xn ∧ (x1 ∨ · · · ∨ xn−1)))σ ≤ h1 ∨ h2.
As h1 ∨ h2 is symmetric, in the latter case

x1 ∨ · · · ∨ xk ∨ (xn ∧ (x1 ∨ · · · ∨ xn−1)) ≤ h1 ∨ h2,
and so x1 ≤ h1 ∨ h2. As x1 is a double prime element of FL(n), either
x1 ≤ h1 or x1 ≤ h2. But as h1 and h2 are symmetric, this can only happen
if one of them equals x1∨· · ·∨xn, the largest element of SFL(n). Therefore,
t is join prime.

It is a straightforward consequence of Corollary 4.5 that t is meet prime:
if h1, h2 6≤ t, then h1, h2 ≥ t, and h1 ∧ h2 ≥ t, so h1 ∧ h2 6≤ t. �

It is not hard to find other cut-inducing tuples: for example, the triple
(a, b, c) is cut-inducing in L4. (This is because m(a, b, c) = 0, M(a, b, c) =
a ∨ b, and there cannot be an f ∈ SFL(3) mapping (a, b, c) to a or b, for
L4 has an automorphism swapping a and b and fixing c.) We could not
find any that induced a symmetric cut different form the one induced by
N5. (Different triples can induce this cut: take, for example, the triple
(aa, bb, cc) of N2

5.) Thus we pose the following questions:
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a b c

Figure 2. The lattice L4

Problem 4.7. Is it true that if n is even, then no n-element tuple of
any finite lattice induces a symmetrical cut? Is it true that for odd n,
the only tuple-induced symmetrical cut is the one induced by the tuple
(a, . . . , a,︸ ︷︷ ︸

n−1
2

c, . . . c,︸ ︷︷ ︸
n−1
2

b) of N5? If so, is it true that for odd n, there are precisely

two homomorphisms ι : SFL(n)→ 2 satisfying ι(f) 6= ι(f) for all f?
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x1 ∧ · · · ∧ x5

m

t1

t2

t3

m1

m2

m3

m1

m2

m3

t1

t2

t3

m

x1 ∨ · · · ∨ x5

Figure 3. The cuts of SFL(5) induced by M5 and N5

5. Primeness and reducibility

Proposition 4.6 gives us new doubly prime elements of the lattice SFL(n).
Recall that in [2], we proved that there is a chain of doubly irreducible
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elements m1 < m2 < . . . in SFL(n) defined by

q
(0)
i := xi

q
(k)
i := xi ∨

∨
j1 6=j2
j1,j2 6=i

(q
(k−1)
j1

∧ q(k−1)j2
)

mk :=
∨
i1 6=i2

(q
(k−1)
i1

∧ q(k−1)i2
).

(Here i, j1 and j2 run from 1 to n.) These are not exactly the upper limit
terms corresponding to (d1, . . . , dn) of Mn, but very similar to them. Indeed,

defining mk instead as the upper limit term p
(k)
0 corresponding to this tuple

would likewise yield an increasing chain of double prime elements of SFL(n).
(This fact can be proved the same way as the statement was proved for the
original mi in [2].)

In Figure 4, we show (in the case n = 5) how the new doubly prime
elements come into this picture. Note that this picture shows the poset
induced by these elements, so for example, t1 ∨ t3 = t2 is not true.

We pose the following questions about the double prime elements of
SFL(n):

Problem 5.1. What is the largest antichain in SFL(n) containing only
doubly prime elements?

Problem 5.2. Is SFL(n) generated by its doubly prime elements? In other
worlds: Is SFL(n) a lattice that is freely generated by a poset?

The first of these problems is theoretically researchable by computer:

Theorem 5.3. It is algorithmically decidable whether a given element of
SFL(n) is join (meet) prime, and that whether it is join (meet) reducible.

Proof. Fix a t ∈ FL(n). Denote by Sub(t) the subposet of FL(n) induced
by the subterms of t. For any u ∈ FL(n), use the notation

D(u) := {t′ ∈ Sub(t) : t′ ≤ u}.

A consequence of Whitman’s Condition is that for s1, s2 ∈ FL(n), s1∨s2 ≥
t depends only on D(s1) and D(s2). (This fact is immediate by induction
on the depth of t.)

From now on, we assume t to by symmetric. The join primeness of t can
be decided in the following way: first, compute Sub(t), and then all the
order ideals of it. For each order ideal I, compute

I∗ := D(
∨
t′∈I

∨
π

t′),

this is an order ideal containing I. The order ideal I will be called closed if
I∗ = I. Note that if h ∈ SFL(n), then D(h) is a closed order ideal. Take
all pairs (I1, I2) of closed order ideals such that neither I1 nor I2 contains
t. For each pair, it can be determined whether D(u1) = I1 and D(u2) = I2
implies u1 ∨ u2 ≥ t or u1 ∨ u2 6≥ t.
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If there is a pair so that D(u1) = I1 and D(u2) = I2 implies u1 ∨ u2 ≥ t,
then t is not join prime in SFL(n): let

hj =
∨
t′∈Ij

∨
π

t′

for j = 1, 2, then D(hj) = I∗j = Ij , so h1 ∨ h2 ≥ t, and h1, h2 6≥ t. Also,
h1 and h2 are symmetrical, as they are the join of some symmetrical terms∨
π t
′.

On the other hand, if there is no such pair, then t is join prime in SFL(n):
if h1∨h2 ≥ t, and h1, h2 6≥ t hold for some h1, h2 ∈ SFL(n), then D(h1) and
D(h2) are closed ideals not containing t, and D(u1) = I1 and D(u2) = I2
clearly cannot imply u1 ∨ u2 6≥ t.

Now we consider the join reducibility of t. Again, take all pairs (I1, I2)
of closed order ideals such that neither I1 nor I2 contains t. For each pair,
calculate

(
∨
t′∈I1

∨
π

t′) ∨ (
∨
t′∈I2

∨
π

t′).

If any of these equals t, then t is reducible in SFL(n), for both
∨
t′∈I1

∨
π t
′

and
∨
t′∈I2

∨
π t
′ are symmetrical, and neither can equal t. (AsD(t) obviously

contains t, while D(
∨
t′∈I1

∨
π t
′) = I∗1 = I1 and D(

∨
t′∈I2

∨
π t
′) = I∗2 = I2

do not.)
However, if neither of the aforementioned joins equal t, then t is irreducible

in SFL(n). To see this, assume that t = h1∨h2 for some h1, h2 < t in SFL(n).
Let I1 = D(h1) and I2 = D(h2), then I1 and I2 are closed order ideals not
containing t. Note that for j = 1, 2,

∨
t′∈Ij

∨
π t
′ ≤ hj and D(

∨
t′∈Ij

∨
π t
′) =

I∗j = Ij = D(Ij). From the former fact follows

(
∨
t′∈I1

∨
π

t′) ∨ (
∨
t′∈I2

∨
π

t′) ≤ h1 ∨ h2 = t,

and from the latter

(
∨
t′∈I1

∨
π

t′) ∨ (
∨
t′∈I2

∨
π

t′) ≥ t,

as for any s1, s2 ∈ FL(n), s1 ≥ s2 ≥ t depends only on D(s1) and D(s2).
Hence, if t is a nontrivial join, then it is a nontrivial join of the form

(
∨
t′∈I1

∨
π

t′) ∨ (
∨
t′∈I2

∨
π

t′)

for some pair (I1, I2) of closed order ideals not containing t.
Obviously, meet primeness and meet irreducibility can be decided in a

dual way.
�
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[2] G. Czédli, G. Gyenizse and Á. Kunos: Symmetric embeddings of free lattices into each
other, Algebra Universalis 80 (11) (2019), pages 381–391.



ON THE SYMMETRIC PARTS OF FINITELY GENERATED FREE LATTICES 11

[3] A. Day: Splitting lattices generate all lattices, Algebra Universalis 7 (1977), pages
163–170.

[4] R. Freese, J. Jez̆ek and J. B. Nation: Free Lattices, Mathematical Surveys and Mono-
graphs, vol. 42, Amer. Math. Soc., Providence, RI, 1995.

[5] P. Jibsen, H. Rose: Varieties of Lattices, Lecture Notes of Mathematics, 1533, Springer-
Verlag, Berlin, 1992.

[6] R. McKenzie: Equational bases and non-modular lattice varieties, Trans. Amer. Math.
Soc., 174 (1972), pages 1–43.

[7] P. Whitman: Free Lattices, Ann. Math. 42 (1941), pages 325–330

Email address: gergogyenizse@gmail.com


